US ERA ARCHIVE DOCUMENT

Solutia Inc.

575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

May 26, 2009

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 VIA FEDEX

Re:

PCB Groundwater Quality Assessment Program

1st Quarter 2009 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the PCB Groundwater Quality Assessment Program 1st Quarter 2009 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Smald M., Killi

Gerald M. Rinaldi

Manager, Remediation Services

Enclosure

cc: Distribution List

DISTRIBUTION LIST

PCB Groundwater Quality Assessment Program 1st Quarter 2009 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

<u>USEPA</u>

Leah Evison

USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

IEPA

Sandra Bron

IEPA Bureau of Land/FSRS, 1021 North Grand Avenue East, Springfield, IL 62706

James Moore

IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller

Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Cathy Bumb 575 Maryville Centre Drive, St. Louis, MO 63141

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

Jerry Rinaldi 575 Maryville Centre Drive, St. Louis, MO 63141

1 ^{S T} QUARTER 2009 DATA REPORT

PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

May 2009

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # 21562047.00003

1.0	INTROD	JCTION1
2.0	FIELD PI	ROCEDURES1
3.0	LABORA	TORY PROCEDURES
4.0	QUALITY	/ ASSURANCE 3
5.0	OBSERV	/ATIONS
6.0	REFERE	NCES5
List of	Figures	
Figure Figure Figure Figure Figure	2 3 4	Site Location Map Former PCB Manufacturing Area Monitoring Well Locations Potentiometric Surface Map – Middle / Deep Hydrogeologic Unit PCB Results - SHU Wells PCB Results – MHU / DHU Wells
List of	Tables	
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	<u>.</u>	Monitoring Well Gauging Information Groundwater & DNAPL Analytical Detections Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis
Table 7		Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis

List of Appendices

Appendix A	Groundwater Purging and Sampling Forms
Annendix R	Chains-of-Custody

Appendix B
Appendix C **Quality Assurance Report**

Appendix D **Groundwater Analytical Results (with Data Review Sheets)**

May 2009

1.0 INTRODUCTION

This report presents the results of the 1st Quarter 2009 (1Q09) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the PCB Groundwater Quality Assessment Program Work Plan (Solutia 2008). The Site location map is presented in **Figure 1**.

The PCB Groundwater Quality Assessment Program well network consists of ten monitoring wells, as follows (**Figure 2**):

- Two source area wells, PMAMW-4S and PMAMW-4D, are screened in the Shallow Hydrogeologic Unit (SHU) (designated with an "S") and Deep Hydrogeologic Unit (DHU) (designated with a "D"), respectively.
- Three well clusters (PMAMW-1S/M, PMAMW-2S/M and PMAMW-3S/M) are located down-gradient of the source area. These clusters include wells screened in the SHU and Middle Hydrogeologic Unit (MHU) (designated with an "M").
- Two individual wells designated PMAMW-5M and PMAMW-6D are located further downgradient of the source area, with PMAMW-5M screened in the MHU and PMAMW-6D screened in the DHU.

Groundwater samples were collected from nine of the ten monitoring wells during the 1Q09 sampling event. A dense non-aqueous phase liquid (DNAPL) sample was collected from monitoring well PMAMW-4S based on the presence of DNAPL in the monitoring well during sampling.

Field sampling activities were conducted in accordance with the procedures outlined in the PCB Groundwater Quality Assessment Program Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes the field investigative procedures.

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted the 1Q09 PCB Groundwater Quality Assessment Program field activities February 23 through March 3, 2009.

Groundwater Level Measurements – On February 23 through 25, 2009, an oil/water interface probe was used to measure depth to static groundwater levels and determine the presence of non-aqueous phase liquids (NAPL) in the PCB Groundwater Quality Assessment Program well network. NAPL was only detected in monitoring well PMAMW04S. Depth to groundwater measurements were collected from accessible existing wells (i.e., GM-, K-, PSMW- and PMA-series) and piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750

Environmental Indicator projects) specified in the PCB Groundwater Quality Assessment Program Work Plan.

Well gauging information for the 1Q09 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from wells screened in the MHU and DHU is presented as **Figure 3**.

Groundwater Sampling - Low-flow sampling techniques were used for groundwater sample collection on February 27 and March 3, 2009. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate of 200 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-thru cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
pH	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-thru cell was bypassed to allow for collection of uncompromised groundwater. Consistent with the work plan, samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved.

Quality Assurance/Quality Control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%, complying with the work plan. All samples were submitted to TestAmerica for PCB analysis.

Each sample was labeled immediately following collection. The sample identification system used for each sample involved the following nomenclature "PMAMW#-MMYY-QAC" where:

 PMAMW# – Monitoring Well Location (PCB Manufacturing Area (PMA)) and Number

- MMYY Month and year of sampling quarter, e.g.: February (First quarter), 2009
 (0209)
- QAC will denote QA/QC samples (when applicable):
 - o EB- equipment blank
 - o AD- analytical duplicate
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

DNAPL Sampling – An interface probe detected 0.4 feet of DNAPL in monitoring well PMAMW-4S during monitoring well gauging prior to sampling. Consequently, a DNAPL sample was collected. Using the same process as groundwater sampling, DNAPL was pumped through polyethylene tubing into a 4 ounce glass sample container. Sample PMAMW04S-0209-DNAPL was submitted to TestAmerica for Total PCB analysis by EPA Method 680.

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of overnight delivery service (FedEx for groundwater, UPS for DNAPL). Field sampling data sheets are included in **Appendix A**, COC forms are included in **Appendix B**.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for PCBs using Method 680.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the PCB Groundwater Quality Assessment Work Plan. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. Laboratory result pages (i.e. Form 1's) along with data validation review sheets are included in **Appendix D**.

A total of 14 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one MS/MSD pair, one equipment blank) were prepared and analyzed by TestAmerica for PCBs. The results for the various analyses were submitted as sample delivery groups (SDGs) KPM028 and KPM029.

Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, (USEPA, 1999) and the PCB Water Quality Assessment Work Plan (Solutia 2008). Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for these SDGs to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated (J/UJ) data was 100 percent.

5.0 OBSERVATIONS

This section presents a brief summary of the groundwater analytical results from the 1Q09 PCB Groundwater Quality Assessment sampling event. A summary of the laboratory results is provided in **Table 2** and the entire laboratory data package is provided in **Appendix D**.

Shallow Hydrogeologic Unit

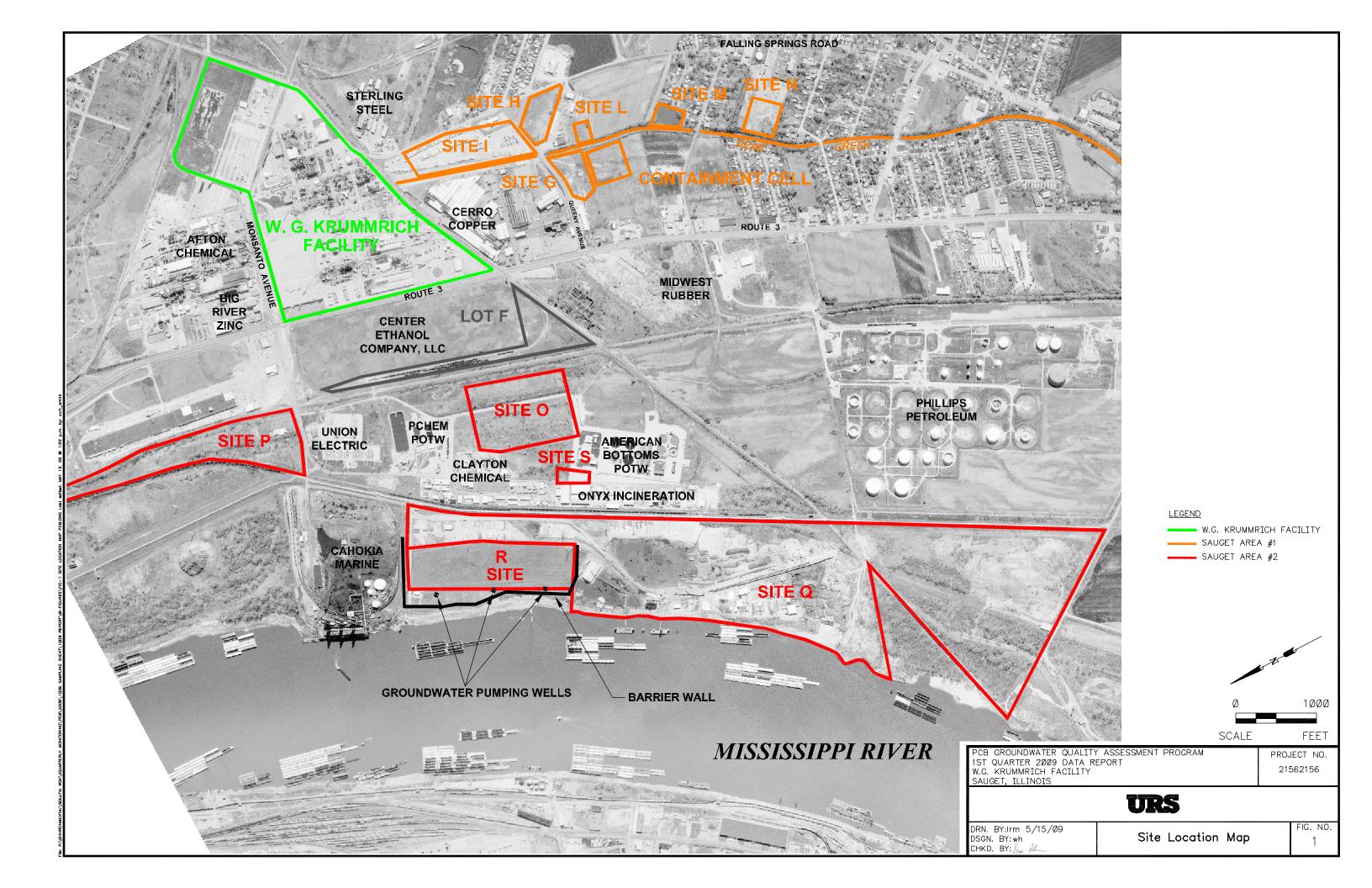
A DNAPL sample was collected from source area SHU monitoring well PMAMW04S, and total PCBs were detected at a concentration of 224,400,000 µg/kg. Historically, measurable DNAPL has been observed in PMAMW04S during previous sampling events.

