US ERA ARCHIVE DOCUMENT

Solutia Inc.

575 Maryville Centre Orive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 Tel 314-674-1000

May 26, 2009

Mr. Kenneth Bardo - LU-9J U.S. EPA Region V Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507 VIA FEDEX

Re: Long-Term Monitoring Program

1st Quarter 2009 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Mr. Bardo:

Enclosed please find the Long-Term Monitoring Program 1st Quarter 2009 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@solutia.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

Dudd M. Kulli

Enclosure

cc: Distribution List

DISTRIBUTION LIST

Long-Term Monitoring Program

1st Quarter 2009 Data Report
Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Leah Evison

USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

<u>IEPA</u>

Sandra Bron

IEPA Bureau of Land/FSRS, 1021 North Grand Avenue East, Springfield, IL 62706

James Moore

IEPA Bureau of Land, 1021 North Grand Avenue East, Springfield, IL 62706

Booz Allen Hamilton

Dan Briller

Booz Allen Hamilton, 8283 Greensboro Drive, McLean, VA 22102

Solutia

Cathy Bumb 575 Maryville Centre Drive, St. Louis, MO 63141

Justin Prien 500 Monsanto Avenue, Sauget, IL 62206-1198

Jerry Rinaldi 575 Maryville Centre Drive, St. Louis, MO 63141

1 ^{S T} QUARTER 2009 DATA REPORT

LONG-TERM MONITORING PROGRAM

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for
Solutia Inc.
575 Maryville Centre Drive
St. Louis, Missouri 63141

May 2009

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 Project # 21562154.00001

1.0	INTROD	UCTION	1
2.0	FIELD P	ROCEDURES	2
3.0	LABORA	ATORY PROCEDURES	7
4.0	QUALIT	Y ASSURANCE	7
5.0	OBSER\	/ATIONS	8
6.0	REFERE	NCES	. 11
	of Figures		
Figur	e 1	Site Location Map	

Potentiometric Surface Map Middle/Deep Hydrogeologic Unit

1Q09 Benzene and Total Chlorobenzenes Results

Long-Term Monitoring Program Well Locations and Surface Water/Sediment

List of Tables

Figure 2

Figure 3

Figure 4

Table 1 Monitoring Well Gauging Information
Table 2 Groundwater Analytical Results

Sample Locations

Table 3 Monitored Natural Attenuation Results Summary

List of Appendices

Appendix A Groundwater Purging and Sampling Forms
Appendix B Chains-of-Custody
Appendix C Surface Water and Sediment Sampling Forms

Appendix D Quality Assurance Report

Appendix E Groundwater Analytical Results (with Data Review Sheets)

Appendix F Surface Water and Sediment Analytical Results (with Data Review Sheets)

Appendix G Microbial Insights Data Package

1.0 INTRODUCTION

This report presents the results of the 1st Quarter 2009 (1Q09) sampling event performed at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) Facility located in Sauget, Illinois (Site). This sampling event was conducted in accordance with the Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2008). The Site location is presented in **Figure 1**.

The LTMP was designed to evaluate the effectiveness of monitored natural attenuation (MNA), including: 1) a clear and meaningful trend of decreasing contaminant mass; 2) data that indirectly demonstrate the types and rates of natural attenuation processes active at the site; and 3) data that directly demonstrate the occurrence of biodegradation processes at the site.

Groundwater Sampling Location and Frequency - As specified in the LTMP Work Plan, groundwater samples will be collected for eight quarters from five monitoring wells downgradient of the Former Chlorobenzene Process Area (CPAMW-1D through CPAMW-5D) and five monitoring wells downgradient of the Former Benzene Storage Area (BSAMW-1S and BSAMW-2D through BSAMW-5D) to assess attenuation processes in the American Bottoms aquifer, as impacted groundwater from these source areas migrates toward and discharges to the Mississippi River.

Monitoring wells BSAMW-1S, 2D, 3D, 4D and 5D are located within the limiting flow lines downgradient of the Former Benzene Storage Area. Monitoring wells CPAMW-1D, 2D, 3D, 4D and 5D are located within the limiting flow lines downgradient of the Former Chlorobenzene Process Area. Source areas and monitoring well locations are presented in **Figure 2**.

Quarterly sampling under the Long-Term Monitoring Program commenced 3Q08 and will continue for a total of eight quarters. At the end of eight quarters, groundwater quality and attenuation process data will be evaluated to determine if longer sampling intervals (e.g., semi-annual or annual) are appropriate.

Groundwater Sampling Parameters - During the 1Q09 groundwater sampling event, groundwater samples were analyzed for benzene, monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene using USEPA Method 8260B to demonstrate a trend of decreasing contaminant mass and/or concentrations over time. In accordance with USEPA comments regarding the Long-Term Monitoring Plan, the following constituents were added to the groundwater monitoring parameter list on a semi-annual basis (1st and 3rd Quarters):

4-Chloroaniline: CPAMW-3D, CPAMW-4D, and CPAMW-5D

• 2-Chlorophenol: All wells

• 1, 2, 4-Trichlorobenzene: All wells

1,4-Dioxane: BSAMW-2D, BSAMW-3D, BSAMW-4D, and BSAMW-5D

A sample for SVOC analysis was collected from monitoring well CPAMW-5D. However, SVOC analysis was inadvertently not completed. Upon discovery, the sample was outside holding time criteria. The sample will be collected during the next scheduled event for SVOC analysis (i.e., 3Q09).

MNA samples were collected from all ten long-term monitoring program wells. Evaluation of the types of active natural attenuation processes at the site is based on the following key geochemical parameters:

Electron Donors: Organic Carbon (Total and Dissolved)

Electron Acceptors: Iron (Total and Dissolved)

Manganese (Total and Dissolved)

Nitrate Sulfate

Biodegradation Byproducts: Carbon Dioxide

Chloride Methane

Biodegradation Indicators: Alkalinity

Direct demonstration of the occurrence of biodegradation processes is completed quarterly utilizing Microbial Insights (www.microbe.com) Bio-Trap® Samplers for Phospholipid Fatty Acid Analysis, along with Stable Isotope Probes (SIPs) for benzene or chlorobenzene detection in select wells.

Surface Water and Sediment Sampling – Surface water and sediment samples are collected during winter low flow conditions and during summer low flow conditions as part of the site long-term monitoring program. This typically coincides with the 1st and 3rd quarter groundwater sampling events. The objective of the surface water and sediment monitoring program is to assess the impact of contaminated groundwater discharging to the Mississippi River north of the Groundwater Migration Control System (GMCS).

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted 1Q09 field activities from February 23 through March 2, 2009, in accordance with procedures outlined in the LTMP Work Plan, including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes field investigative procedures:

Groundwater Level Measurements – URS personnel used an electronic oil/water interface probe to measure depth to static groundwater levels and if present, the thickness of non-aqueous phase liquid (NAPL), to 0.01 feet. Depth to groundwater measurements were collected from accessible existing wells (i.e., GM-, K-, PSMW- and PMA-series) and

piezometers clusters (installed for the Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects) specified in the LTMP Work Plan (Figure 3). NAPL was not detected within any of the LTMP monitoring wells.

Well gauging information for the 1Q09 event is presented in **Table 1**. As the middle and deep hydrogeologic units are the primary migration pathway for constituents present in groundwater at the WGK Facility, a groundwater potentiometric surface map based on water level data from wells screened in the Middle Hydrogeologic Unit (MHU) and Deep Hydrogeologic Unit (DHU) is presented as **Figure 3**.

Groundwater Sampling - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, disposable, low-density polyethylene tubing was attached to a submersible pump, which was then lowered