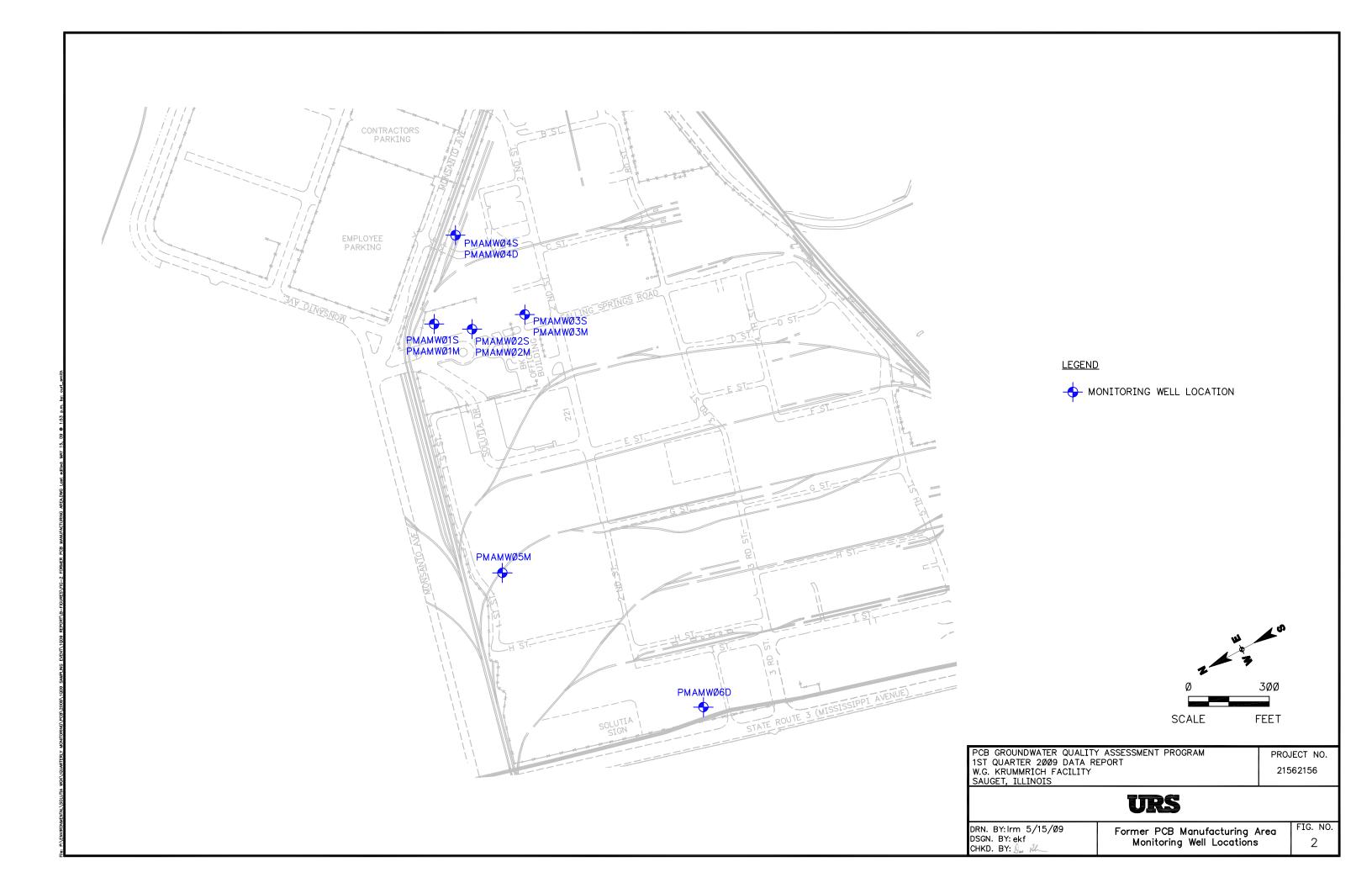
Of the three down-gradient PCB Groundwater Quality Assessment Program SHU monitoring wells (PMAMW-1S through PMAMW-3S), PCBs were only detected in monitoring well PMAMW-3S, at a concentration of 0.79 μ g/L. These data indicate that PCBs in the SHU attenuated over the 300 to 400 ft distance between PMAMW04S and the three downgradient monitoring wells. PCB sampling results for the SHU are presented on **Figure 4**.

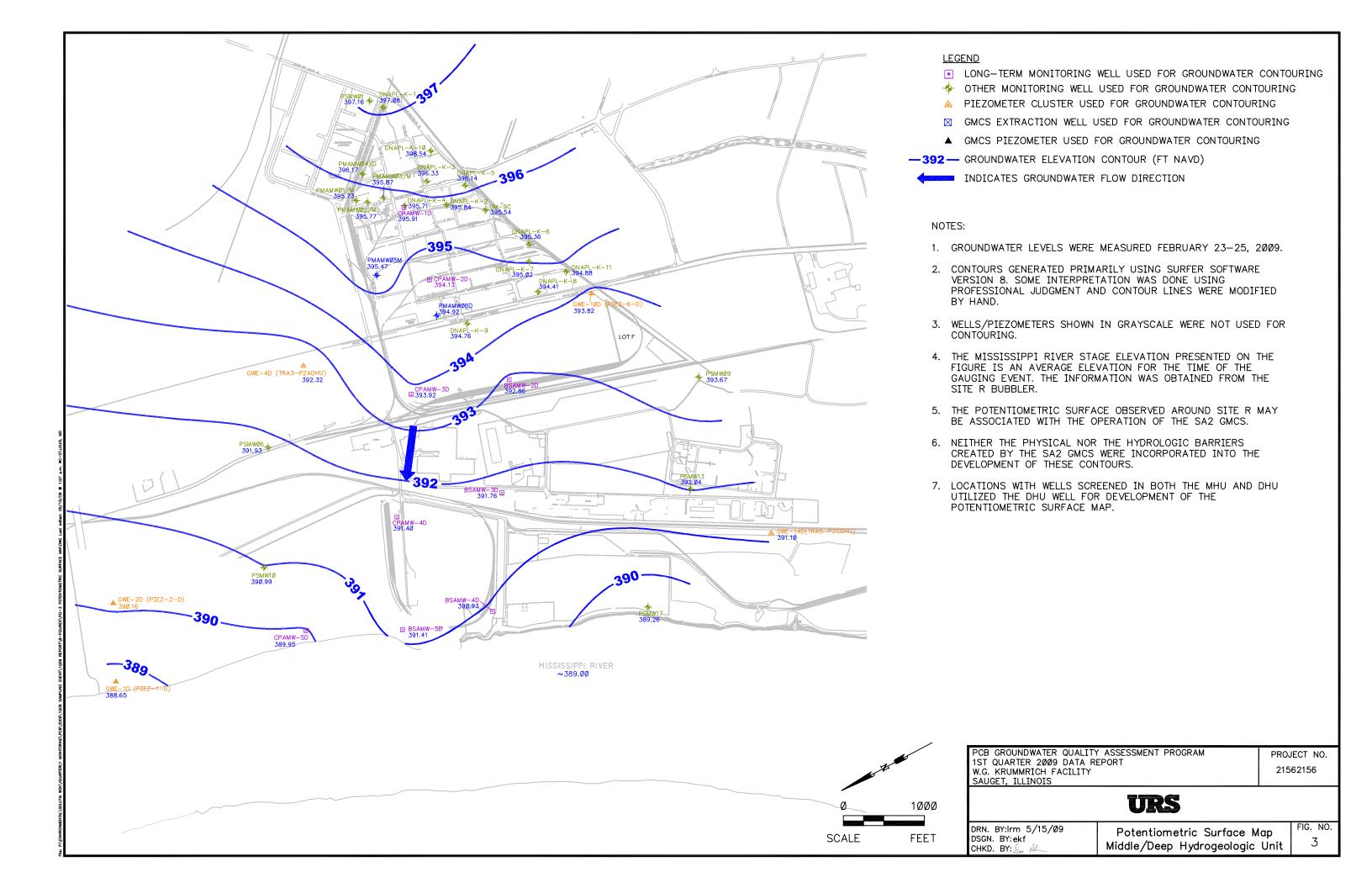
Middle/Deep Hydrogeologic Unit

Laboratory analytical results for monitoring well PMAMW04D located in the Former PCB Manufacturing Area indicated a total PCB concentration of 2.73 μ g/L for the 1Q09 sampling event. PCBs were also detected in four of the five downgradient monitoring wells at concentrations of 0.16 μ g/L (PMAMW-1M), 2.9 μ g/L (PMAMW-2M)/(2.0 μ g/L duplicate), 1.4 μ g/L (PMAMW-3M), and 0.32 μ g/L (PMAMW-6D). PCBs were not detected in the groundwater sample collected from monitoring well PMAMW-5M. **Figure 5** displays the 1Q09 PCB sampling results for the MHU/DHU.

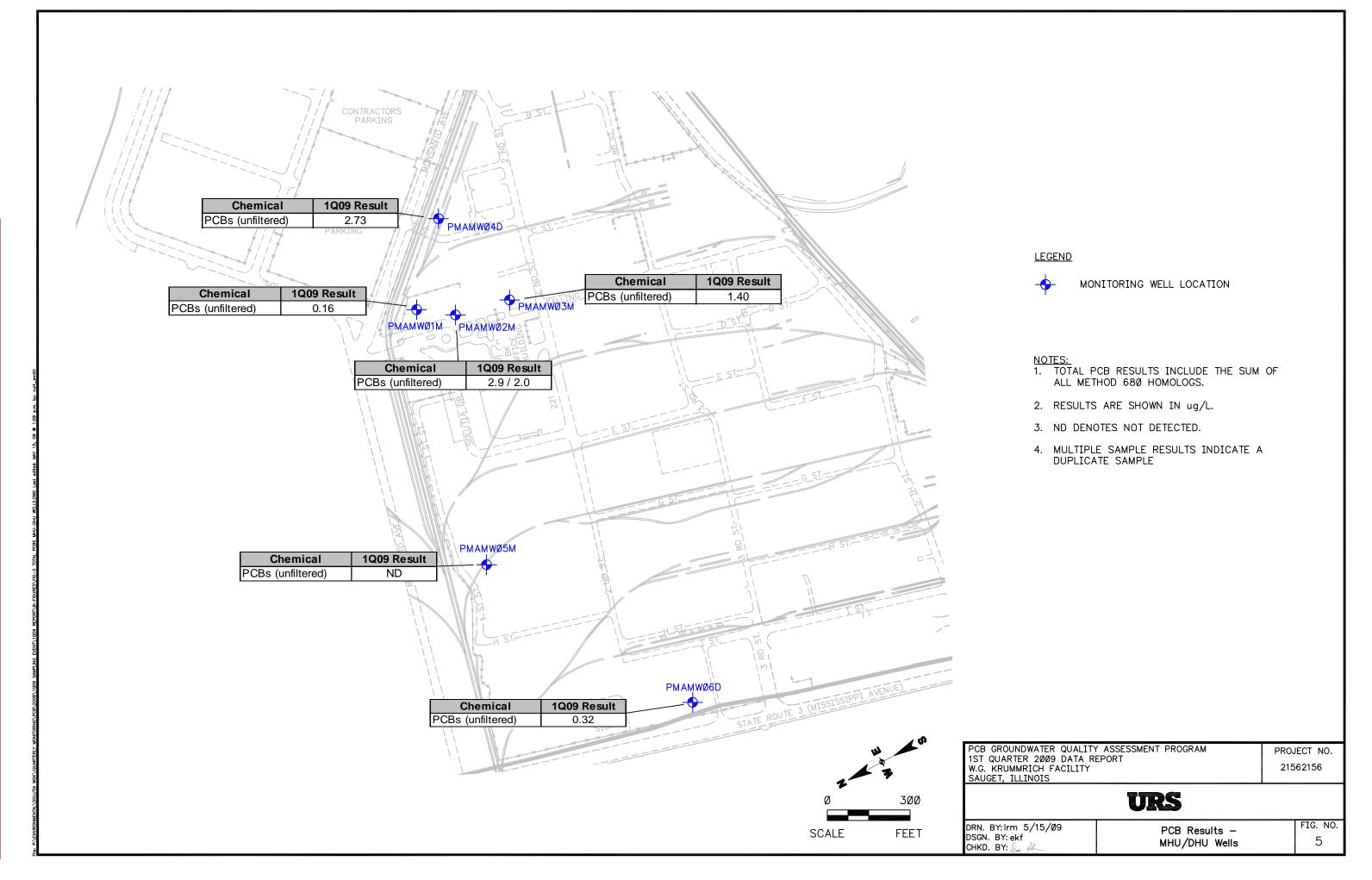
The 1Q09 sampling event is the third event conducted under the PCB Groundwater Quality Assessment Program. Mann-Kendall trend analyses of total PCBs in unfiltered samples of groundwater from monitoring wells within (PMAMW-4D) or downgradient of (PMAMW-1M, -2M, -3S, and -3M) the former PCB Manufacturing Area are presented in **Tables 3** through **7**. No statistically significant trends in PCB concentrations were observed.


After eight quarters of sampling under the PCB Groundwater Quality Assessment Program, the Mann-Whitney U Test will be performed to determine whether or not concentrations in the second four quarters were higher or lower than the first four quarters. Linear regression analysis will be done for the eight quarters of data provided the data distribution allows the use of parametric statistical analysis.


6.0 REFERENCES


Solutia Inc, 2008. PCB Groundwater Quality Assessment Program, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2008.

U.S. Environmental Protection Agency (USEPA), 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review.


Figures

Tables

Table 1
Monitoring Well Gauging Information

			Construct	ion Details				February	23-25, 2009		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Product (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)	Area
Shallow Hydrogeologic	Unit (SHU 395-	380 feet NAV	D 88)							·	
PMAMW01S	410.06	410.06	20.18	25.18	389.88	384.88	14.07		24.93	395.99	WGK
PMAMW02S	411.66	411.66	22.94	27.94	388.72	383.72	15.88	1	27.35	395.78	WGK
PMAMW03S	412.06	412.06	22.71	27.71	389.35	384.35	16.18		27.42	395.88	WGK
PMAMW04S	410.43	410.43	20.99	25.99	389.44	384.44	14.22	24.98	25.38	396.21	WGK
Middle Hydrogeologic I	Jnit (MHU 380-3	350 feet NAVE	88)								
PMAMW01M	410.08	410.08	54.54	59.54	355.54	350.54	14.35		59.66	395.73	WGK
PMAMW02M	411.93	411.93	56.87	61.87	355.06	350.06	16.16		27.42	395.77	WGK
PMAMW03M	412.10	412.10	57.07	62.07	355.03	350.03	16.23		61.88	395.87	WGK
PMAMW05M	411.27	410.97	52.17	57.17	359.10	354.10	15.50		57.02	395.47	WGK
PSMW01	409.37	412.59	34.56	39.56	374.81	369.81	15.43		46.09	397.16	WGK
Deep Hydrogeologic Ur	nit (DHU 350 fee	et NAVD 88 - E	Bedrock)								
BSAMW-2D	412.00	415.13	65.79	70.79	346.21	341.21	22.27		77.10	392.86	WGK
BSAMW-3D	412.91	415.74	104.80	109.80	308.11	303.11	23.98		114.97	391.76	WGK
BSAMW-4D	425.00	424.69	118.54	123.54	306.46	301.46	33.76		123.21	390.93	WGK
BSAMW-5D	420.80	420.49	116.25	120.85	304.95	299.95	29.08		120.95	391.41	WGK
CPAMW-1D	408.62	408.32	66.12	71.12	342.50	337.50	12.41		70.88	395.91	WGK
CPAMW-2D	408.51	408.20	99.96	104.96	308.55	303.55	14.07		104.80	394.13	WGK
CPAMW-3D	410.87	410.67	101.90	106.90	308.97	303.97	16.75		113.20	393.92	WGK
CPAMW-4D	421.57	421.20	116.44	121.44	305.13	300.13	29.80		114.81	391.40	WGK
CPAMW-5D	411.03	413.15	105.51	110.51	305.52	300.52	23.20		114.69	389.95	WGK
DNAPL-K-1	413.07	415.56	108.2	123.2	304.87	289.87	18.48		123.35	397.08	WGK
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	11.88		112.59	395.84	WGK
DNAPL-K-3	412.13	411.91	104.8	119.8	307.33	292.33	15.58		119.47	396.33	WGK
DNAPL-K-4	409.48	409.15	102.55	117.55	306.93	291.93	13.44	-	115.80	395.71	WGK
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	15.77		116.61	396.14	WGK
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	14.73		117.09	395.36	WGK
DNAPL-K-7	408.32	407.72	100.4	115.4	307.92	292.92	12.70	-	115.59	395.02	WGK
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	16.97	-	117.71	394.41	WGK
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	11.21	-	111.35	394.76	WGK
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	16.71		120.40	396.54	WGK
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	16.90		120.36	394.88	WGK
GM-9C	409.54	411.21	88	108	321.54	301.54	15.67		108.46	395.54	WGK

Table 1 Monitoring Well Gauging Information

			Construct	ion Details				February :	23-25, 2009		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Product (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)	Area
Deep Hydrogeologic Unit	(DHU 350 fee	et NAVD 88 - E	Bedrock) (con	tinued)							
GWE-1D (PIEZ-1D)	412.80	415.60	117	127	295.80	285.80	26.95		128.72	388.65	Sauget Area 2
GWE-2D (PIEZ-2D)	417.45	417.14	127	137	290.45	280.45	26.98		136.95	390.16	Sauget Area 2
GWE-4D (TRA3-PZADHU)	406.05	405.74	74	80	332.05	326.05	13.42	-	78.91	392.32	WGK
GWE-10D (PIEZ-6D)	410.15	412.87	102.5	112.5	307.65	297.65	19.05	-	115.00	393.82	Lot F
GWE-14D (TRA5-PZCDHU)	420.47	422.90	90	96	330.47	324.47	31.80	-	97.18	391.10	WGK
PMAMW04D	411.22	410.88	68.84	73.84	342.38	337.38	14.71	-	73.45	396.17	WGK
PMAMW06D	407.63	407.32	96.49	101.49	311.14	306.14	12.40		101.41	394.92	WGK
PSMW06	404.11	406.63	99.80	104.80	304.31	299.31	14.70		109.98	391.93	WGK
PSMW09	403.92	403.52	100.40	105.40	303.52	298.52	9.85		105.31	393.67	WGK
PSMW10	409.63	412.18	101.23	106.23	308.40	303.40	21.19		111.45	390.99	WGK
PSMW13	405.80	405.53	106.08	111.08	299.72	294.72	13.49	1	110.88	392.04	WGK
PSMW17 (BWMW-4D)	420.22	423.26	121.25	126.25	298.97	293.97	34.00		134.20	389.26	WGK

Notes:

* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface btoc - Below top of casing

NG - not gauged

Table 2
Groundwater and DNAPL Analytical Detections

Sample ID	Sample Date	Units	Monochlorobiphenyl (ug/L)	Dichlorobiphenyl (ug/L)	Trichlorobiphenyl (ug/L)	Tetrachlorobiphenyl (ug/L)	Pentachlorobiphenyl (ug/L)	Hexachlorobiphenyl (ug/L)	Heptachlorobiphenyl (ug/L)	Octachlorobiphenyl (ug/L)	Nonachlorobiphenyl (ug/L)	Decachlorobiphenyl (ug/L)
Shallow Hydrologic Unit												
PMAMW01S-0209	2/27/2009	μg/L	< 0.097	< 0.097	< 0.097	<0.19	< 0.19	<0.19	< 0.29	< 0.29	< 0.49	< 0.49
PMAMW02S-0209	2/27/2009	μg/L	< 0.097	< 0.097	< 0.097	<0.19	< 0.19	<0.19	<0.29	<0.29	< 0.49	< 0.49
PMAMW03S-0209	3/3/2009	μg/L	0.67	0.12	< 0.097	<0.19	<0.19	<0.19	<0.29	<0.29	< 0.49	< 0.49
PMAMW-4S-0209-DNAPL	3/3/2009	μg/kg	<200,000	3,400,000	20,000,000	51,000,000	36,000,000	62,000,000	42,000,000	10,000,000	<1,000,000	<1,000,000
Middle / Deep Hydrologic U	nit											
PMAMW01M-0209	2/27/2009	μg/L	0.16	<0.098	<0.098	<0.2	<0.2	<0.2	< 0.29	< 0.29	< 0.49	< 0.49
PMAMW02M-0209	2/27/2009	μg/L	2.0 J	<0.1	<0.1	<0.2	<0.2	<0.2	<0.3	<0.3	<0.5	<0.5
PMAMW02M-0209-AD	2/27/2009	μg/L	2 J	<0.1	<0.1	<0.2	<0.2	<0.2	<0.3	<0.3	<0.5	<0.5
PMAMW03M-0209	3/3/2009	μg/L	1.4	< 0.097	< 0.097	<0.19	<0.19	<0.19	<0.29	<0.29	< 0.49	<0.49
PMAMW04D-0209	3/3/2009	μg/L	0.20	0.21	0.11	0.54	0.38	0.79	0.5	<0.29	< 0.49	<0.49
PMAMW05M-0209	2/27/2009	μg/L	<0.098	<0.098	<0.098	<0.2	<0.2	<0.2	<0.29	<0.29	<0.49	<0.49
PMAMW06D-0209	2/27/2009	μg/L	0.32	<0.098	<0.098	<0.2	<0.2	<0.2	<0.29	<0.29	<0.49	<0.49

Notes:

μg/L = micrograms per liter

μg/Kg = micrograms per kilogram

< = Result is non-detect, less than the reporting limit

AD = Analytical Duplicate

J = Estimated value

BOLD indicates concentration greater than the reporting limit

Table 3
Monitoring Well PMA MW-1M Mann-Kendall Trend Analysis

W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-1M Mann-Kendall Trend Analysis													
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	Total
Total PCBs, µg/L	ND	0.24	0.21	0.17	0.26	0.29	48	ND	0.18	0.38	0.26	0.16	
Compare to Event 1		1	1	1	1	1	1	NA	1	1	1	1	10
Compare to Event 2			-1	-1	1	1	1	-1	-1	1	1	-1	0
Compare to Event 3		·		-1	1	1	1	-1	-1	1	1	-1	1
Compare to Event 4			·		1	1	1	-1	1	1	1	-1	4
Compare to Event 5						1	1	-1	-1	1	1	-1	1
Compare to Event 6					·		1	-1	-1	1	-1	-1	-2
Compare to Event 7								-1	-1	-1	-1	-1	-5
Compare to Event 8									1	1	1	1	4
Compare to Event 9										1	1	-1	1
Compare to Event 10											-1	-1	-2
Compare to Event 11												-1	-1

Mann-Kendall Statistic (S) 11

90 % Confidence Mann-Kendall Statistic

20

Table 4 Monitoring Well PMA MW-2M Mann-Kendall Trend Analysis

	W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-2M Mann-Kendall Trend Analysis													
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Row	
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	Total	
Total PCBs, µg/L	2.3	2.4	2.8	2.1	3.3	2.5	3.1	1.7	3.0	4.3	2.5	2.9		
Compare to Event 1		1	1	-1	1	1	1	-1	1	1	1	1	7	
Compare to Event 2			1	-1	1	1	1	-1	1	1	1	1	6	
Compare to Event 3		•		-1	1	-1	1	-1	1	1	-1	1	1	
Compare to Event 4			·		1	1	1	-1	1	1	1	1	6	
Compare to Event 5						-1	-1	-1	-1	1	-1	-1	-5	
Compare to Event 6					·		1	-1	1	1	1	1	4	
Compare to Event 7								-1	-1	1	-1	-1	-3	
Compare to Event 8									1	1	1	1	4	
Compare to Event 9										1	-1	-1	-1	
Compare to Event 10											-1	-1	-2	
Compare to Event 11												1	1	

Mann-Kendall Statistic (S)

90 % Confidence Mann-Kendall Statistic

20

Table 5
Monitoring Well PMA MW-3S Mann-Kendall Trend Analysis

W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-3S Mann-Kendall Trend Analysis													
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	Total
Total PCBs, µg/L	0.66	0.32	0.20	0.35	0.80	0.30	0.21	0.25	0.64	0.26	0.24	0.79	
Compare to Event 1		-1	-1	-1	1	-1	-1	-1	-1	-1	-1	1	-7
Compare to Event 2			-1	1	1	-1	-1	-1	1	-1	-1	1	-2
Compare to Event 3		·		1	1	1	1	1	1	1	1	1	9
Compare to Event 4			·		1	-1	-1	-1	1	-1	-1	1	-2
Compare to Event 5						-1	-1	-1	-1	-1	-1	-1	-7
Compare to Event 6					·		-1	-1	1	-1	-1	1	-2
Compare to Event 7								1	1	1	1	1	5
Compare to Event 8									1	1	-1	1	2
Compare to Event 9										-1	-1	1	-1
Compare to Event 10											-1	1	0
Compare to Event 11												1 1	1

Mann-Kendall Statistic (S) -4

90 % Confidence Mann-Kendall Statistic

-20

Table 6
Monitoring Well PMA MW-3M Mann-Kendall Trend Analysis

W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-3M Mann-Kendall Trend Analysis													
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Row
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	3Q08	4Q08	1Q09	Total
Total PCBs, µg/L	5.18	1.90	ND	0.77	ND	0.86	0.76	0.39	0.92	1.3	0.71	1.4	
Compare to Event 1		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-11
Compare to Event 2			-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10
Compare to Event 3		·		1	NA	1	1	1	1	1	1	1	8
Compare to Event 4					-1	1	-1	-1	1	1	-1	1	0
Compare to Event 5						1	1	1	1	1	1	1	7
Compare to Event 6					·		-1	-1	1	1	-1	1	0
Compare to Event 7								-1	1	1	-1	1	1
Compare to Event 8									1	1	1	1	4
Compare to Event 9										1	-1	1	1
Compare to Event 10											-1	1	0
Compare to Event 11												1 1	1

Mann-Kendall Statistic (S) 1

90 % Confidence Mann-Kendall Statistic

20

Table 7
Monitoring Well PMA MW-4D Mann-Kendall Trend Analysis

W.G.Krummrich Facility PCB Mfg. Area Monitoring Well MW-4D Mann-Kendall Trend Analysis													
	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Row	
	2Q06	3Q06	4Q06	1Q07	2Q07	3Q07	4Q07	1Q08	2Q08	4Q08	1Q09	Total	
Total PCBs, µg/L	0.34	0.10	2.07	0.33	0.50	0.35	0.23	0.27	0.44	0.27	2.73		
Compare to Event 1		-1	1	-1	1	1	-1	-1	1	-1	1	0	
Compare to Event 2			1	1	1	1	1	1	1	1	1	9	
Compare to Event 3		•		-1	-1	-1	-1	-1	-1	-1	1	-6	
Compare to Event 4					1	1	-1	-1	1	-1	1	1	
Compare to Event 5						-1	-1	-1	-1	-1	1	-4	
Compare to Event 6							-1	-1	1	-1	1	-1	
Compare to Event 7								1	1	1	1	4	
Compare to Event 8									1	1	1	3	
Compare to Event 9										-1	1	0	
Compare to Event 10											1	1	

Mann-Kendall Statistic (S)

90 % Confidence Mann-Kendall Statistic 18

Appendix A Groundwater Purging and Sampling Forms

PROJECT NAME: DATE: MONITORING WEL	PCB GW Quality Assessment 2/27/09 LL ID: PMAMW01M	WEATHER:	UMBER:	21562156.00 2st, 37° SAMP	OO / FIE		M . Co.	rbett, S.1	Moore	
Constructed Well De Depth to Water (btoo Depth to LNAPL/DNA	in (btoc): 59.30 ft pth (btoc): 59.30 ft pth (btoc): 59.30 ft pth (btoc): ft pth (btoc): ft pth (btoc): 54.30 ft pth (btoc): ft pth (btoc): 54.30 ft pth (btoc): ft pth (bt	If Depth to Top of Place Pump at: If Depth to Top of Place Pump at:	of Screen is > Depth Total Well Depth = 0 of Screen is < Deptl Total Well Depth = (te LNAPL or DNAPL): to Water AND Screen I .5 (Screen Length + DN n to Water AND Water C 0.5 X Water Column Hei nn height is < 4 ft, Place	Lenth is (4 feet, APL Column Height) Column Height and Soight + DNAPL Column	reen Length are (4ft n Height) =	Min ft btoc (3 , Am ft btoc We	lume of Flow Through nimum Purge Volume 3 x Flow Through Cell sbient PID/FID Readin llbore PID/FID Readin	= Volume) <u>3,450</u> g:	mL
Pump Type:	Stainless Steel Monsoc	on								
					±0. 3 -units		±3 %	,	±10 % or ±2 mg/L	±20 mV
Purge Volume	<u></u>	Depth to	^ 1	0.1	15	Temp	Cond.	Turbidity	DO (mg/l)	ORP (mv)
(mL)	Time / 055	Water (ft)	Color	hydrocarbon	pH	(°C) 14.23	(ms/cm) 2.153	(NTUs)	7.76	-/22.8°
1200	1055	19.53	col ori ess	hydrocurbor,	6.90 6.87	14.47	2.266	0.7	9 14	-/48.2
2402	1107				6.87	14.75	2.285	1.8	9.14 9.83	-156.6
7400 3600	7113				6.90	14.74	2.386	1.3	12.34	-160.6
4800	(118				6.90	14.14	2.290	0.1	12.57	-164.3
6000	1125	V	<i>V</i>	J	2.90	14.74	2.297	-1.2	12.96	-165,1
										, , ,
										<u> </u>
Start Time: Stop Time:	1055			osed Time: rage Purge Rate (mL/m	30 мій. in): 200		Water Quali Date Calibra		YSI 6920 ?	
SAMPLING DAT	Λ							!	· · · · · · · · · · · · · · · · · · ·	
SAMPLING DAT	A									
Sample Date:	2/27/00		Sar	nple Time:	1/20		Analysis:	Total PCBs		
Sample Method:	2/27/09 Stainless Steel Monsoon		Sar	nple Time: nple Flow Rate:	200 1/		Date Calibra			
					AUU ML/M	γ Λ		***************************************	, . ,	
COMMENTS:										
			~~~~		***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

PROJECT NAME	2/27/09	PROJECT NUM WEATHER:		<u>62156.0001</u> cast, 37°				orbett, S.M.		
MONITORING W	EĽL IĎ: PMAMW01S		***************************************	SAMF	PLE ID:	PMAMW01	IS-0209 , PA	1AMWOIS-0209-	MS, PMAMWO	15-0209-MS
Constructed Well I Depth to Water (bt Depth to LNAPL/D Depth to Top of Se	pth (btoc): 24.94 ft Depth (btoc): 24.94 ft coc): 14.00 ft NAPL (btoc): ft creen (btoc): 19.94 ft	Place Pump at: Tota	creen is > Depth to Il Well Depth - 0.5 creen is < Depth to Il Well Depth - (0.5	Water AND Screen (Screen Length + DN o Water AND Water (	Lenth is (4 feet, NAPL Column Heigh Column Height and S ight + DNAPL Colun	Screen Length are ( 4ft, nn Height) =	ft btoc ft btoc ft btoc	Volume of Flow Throug Minimum Purge Volume (3 x Flow Through Cel Ambient PID/FID Readir Wellbore PID/FID Readir	:=   Volume) <u><b>3,4</b>50</u>  g: 6-0	mLmLppmppm
PURGE DATA Pump Type:	5 ft Stainless Steel Monso	on								
		D. C.			±0. <b>‡</b> -units	1 <del>T</del>	±3 %	T. 2146	±10 % or ±2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	рН	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
D	0955		olorless	non e	6.47	15,08	1.457	0,5	9.90	152.7
1200	1001	14.28	1	1	6.54	15.15	1.961	-0.4	10.58	133-8
2400	1007	14.25			6.53	15.17	1.493	-1.6	10.69	117.3
<u> 3600</u> 4800	(013	14.25		<del></del>	6.53	15.26	1.500	-1.8 -1.8	10.48	112.6
7,000	1019	14-25	v	<u> </u>	6.52	15.11	1.508	-1.0	10.33	109.0
				<del></del>						
				***************************************						
						<del> </del>				
Start Time: Stop Time:	0955			ed Time: ge Purge Rate (mL/m	24 min. nin):	2		Quality Meter ID:	<u>YSI 6920</u> 09	
SAMPLING DA	та	<del></del>							······································	
SAMPLING DA		_								
Sample Date:	2/27/	09	Samp	le Time:	1025		Analys	is: Total PCBs		
Sample Method:	Stainless Steel Monsoon	- 1	Samp	le Time: le Flow Rate:	200 m/	Imin	QA/QC	: MS/M	SD	
COMMENTS:					7	7,111			~ 1	
							······	,		

	PCB GW Quality Assessment -[⊋7[09]	PROJECT NUMB WEATHER:	ER:	21562156.0 Tanat, 38° SAMPL	000[	FIELD PERSONNEL:	M.Cor	bett, S.M.	oore	
MONITORING WELL	'ID: ' PMAMW02M	<u>,</u>		SAMPL	E ID:	PMAMW0	2M-0209	MAMWOZ	M-0209-AD	
INITIAL DATA  Well Diameter: 2  Measured Well Depth Constructed Well Dep Depth to Water (btoc): Depth to LNAPL/DNAI Depth to Top of Scree Screen Length: 5	(btoc): 61.54 ft th (btoc): 61.54 ft : 16.36 ft PL (btoc): ft en (btoc): 56.54 ft	Place Pump at: Total If Depth to Top of Scr Place Pump at: Total	een is > Depth t Well Depth - 0.5 een is < Depth Well Depth - (0.	o Water AND Screen Le 5 (Screen Length + DNA	APL Column Heig Dlumn Height and pht + DNAPL Col	d Screen Length are < 4ft, umn Height) =	Mir ft btoc (; An	lume of Flow Through nimum Purge Volume 3 x Flow Through Cel nbient PID/FID Readin lilbore PID/FID Readin	=   Volume) <u>3, 4 :</u> g: <u>0, 0</u>	
PURGE DATA Pump Type:	Stainless Steel Monsoor	n								
rump type.	Otaliness oteen wonsoon	V,			±02 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pН	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
0 0	1920	16.48 co	lorless	hydrocarbon	7.17	15.15	1.870	9.3	6.28	-68.4 -114.5
1 700 2400	1256			,	7,13	14.56	2.086 2.0 <b>5</b> 1	8.6	6.08 8.20	-145.4
3600	1308				7.13	14.60	2.059	5.4	8.49	-151.8
4800	1314				7.14	14.70	2.067	1.1	10.88	-158.6
০০০১	1320				7.14	14.70	2.068	0.5	11.25	761.9
7200	1326	***	V	<b>V</b>	7,73	14.68	2.669	0./	/[.]	-/66.3
Start Time: Stop Time:	250  326		•	sed Time: <u>うん</u> age Purge Rate (mL/min	e min. 1):20	2	Water Quali Date Calibra		7/09	
SAMPLING DATA										
Sample Date:	2/27/09		Samı	ple Time:	1230		Analysis:	Total PCBs		
	Stainless Steel Mensoon		,	ple Flow Rate:	1330 200 m	/min	QA/QC:	Analytica	l duplicate	
COMMENTS:									<i>!</i>	

	PCB GW Quality Assessment 27/09 LL ID: PMAMW02S	PROJECT N WEATHER:	UMBER: 7	1562156. Cart, 38° SAMI	<i>0000 [</i> F	IELD PERSONNEL:	M, CON 28-0209 , PMAR	64+, S. M. 1W025-020	9-EB	
Constructed Well De Depth to Water (btoo Depth to LNAPL/DNA	th (btoc): 27.33 ft ppth (btoc): 27.33 ft ppth (btoc): 27.33 ft ppth (btoc): ft pth (btoc): ft pth (btoc): 22.33 ft pth (btoc): 27.33 f	If Depth to Top o Place Pump at: I If Depth to Top o Place Pump at: I	f Screen is > Depth Total Well Depth – 0. If Screen is < Depth Total Well Depth – (0	to Water AND Water 5 X Water Column He	Lenth is (4 feet, NAPL Column Height Column Height and S eight + DNAPL Colun	//.   8 t) = 2 4. 83 Screen Length are (4ft, nn Height) = Ill Depth - 2 ft =	Mir ft btoc (3 Am	lume of Flow Through nimum Purge Volume 3 x Flow Through Cell blient PID/FID Readin Illbore PID/FID Readin	= Volume) <u>3, 438</u> g: <u>0.0</u>	mL_
PURGE DATA Pump Type:	Stainless Steel Monson	nn.								
ramp type.	Stalliess Steel Worldoo	Jii.			±0. <b>⊉</b> units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL) ට	Time 1200	Water (ft)	Color Colorless	none	pH 6.97	(°C) 15,53	(ms/cm) /-3/0	(NTUs)	(mg/l) 7, 78	(mv) - 29-6
1200	1206	16.10	201071635	nore	6.83	15.58	1.370	2.8	8.55	- 21-1
2400	1212				6.81	15.74	1-321	1.1	8.81	-15.1
3600	1218				6.79	15.97	1.327	0.0	9,00	<u>~8.5</u>
4800	1224	V	Ψ	<u> </u>	6.78	15.49	1.324	~0.8	8.48	-3.0
				1 .,						
			***************************************							
Start Time:	1200			sed Time;					YSI 6920	
Stop Time:	1724		Aver	age Purge Rate (mL/r	nin): <i>200</i> _		Date Calibra	ated: $2/27$	709	
N:									:	
SAMPLING DAT	A									
Campula Datas	2/20/		C	ale Time:	10.55		Anabiaic:	Total PCBs		
Sample Date:	2/27/09 Stainless Steel Monsoon			ple Time: ple Flow Rate:	17-30	m/min.	QA/QC:			
Sample Method:	Stainless Steel Monsoon			his Flow Kate:	7-00	ml/min	WAINO:	EU collec	ted before N	us well
COMMENTS:						·				
*****										

PROJECT NAME: DATE: MONITORING WE	PCB GW Quality Assessment 3/3/09 LL ID: PMAMW03N	PROJECT N WEATHER:	IUMBER: a	2 <i>1561</i> 156.00001 10wdy, 3 <b>9°</b> SAMPL	FIE	LD PERSONNEL:	<i>М-с</i> 03М-0209	Corbett, s.m.	oore	
Constructed Well De Depth to Water (bto- Depth to LNAPL/DN	in (btoc): 61.97 ft epth (btoc): 61.81 ft c): 16.140 ft APL (btoc): 65.81 ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	of Screen is > Depth Total Well Depth – 0. of Screen is < Depth Total Well Depth – (0	e LNAPL or DNAPL): to Water AND Screen Le .5 (Screen Length + DNA n to Water AND Water Co ).5 X Water Column Heig nn height is < 4 ft, Place	enth is (4 feet, PL Column Height) Jumn Height and Sc ht + DNAPL Column	reen Length are ( 4ft Height) =	ft btoc	Volume of Flow Through Minimum Purge Volume (3 x Flow Through Cell Ambient PID/FID Reading Wellbore PID/FID Reading	= 7 Volume) 3,4 p: 0.0	5 <i>0</i> mL
PURGE DATA Pump Type:	Stainless Steel Monso	on.								
ramp type.	Granness Oteer Monse	<u>Ott</u>			±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to			10.2 driig	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1410	16.40	brown	hydrocarbon	9.07	/5.30	2.3/1	114.7	3,88	- 91.2
1200	1416	1		7	9.12	15.43	2.310	100.6	7. 3.2	-109.3
2400	1422				9.12	15.51	2.3/3	75.7	8.66	-130.2
3600	1428				9.24	15.30	2,315	48.3	8.07	-146.9
4800	1434	1,			9.26	15,80	2.316	30.7	7.39	-154-0
6000	1440		V	V	9,26	15.87	2.317	23.0	7.79	-158.0
Start Time: /	410 446		•	osed Time: rage Purge Rate (mL/mir	<u>30 min .</u> 1): <b>300</b>		~	Quality Meter ID:	YSI 6920 <b>&amp; 9</b>	
SAMPLING DAT	-A									
Sample Date: Sample Method:	3/3/ <b>3</b> 9 Stainless Steef Monsoon	i .		nple Time:	1445 200 ml	lmin.	Analys  Date C	is: Total PCBs alibrated: NA		
COMMENTS:				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

PROJECT NAME: DATE: 3/	PCB GW Quality Assessment	PROJECT NI	JMBER: 2/5	ircast. 39°				sbutt, S. Moor	<u>e</u>	
	L'ID: PMAMW03S			· / SAMPL	E ID:	PMAMW0	3S-0209			
INITIAL DATA					11					
Depth to Water (btoo	pth (btoc): 27.40 ft :):	If Depth to Top o Place Pump at: T If Depth to Top o Place Pump at: T	f Screen is > Depth otal Well Depth – 0 f Screen is < Dept otal Well Depth – (	le LNAPL or DNAPL):  to Water AND Screen Le  .5 (Screen Length + DNA  n to Water AND Water Co  0.5 X Water Column Heig  nn height is < 4 ft, Place	enth is (4 feet, APL Column Height) Dlumn Height and So pht + DNAPL Colum	= 24.90 creen Length are (4ft, h Height) =	ft btoc	Volume of Flow Through Minimum Purge Volume (3 x Flow Through Cell Ambient PID/FID Reading Wellbore PID/FID Reading	= Volume) 3,9 p: 0.0	
PURGE DATA	0.17									
Pump Type:	Stainless Steel Monsoo	ın			±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	pH	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
0	1320	16.44	colorless	hydrocarbon	6.90	15,65	1.888	-3.0	4.24	<u> 54.7 </u>
1200	326	1		"	6.91	15.67	1.899		4.30 7-54	45.8 41.2-
2400	1232	-		1	<u> </u>	15.83	1.9/3	-6.2	8.10	38./
3600 4800	1338	1/		+	6.87	15.66	1.917	-6.7	8.52	36.7
4000	1350	<b>V</b>	$\overline{}$	<del>                                       </del>	6.81	15.53	1.916	-6.9	8.22	36.2
Start Time: Stop Time:	132 <b>0</b> 1350			psed Time: erage Purge Rate (mL/mi	30 min n): 200	)		luality Meter ID:	YSI 6920 2 <b>9</b>	
SAMPLING DAT	A									
			_		سداد دا	-ac :===	A	s: Total PCBs		
Sample Date: Sample Method:	3/3/09 Stainless Steel Monsoon		Sai	mple Time: mple Flow Rate:	1345 200 ml	/min.	Date Ca	librated: NA		
COMMENTS:						-				

PROJECT NAME DATE: 3 MONITORING WI	: WSK PC8 G 5/3/09 ELL'ID: Pr	Wass, PROJECT WEATHER MAMWOYD	NUMBER: 2 R: Cloud	1562156.000 14.35° SAMP	<u> PLE ID: PM /</u>	IELD PERSONNEL:		beff, S.Mo	016	
INITIAL DATA  Well Diameter: 2 Total Well Depth (INITIAL Depth (INITIAL DEPTH) Depth to LNAPL/DI Depth to Top of So Screen Length:	btoc): <u>13, 45</u> bc): <u>/4,90</u> NAPL (btoc): — creen (btoc):	ft If Depth to To ft Place Pump a ft If Depth to To ft Place Pump a	n Height (do not includ p of Screen is > Depth t: Total Well Depth – 0. p of Screen is < Depth t: Total Well Depth – (0 gth and/or water colum	to Water AND Screen i 5 (Screen Length + DN to Water AND Water C 5 X Water Column He	IAPL Column Heigh Column Height and : ight + DNAPL Colur	Screen Length are ( 4f nn Height) =	ft btoc t, A ft btoc W	olume of Flow Through inimum Purge Volume (3 x Flow Through Cell mbient PID/FID Readin ellbore PID/FID Readin	= Volume) <u>1590</u> g:	mL mL ppm ppm
PURGE DATA Pump Type:	Stainless Steel Mo	nsoon								
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	Hq	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
2 (783 2407 3600 4802	1530 1536 1542 1548 1554	14.90	colorless	hydrocarbon	6.66 6.59 6.65 6.61 6.63	15.30 15.28 15.27 15.18 15.08	1.750 1.747 1.739 1.738 1.735	83.8 42.6 19.6 18.0 12.7	12.38 12.38 12.44 12.61	-/2/, 4 -/2/, 4 -/2/, 4 -/22.2 -/22.5 -/26.4
Start Time: Stop Time:	1530 1554			sed Time: age Purge Rate (mL/m	24 min. in): 200		Water Qua	<del></del>	1 6920 YSI <del>556-and LaMotte</del> 09	-2020-PAC
SAMPLING DA' Sample Date: Sample Method: COMMENTS:	TA  3/3/3/37  Stainless'Steel Monso	oon		ple Time: ple Flow Rate:	1600 200 m <u>L</u> /	min.	Analysis: Date Calib	<u>Total PCB</u> rated: <u>NA</u>	is .	

PROJECT NAME: DATE: 3 MONITORING WE	PCB GW Quality	PROJECT N WEATHER:	UMBER: 2/5 Sunfalo	562156.000 wds 35° SAMP	DE ID:	ELD PERSONNEL:	<u>М. Согье</u> 1048-0209 м Р	MAMWOUS-02	209- DNAPL	
Constructed Well Double Depth to Water (bto Depth to LNAPL/DN	th (btoc): 25.33 ft epth (btoc): 25.33 ft c): 15.33 ft APL (btoc): 24.48 ft reen (btoc): 20.38 ft	If Depth to Top o Place Pump at: T If Depth to Top o Place Pump at: T	eight (do not include L if Screen is > Depth to Total Well Depth – 0.5 if Screen is < Depth to Total Well Depth – (0.5 and/or water column	Water AND Screen L (Screen Length + DN Water AND Water C X Water Column Hei	.enth is ⟨4 feet, APL Column Height) olumn Height and S ght + DNAPL Colum	= creen Length are ( 4fn Height) =	ft btoc (3 t, Am ft btoc We	lume of Flow Through nimum Purge Volume 3 x Flow Through Cell bient PID/FID Reading Illbore PID/FID Reading	= Volume)	mL
PURGE DATA	Ctainless Ctael Manage									
Pump Type:	Stainless Steel Monsoo	on			±0.2 units		±3 %		±10 % or ±2 mg/L	±20 mV
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
							-		-	
					M	C				
						-	-			
							1			
Start Time: Stop Time:				ed Time: ge Purge Rate (mL/m	in):			ity Meter ID:		
SAMPLING DAT	Α								\ -	
OAMI LING DA									Į	
Sample Date:	3/3/09 Stainless Steel Monsoon			le Time:	1545		Analysis:  Date Calibra	Total PCBs ated: NA		
Sample Method:	Stainless Steel Monsbon		Sampl	le Flow Rate:		_	Date Calibra	ateu: NA		
COMMENTS:	sampled for	Total 1	PCBs (680)	8						

	PCB GW Quality  Assessment  7/09  ELL ID: PMAMW0	PROJECT WEATHER	NUMBER: R: <u>sverc</u>	215 <b>62</b> 156. ast, 39°	0000 FI	ELD PERSONNEL:	M. Corbet 105-0209 PMAMU	t, S. Moore 105M-0209		
Constructed Well E Depth to Water (bto Depth to LNAPL/DI Depth to Top of So Screen Length:	in 57.02  jepth (btoc): 57.02  pepth (btoc): 57.17 ft  pc): 5.58 ft  NAPL (btoc): 52.17 ft  ft	ft If Depth to Tol Place Pump a If Depth to Tol Place Pump a If Screen Leng	p of Screen is > Depth t: Total Well Depth — ( p of Screen is < Dept t: Total Well Depth — (	de LNAPL or DNAPL):_ n to Water AND Screen 0.5 (Screen Length + Di in to Water AND Water (0.5 X Water Column He mn height is < 4 ft, Plac	Lenth is (4 feet, NAPL Column Height Column Height and S eight + DNAPL Colum	) = 54.67 creen Length are (4fi nn Height) = —	ft btoc (3 t, Ami ft btoc Wel	imum Purge Volume x Flow Through Cel	l Volume) 3,450 g: 0.0	mL
PURGE DATA Pump Type:	Stainless Steel Mor	isoon								
, ump 1 , por	Ottomico Otto mo:	100011			.00		. 2.00		. 40.0/ 0 8	. 20
Purge Volume	Time	Depth to	Color	Odor	±0.2 units	Temp	±3 % Cond.	Turbidity	±10 % or ±2 mg/L DO	±20 mV ORP
(mL)	Time 1595	Water (ft)	00101	hydrocarbon	7,20	(°C)	(ms/cm)	(NTUs) グスイ	(mg/l) 4.98	(mv) -91,7
1200	1531	13.50	coldinaless	nyaracurosn	7.15	16.91	8,232	30.2	5.04	-100.0
2400	1537		Color		7./3	15.25	2.263	12.2	5.46	-/03.0
3600	1543				7.14	15.16	2.258	6.6	6.73	-108.9
4800	1549			,	7.14	14.86	2.258	2.7	6.71	~114.1
600	1555	<u> </u>	V	<b>V</b>	7.13	14.78	2.257	3.4	7.09	-/18.0
Start Time: Stop Time:	1525 1555			psed Time: erage Purge Rate (mL/n	30 min. nin): 200		_ Water Qualit _ Date Calibra		YSI 6920 10 <b>9</b>	
SAMPLING DA	ΓA				· · · · · · · · · · · · · · · · · · ·				;	
	. ,									
Sample Date:	2/27/09		Sar	mple Time:	1600		Analysis:	Total PCBs		
Sample Method:	Stainless Steel Monso	on	Sar	mple Time: mple Flow Rate:	200 mL/0	n'in	Date Calibra	ted: NA		
COMMENTS:										

PROJECT NAME:		PROJECT I	NUMBER:	11562156.α 2st, 40°	<i>000 (</i> FI	ELD PERSONNEL:	M. Cor	bett, S. Moo.	re	
	7/27/09 LLID: PMAMW06D	WEATHER:	OVERC	≈s <del>†, 40°</del> SAMPI	E ID:	PMAMW	1 <del>6-028</del> 9 PM	AMW06D-020	)9	
								:		
INITIAL DATA					_	•				
Constructed Well Depth to Water (bto Depth to LNAPL/DN	in th (btoc): 101.29 ft epth (btoc): 101.29 ft c): 12.50 ft APL (btoc): ft een (btoc): 96.29 ft ft	If Depth to Top Place Pump at: If Depth to Top Place Pump at:	Total Well Depth – 0.9 of Screen is < Depth Total Well Depth – (0.	to Water AND Screen L 5 (Screen Length + DN/ to Water AND Water Co 5 X Water Column Heig	enth is (4 feet, APL Column Height olumn Height and S ght + DNAPL Colum	88.79 t) = 98.79 coreen Length are (4ft, in Height) =	ft btoc	Volume of Flow Through Minimum Purge Volume (3 x Flow Through Cell Ambient PID/FID Readin Wellbore PID/FID Readin	= Volume) <u>3,450</u> g: <u>0.0</u>	mL
PURGE DATA										
Pump Type:	Stainless Steel Monsoo	on								
Purge Volume		Depth to			±0.2 units	Temp	±3 % Cond.	Turbidity	±10 % or ±2 mg/L DO	±20 mV ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
G	1430	12.51	colorless	hydrocarbon	6.90	16.23	1.080	11-1	7.97	-110.1
1200	1436 1442			- 1	6.94	16.00	1.083	2.3	8.65	-130.7
2400	1442				6,90	15.99	1.093	<u>0</u> . (	8.80	-/38.9
3600	1448		1	<b>₩</b>	6.90	15.99	1.105	-0.8 -1.3	9.06	-145.5 -148.7
4200	1459		W	V	6.40	/5.37	20110	-1.5	1,40	- 178.7
									<u> </u>	
Start Time:	1430		<u>I</u> Elap:	sed Time:	24 min.		Water Q	uality Meter ID:	YSI 6920	
Stop Time:	1430 1454		Aver	age Purge Rate (mL/mi	n): <i>200</i>		Date Cal	ibrated: 2 <i>/27/.</i>	09	
								<u> </u>	·	
SAMPLING DAT	A									
	2/20/		•		1 ==== ===		A	Tatal DODa		
Sample Date:	2/27/09			ple Time:	1500			: Total PCBs		
Sample Method:	Stainless Steel Monsoon		Sam	ple Flow Rate:	200	m/min	Date Cal	librated: NA		
COMMENTS:						,				
							·····			

# Appendix B

**Chains-of-Custody** 

ANALYSIS REQUEST AND CHAIN TestAmerica	OF CUSTODY RECORD	510	tAmerica S 2 LaRoche vannah, GA	Avenue		Website: www Phone: (912) Fax: (912) 352		
THE LEADER IN ENVIRONMENTAL TESTING		○ Alte	rnate Labor	atory Name/Lo	cation	Phone: Fax:		
PROJECT REFERENCE JUNE 14 PROJECT NO. 21562156	PROJECT LOCATION MATRIX (STATE) TYPE	ब्रि		REQUIRE	ED ANALYSIS		PAGE	OF ]
L (LAB) PROJECT MANAGER P.O. NUMBER	CONTRACT NO.	1 7					STANDARD REPORT DELIVERY	0
LENT (SITE) PM CLIENT PHONE  Adams  SI4-429-0100	CLIENT FAX B14-429-044 2	SOLVEI SOLVEI					DATE DUE	- # 1
RS Corporation Homas adams &	TUS COLD TOWN OF STATE	NONAQUEOUS LIQUID (OIL, SOLVENT,)					EXPEDITED REPORT DELIVERY (SURCHARGE)	0
DIHIGHLANDS Plaza M. West Stc. 3 MPANY CONTRACTING THIS WORK (if applicable)	SSITE (C) COURS (WATE) ON SEMISC	ONEONS III		The same of the sa	RVATIV		NUMBER OF COOLE PER SHIPMENT:	RS SUBMITTED
SAMPLE SAMPLE IDENTIFICATION	COMP SOLID	NONA	N	UMBER OF CON	TAINERS SUBMITTED		REMARK	<b>KS</b>
21 19 1025 PMAMWOIS-0209	/ GX	2						
1025 PMAMWOIS- 0209-1	us GX	2		1 .		,		
: 1025 PMAMWOIS -0209-1		2						
1/30 MAMWOLM-0209	GX	12				v.) .		
1145 PMANW 02 Nº 0209.	-EB 227-01 GX	2						
1230 PMAMWO25-0209	SV SV	2					<b>Ma</b> ₁ N _m	
1330 PMAMWO2M-020	9 ( 5)	2						·
1330 PM AMW 02M - 020	<del></del>	12						
1500 PMAMWOLD - 020		12						
V 1600 PMAMW 05M - 02	09 6 K	12						
The state of the s		2/2	<del>2</del> 109	1.				
	Sm		747	+				,
INQUISMED BY (SIGNATURE)	RELINQUISHED BY: (SIGNATURE)	) )	DATE	TIME	RELINQUISHED B	Y: (SIGNATURE)	DATE	TIME
Jamy Libert Library			· . :		<b>3</b>		3	
OBIVED BY SIGNATURE)	RECEIVED BY: (SIGNATURE)	<u></u>	DATE	TIME	RECEIVED BY: (SIG	nature)	DATE	TIME
MATURE)	LABORATOR CUSTODY INTACT (ES SEAL NO.)	SAVAN LOG N	nah o. <i>4509</i> y	LABORATOR	Y REMARKS	12.8/2.4	<u> </u>	4P

# Serial Number 014677

Test,	Дm	_	-, -	AND CHAIR	N OF CUSTODY F	RECO	RD	•	5102	America Sa 2 LaRoche A annah, GA 3	venue		Phone	te: www.te :: (912) 35 912) 352-(		c.com	
								$\bigcirc$	Alte	nate Labora	itory Name/Lo	ocation	<b>-</b> .				
THE LEADER	IN ENVIR	ONMENTAL	TESTING										Phone: Fax:				
PROJECT REFEREN	√CE		PROJECT NO.	Ta. 1909 (	PROJECT LOCATION (STATE) TL		MATRIX TYPE		_		REQUIR	ED ANALYSIS			PAGE /		OF/
TAL (LAB) PROJECT LIDYU GU CLIENT (SITE) PM Thomus A CLIENT NAME	MANIAGED		P.O. NUMBER		CONTRACT NO.				(689)					f !	STANDARD RI DELIVERY	(	· •
I CLIENT (SITE) PM IT hom US A	dams		314-429	E -0100	CLIENT FAX 314-429-0462	(G) INDICATE		SOLVE!	258				RESERVICE		DATE DUI		
CLIENT NAME URS COMP	orati	on	OUTSITE MAN	,	Cuscorpicom 63110 t.Louis, MD	밀	0	ID (OIL, S	1943 F						EXPEDITED R DELIVERY (SURCHARGE	(	$\circ$
CLIENT ADDRESS	ام ۱۸ د م	- Dlane	.O. 13 C	1. 000 C	68110 L 1014 - No	) H) (i	SOLI	S   /	ප						DATE DUI	Ē	
COMPANY CONTRA	<u>VUUM</u> A ACTING THIS	S PLUZU S WORK (if app	CWLW, S olicable)	tc 300 S	T.LDUUS, MO	COMPOSITE (C) OR GRAB	SOLID OR SEMISOLID	NONAQUEOUS LIQUID (OIL, SOLVENT,)	-		Cara Cara Market	FEVAT	ivs:	1 1	NUMBER OF ( PER SHIPMEN		SUBMITTED
SAMPLE DATE	TIME		SAMPL	E IDENTIFICATIO	ΣΝ	COMP	SOLID	NONA	-	N	JMBER OF CO	NTAINERS SUBM	ITTED		R	EMARKS	
		PMAM	W03S-	0209		GY		1	2								
	~ <del>,,,,</del>		W03M.			G			2								
V			IW 04 D-			G		6	2								
,				*									-				
				···		4		<u> </u>	_/	<del></del>							
	<b>*************************************</b>					*	\$4	LB	12	/a							
						1	14	17	4	4	- Ann			***************************************			
		<b>***</b>		1				_							***************************************		
																···········	
PEU QUISHED BY:	(SIGNATURE)		L.DATE?	TIME	RELINQUISHED BY: (SK	GNATURE				DATE	TIME	RELINOUIS!	IED BY: (SIGNATI	JRE)	DATE		TIME
Shund	MASY	9	3/3/09	1700	1.221190101120011 (0)1		-1					, 12211190101		/			
RECEIVED BY Jugin,	ATURE)		DATE	TIME	RECEIVED BY: (SIGNATU	RE)				DATE	TIME	RECEIVED E	BY: (SIGNATURE)		DATE		TIME
			1.		1	LABO	RATOR	Y USE C									
RECEIVED FOR LAE (SIGNATURE)	BORATORY B	Y:	DATE	TIME	CUSTODY INTACT YES	CUS	TODY L NO.		avani Og No		LABORATO	RY REMARKS					
l Ki	^		3/4/09	0902	NO ()			( &	ja -4	5176				2.4			

Testamerica	5	estAmerica 102 LaRocl avannah, G				Phone: (	: www.testamericainc.com 912) 354-7858 2) 352-0165
	O A	Iternate Lal	ooratory Nan	ne/Location	n ,	Phone:	
THE LEADER IN ENVIRONMENTAL TESTING						Fax:	
PROJECT REFERENCE PROJECT NO. PROJECT LOCATION MATER 2/5/6,00001 (STATE) TVPE			RE	QUIRED A	IALYS <b>IS</b>		PAGE OF
IL (LAB) PROJECT MANAGER P.O. NUMBER CONTRACT NO.	(						STANDARD REPORT DELIVERY
LENT (SITE) PM CLIENT PHONE CLIENT FAX SIN 429-0462	SOLVEN PCP	180					DATE DUE
LENT NAME  CLIENT E-MAIL  HOWIC Adams Cliceans a one B	-1	3					EXPEDITED REPORT DELIVERY (SURCHARGE)
COI High ands Plazan N Ste 300 St. Louis Mo DIENER	No Lo						DATE DUE
JENT ADDRESS WORK (if applicable)  JOHNA  SAMPLE  DATE  TIME  JOHNA  JOH	NONAQUEOUS LIQUID (OIL	Profes	Bear Brane Con-	STATES OF THE STATES OF T		1000	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:
DATE TIME SAMPLE IDENTIFICATION	NONA	•	NUMBER OF	CONTAIN	ERS SUBMITT	ÉD	REMARKS
3/00 1545 PMAMWO4S-0209 - DNAPL GX	XI	. :			·		
				٠.,			
					:		
	1/						
	3/09	<b>)</b> -	٠.				
	7						
			٠.				
INCUISHED BY: (SIGNATURE)  DATE  TIME  RELINQUISHED BY: (SIGNATURE)		DATE	TIME	R	ELINQUISHED	BY: (SIGNATURE)	) DATE TIME
CEIVED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)	44.7	DATE	TIME	R	ECEIVED BY: (	SIGNATURE)	DATE TIME
LABORATO	RY USE ONL	Υ					
DATE TIME CUSTODY INTACT CUSTODY NATURE)  DATE TIME CUSTODY INTACT CUSTODY SEAL NO.	LOG	NNAH NO. 10 - 4519		ATORY RE	MARKS		
	14 St.		··   3.			<u> </u>	TAL8240-680 (1207)

# Appendix C Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

PCB Groundwater Quality Assessment 1st Quarter 2009 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

May 2009



URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project # 21562156.00001** 

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	3
3.0	LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES	3
4.0	SURROGATE SPIKE RECOVERIES	3
5.0	LABORATORY CONTROL SAMPLES RECOVERIES	4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	4
7.0	FIELD DUPLICATE RESULTS	4
8.0	INTERNAL STANDARD RESPONSES	4
9.0	RESULTS REPORTED FROM DILUTIONS	5



#### 1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in February and March of 2009 at the Solutia W.G. Krummrich plant as part of the 1st Quarter 2009 PCB Groundwater Quality Assessment Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for polychlorinated biphenyls (PCBs).

One hundred percent of the data were subjected to a data quality review (Level III validation). The Level III validations were performed in order to confirm that the analytical data provided by TestAmerica were acceptable in quality for their intended use.

A total of 14 samples (nine investigative groundwater samples, one DNAPL, one field duplicate, one matrix spike and matrix spike duplicate (MS/MSD) pair, and one equipment blank) were analyzed by Test America. These samples were analyzed as part of Sample Delivery Groups (SDGs) KPM028 and KPM029, utilizing the following USEPA Methods:

#### Method 680 for PCBs

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, and the PCB Groundwater Quality Assessment Work Plan, (Solutia 2008).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Data was qualified based on the data quality review. Qualifiers assigned indicates data that did not meet acceptance criteria and for which corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below.



#### **TABLE 1 Laboratory Data Qualifiers**

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
N	MS, MSD: Spike recovery exceeds upper or lower control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

#### **TABLE 2 URS Data Qualifiers**

URS Qualifier	Definition				
U	The analyte was analyzed for but was not detected.				
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.				
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.				
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.				

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect (J) values was 100 percent, which meets the completeness goal of 95 percent.



The data review included evaluation of the following criteria:

#### **Organics**

- Receipt condition and sample holding times
- Laboratory method blanks, and field equipment blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and Relative Percent Difference (RPD) values
- Field duplicate results
- Results reported from dilutions
- Internal standard responses

#### 2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance. Upon review of the data, the cooler receipt form indicated that no problems were encountered by the laboratory.

Extractions and/or analyses were completed within the recommended holding time requirements; no qualification of data was required.

#### 3.0 LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in the method blanks.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. All analytes were not detected in the equipment blank samples.

#### 4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for PCBs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria. Surrogate recoveries were within evaluation criteria with the exception of those surrogates in data reviews discussed further in **Appendix D**. No qualifications of data were required due to surrogate recoveries.



#### 5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria. No qualification of data was required due to LCS recoveries.

#### 6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for nine investigative samples, meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the percent RPD was the only factor outside of criteria. Also, USEPA National Functional Guidelines for Organic Data Review (October 1999) states that organic data should not be qualified based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Sample PMAMW01S-0209 was spiked and analyzed for PCBs in SDG KPM028. All MS/MSD recoveries were within evaluation criteria. No qualification of data was required due to MS/MSD recoveries.

#### 7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the nine investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). Field duplicate RPDs were within evaluation criteria with the exception of the RPD in data reviews discussed further in **Appendix D**. Qualifications due to field duplicate RPDs are listed in the table below.

SDG	Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
KPM028	PMAMW02M	PMAMW02M-0209-	PCBs	Monochloro-	37	J
	-0209	AD		biphenyl		



#### 8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. For the PCBs (Method 680), the IS areas must be within +/- 30 percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates the mean IS area obtained during the initial calibration (ICAL) (+/- 50 percent) should be used.

The internal standards area responses for PCBs were verified for the data reviews. IS responses met the criteria as described above, with the exception of the IS responses in the data reviews discussed further in **Appendix D**. No qualifications of data were required due to internal standard responses.

#### 9.0 RESULTS REPORTED FROM DILUTIONS

The PCB DNAPL sample was diluted and reanalyzed due to the high levels of PCBs in the sample. The diluted sample results for PCBs were reported at the lowest possible reporting limit.



# Appendix D

**Groundwater Analytical Results** 

(with Data Review Sheets)

# SDG KPM028

# Results of Samples from Wells:

PMAMW01S

PMAMW01M

PMAMW02S

PMAMW02M

PMAMW03S

PMAMW03M

PMAMW04D

PMAMW05M

PMAMW06D

# Solutia Krummrich Data Review

**Laboratory SDG: KPM028** 

**Reviewer: Elizabeth Kunkel** 

Date Reviewed: 4/6/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: PCB Groundwater Quality Assessment (Solutia 2008)

Sample Identification #	Sample Identification #
PMAMW01S-0209	PMAMW01M-0209
PMAMW02S-0209-EB	PMAMW02S-0209
PMAMW02M-0209	PMAMW02M-0209-AD
PMAMW06D-0209	PMAMW05-0209
PMAMW03S-0209	PMAMW03M-0209
PSMW04D-0209	

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

#### 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Although not indicated in the laboratory case narrative, one internal standard recovery was outside evaluation criteria. In addition, samples were qualified due to a field duplicate RPD outside of evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

#### 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

# 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

## 6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

## 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample PMAMW01S-0209 was spiked and analyzed for PCBs.

Were MS/MSD recoveries within evaluation criteria?

Yes

#### 8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
PMAMW03M-0209	PCBs	Phenanthrene-d ₁₀	287508	129844-241138

Analytical data that required qualification based on IS data are included in the table above. Analytical data which were reported as nondetect and associated with internal standard recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Internal standard areas for phenanthrene- $d_{10}$  recovered within the initial calibration average internal standard area, therefore; no qualification of data was required.

# 9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

#### **10.0** Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
PMAMW02M-0209	PMAMW02M-0209-AD

Were field duplicates within evaluation criteria?

No

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
PMAMW02M-	PMAMW02M-	PCBs	Monochloro-	37	J
0209	0209-AD		biphenyl		

## 11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples were not analyzed at a dilution.

#### 12.0 Additional Qualifications

Were additional qualifications applied?

No

# **SAMPLE SUMMARY**

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-45096-1	PMAMW01S-0209 V	Water	02/27/2009 1025	02/28/2009 1020
680-45096-1MS	PMAMW01S-0209	Water	02/27/2009 1025	02/28/2009 1020
680-45096-1MSD	PMAMW01S-0209	Water	02/27/2009 1025	02/28/2009 1020
680-45096-2	PMAMW01M-0209 V	Water	02/27/2009 1130	02/28/2009 1020
680-45096-3EB	PMAMW02S-0209-EB	Water	02/27/2009 1145	02/28/2009 1020
680-45096-4	PMAMW02S-0209	Water	02/27/2009 1230	02/28/2009 1020
680-45096-5	PMAMW02M-0209	\ Water	02/27/2009 1330	02/28/2009 1020
680-45096-6FD	PMAMW02M-0209-AD	✓ Water	02/27/2009 1330	02/28/2009 1020
680-45096-7	PMAMW06D-0209	Water	02/27/2009 1500	02/28/2009 1020
680-45096-8	PMAMW05M-0209	Water	02/27/2009 1600	02/28/2009 1020
680-45176-1	PMAMW03S-0209 V	Water	03/03/2009 1355	03/04/2009 0902
680-45176-2	PMAMW03M-0209 1//	Water	03/03/2009 1445	03/04/2009 0902
680-45176-3	PMAMW04D-0209 🗸	Water	03/03/2009 1600	03/04/2009 0902

# **SAMPLE RESULTS**

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW01S-0209

Lab Sample ID: Client Matrix:

680-45096-1

Date Sampled:

02/27/2009 1025

Water

Date Received:

02/28/2009 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-133546

Instrument ID: N/A Lab File ID:

GC/MS SemiVolatiles - Y

Preparation: Dilution:

680 1.0

Prep Batch: 680-131612

Initial Weight/Volume:

1030 mL

Date Analyzed:

03/17/2009 1107

Final Weight/Volume:

1 mL

Date Prepared:

03/03/2009 1213

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	Ü	0.097
Trichlorobiphenyl	0.097	Ü	0.097
Tetrachlorobiphenyl	0.19	Ü	0.19
Pentachlorobiphenyl	0.19	Ü	0.19
Hexachlorobiphenyl	0.19	Ü	0.19
Heptachlorobiphenyl	0.29	Ü	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	90 /		25 - 113

Client: Solutia Inc. Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW01M-0209

Lab Sample ID:

680-45096-2

Client Matrix:

Date Prepared:

Method:

Water

Date Sampled:

02/27/2009 1130

Date Received:

02/28/2009 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

680 680 Analysis Batch: 680-133546

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

1.0

Prep Batch: 680-131612

Lab File ID: N/A Initial Weight/Volume:

Dilution: Date Analyzed:

03/26/2009 1347

03/03/2009 1213 🗸

Final Weight/Volume:

1020 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.16	OCCOCCOCCOCCO COMENTO COMMENTO A TRANSPORTA CONTRACTOR DE SECUENCION DE	0.098
Dichlorobiphenyl	0.098	U	0.098
Trichlorobiphenyl	0.098	U	0.098
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobiphenyl	0.20	U	0.20
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	44 2		25 - 113

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW02S-0209-EB

Lab Sample ID: Client Matrix:

680-45096-3EB

Water

Date Sampled:

02/27/2009 1145

Date Received:

02/28/2009 1020

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-133546

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

680

Prep Batch: 680-131612

Lab File ID: N/A

1030 mL

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

03/17/2009 1208 Date Prepared:

03/03/2009 1213 🗸

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits

Decachlorobiphenyl-13C12

79 🇸

25 - 113

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW02S-0209

Lab Sample ID: Client Matrix:

680-45096-4

Water

Date Sampled:

02/27/2009 1230

Date Received:

02/28/2009 1020

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation: 680

680

1.0

Dilution: 03/25/2009 1150 Date Analyzed: 03/03/2009 1213 2 Date Prepared:

Analysis Batch: 680-133546

Prep Batch: 680-131612

Instrument ID: Lab File ID:

GC/MS SemiVolatiles - Y

Initial Weight/Volume:

N/A

Final Weight/Volume:

1030 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.097	U	0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	65		25 - 113

Client: Solutia Inc. Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW02M-0209

Lab Sample ID: Client Matrix:

680-45096-5

03/03/2009 1213

Water

Date Sampled:

02/27/2009 1330

Date Received:

02/28/2009 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680 680

Analysis Batch: 680-133546

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

1.0

Prep Batch: 680-131612

Lab File ID: N/A

Dilution: Date Analyzed: Date Prepared:

03/25/2009 1222

Initial Weight/Volume:

1000 mL 1 mL

Final Weight/Volume:

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	2.9	<u> </u>	0.10
Dichlorobiphenyl	0.10	U	0.10
Trichlorobiphenyl	0.10	U	0.10
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobiphenyl	0.20	U	0.20
Heptachlorobiphenyl	0.30	U	0.30
Octachlorobiphenyl	0.30	U	0.30
Nonachlorobiphenyl	0.50	U	0.50
DCB Decachlorobiphenyl	0.50	U	0.50
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	64	<del></del>	25 - 113

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW02M-0209-AD

Lab Sample ID:

680-45096-6FD

Client Matrix:

Water

Date Sampled:

02/27/2009 1330

Date Received:

02/28/2009 1020

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-133546

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

680

Prep Batch: 680-131612

Lab File ID: N/A

1000 mL

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Prepared:

03/26/2009 1621 03/03/2009 1213 🕡

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	2.0	7	0.10
Dichlorobiphenyl	0.10	U	0.10
Trichlorobiphenyl	0.10	U	0.10
Tetrachlorobiphenyl	0.20	U ,	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobiphenyl	0.20	U	0.20
Heptachlorobiphenyl	0.30	U	0.30
Octachlorobiphenyl	0.30	U	0.30
Nonachlorobiphenyl	0.50	U	0.50
DCB Decachlorobiphenyl	0.50	U	0.50
Surrogate	%Rec		Acceptance Limits

Decachlorobiphenyl-13C12

%Rec 86

25 - 113

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

**Client Sample ID:** 

PMAMW06D-0209

Lab Sample ID:

680-45096-7

Client Matrix:

Water

Date Sampled:

02/27/2009 1500

Date Received:

02/28/2009 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-133546

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

680

Prep Batch: 680-131612

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Date Analyzed: Date Prepared: 03/26/2009 1316 03/03/2009 1213

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.32	191499	0.098
Dichlorobiphenyl	0.098	U	0.098
Trichlorobiphenyl	0.098	U	0.098
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobiphenyl	0.20	U	0.20
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec /		Acceptance Limits
Decachlorobiphenyl-13C12	74	N. (1997) - 1994 (1994) - 1111 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 1114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 114 (1997) - 11	25 - 113

Client: Solutia Inc. Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID: PMAMW05M-0209

 Lab Sample ID:
 680-45096-8
 Date Sampled:
 02/27/2009
 1600

 Client Matrix:
 Water
 Date Received:
 02/28/2009
 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Analysis Batch: 680-133546 Instrument ID: GC/MS SemiVolatiles - Y

Preparation: 680 Prep Batch: 680-131612 Lab File ID: N/A

 Dilution:
 1.0
 Initial Weight/Volume:
 1020 mL

 Date Analyzed:
 03/17/2009 1441
 Final Weight/Volume:
 1 mL

Date Prepared: 03/03/2009 1213 V Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.098	Ū	0.098
Dichlorobiphenyl	0.098	U	0.098
Trichlorobiphenyl	0.098	U	0.098
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
Hexachlorobipheriyl	0.20	U	0.20
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec _/		Acceptance Limits

Decachlorobiphenyl-13C12 75 25 - 113

Client: Solutia Inc. Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID: PMAMW03S-0209

 Lab Sample ID:
 680-45176-1
 Date Sampled:
 03/03/2009
 1355

 Client Matrix:
 Water
 Date Received:
 03/04/2009
 0902

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Analysis Batch: 680-133209 Instrument ID: No Equipment Assigned to

Preparation: 680 Prep Batch: 680-132174 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 1030 mL

Date Analyzed: 03/19/2009 0835 / Final Weight/Volume: 1 mL

Date Prepared: 03/10/2009 1335 V Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.67		0.097
Dichlorobiphenyl	0.12		0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachiorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	76	იიდი იიდი იადი იატ 19 კედეგ გედი კიდი იიდი ია — კიდი ს ემომტში იმიზი <b>- აქდებ</b> (1955 <del>- 19</del> 1966) მიზი მდმდები (19	25 - 113

Client: Solutia Inc. Job Number: 680-45096-1

Sdg Number: KPM028

PMAMW03M-0209 Client Sample ID:

680-45176-2 Date Sampled: 03/03/2009 1445 Lab Sample ID: Date Received: 03/04/2009 0902 Client Matrix: Water

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Analysis Batch: 680-133209 Instrument ID: No Equipment Assigned to

680 Prep Batch: 680-132174 Lab File ID: N/A Preparation:

Dilution: 1.0 Initial Weight/Volume: 1030 mL 03/19/2009 0906 Final Weight/Volume: Date Analyzed: 1 mL

03/10/2009 1335 Date Prepared: Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	1.4		0.097
Dichlorobiphenyl	0.097	U	0.097
Trichlorobiphenyl	0.097	U	0.097
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec /		Acceptance Limits
Decachlorohiphenyl-13C12	60 /		25 - 113

25 - 113 Decachlorobiphenyl-13C12

Client: Solutia Inc.

Job Number: 680-45096-1

Sdg Number: KPM028

Client Sample ID:

PMAMW04D-0209

Lab Sample ID: Client Matrix:

680-45176-3

Date Sampled:

03/03/2009 1600

Water

Date Received:

03/04/2009 0902

#### 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680

Analysis Batch: 680-133209

Instrument ID:

No Equipment Assigned to

Preparation:

680 1.0

Prep Batch: 680-132174

Lab File ID: N/A

Dilution: Date Analyzed:

03/19/2009 0937

Initial Weight/Volume: Final Weight/Volume:

1030 mL 1 mL

Date Prepared:

03/10/2009 1335 🗸

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.20	<u></u>	0.097
Dichlorobiphenyl	0.21		0.097
Trichlorobiphenyl	0.11		0.097
Tetrachlorobiphenyl	0.54		0.19
Pentachlorobiphenyl	0.38		0.19
Hexachlorobiphenyl	0.79		0.19
Heptachlorobiphenyl	0.50		0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	71		25 - 113

# **DATA REPORTING QUALIFIERS**

Client: Solutia Inc.

U

Job Number: 680-45096-1

Sdg Number: KPM028

Lab Section	Qualifier	Description	
GC/MS Semi VOA			

Indicates the analyte was analyzed for but not detected.

# SDG KPM029

Results of Sample from Well:

PMAMW04S

# **Solutia Krummrich Data Review**

**Laboratory SDG: KPM029** 

**Reviewer: Elizabeth Kunkel** 

Date Reviewed: 4/6/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: PCB Groundwater Quality Assessment (Solutia 2008)

Sample Identification # PMAMW04S-0209-DNAPL

## 1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

## 2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that surrogates were diluted out and not recovered in sample PMAMW04S-0209-DNAPL. Sample PMAMW04S-0209-DNAPL was diluted due to a high level of target analytes. The internal standard recovery for phenanthrene- $d_{10}$  was outside evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

#### 3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

# 4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

#### 5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

## **6.0** Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No, surrogates were diluted out and not recovered in sample PMAMW04S-0209-DNAPL. No qualification of data was required.

# 7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

No

Were MS/MSD recoveries within evaluation criteria?

N/A

#### 8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
PMAMW04S-0209- DNAPL	PCBs	Phenanthrene-d ₁₀	274859	129844-241138

Analytical data that required qualification based on IS data are included in the table above. Analytical data which were reported as nondetect and associated with internal standard recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Internal standard areas for phenanthrene- $d_{10}$  recovered within the initial calibration average internal standard area, therefore; no qualification of data was required.

# 9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

# 10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

# 11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Analytes were detected in samples that were diluted.

# 12.0 Additional Qualifications

Were additional qualifications applied?

No

#### **SAMPLE SUMMARY**

Client: Solutia Inc.

Job Number: 680-45199-1

Sdg Number: KPM029

			Date/Time	Date/Time	
Lab Sample ID	Client Sample ID	Client Matrix	Sampled_	. Received	_
680-45199-1	PMAMW04S-0209-DNAPL	Waste	03/03/2009 1545	03/04/2009 1018	

# **SAMPLE RESULTS**

Client: Solutia Inc.

Job Number: 680-45199-1

Sdg Number: KPM029

Client Sample ID:

PMAMW04S-0209-DNAPL

Lab Sample ID:

680-45199-1

Date Sampled:

03/03/2009 1545

Client Matrix:

Waste

Date Received:

03/04/2009 1018

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:

680 680 Analysis Batch: 680-132480

Instrument ID:

GC/MS SemiVolatiles - Y

Preparation:

Date Prepared:

Prep Batch: 680-132032

Lab File ID:

N/A

200 Dilution: Date Analyzed:

03/19/2009 0558 03/08/2009 0616 🗸 Initial Weight/Volume: Final Weight/Volume:

1.00 g 10 mL

Injection Volume:

Analyte	DryWt Corrected: N Result (ug/Kg)	Qualifier	RL
Monochlorobiphenyl	200000	U	200000
Dichlorobiphenyl	3400000		200000
Trichlorobiphenyl	2000000		200000
Tetrachlorobiphenyl	51000000		400000
Pentachlorobiphenyl	36000000		400000
Hexachlorobiphenyl	62000000		400000
Heptachlorobiphenyl	42000000		600000
Octachlorobiphenyl	10000000		600000
Nonachlorobiphenyl	1000000	U	1000000
DCB Decachlorobiphenyl	1000000	U	1000000
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	0	D	30 - 130

# **DATA REPORTING QUALIFIERS**

Client: Solutia Inc.

Job Number: 680-45199-1

Sdg Number: KPM029

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

TestAmerica Savannah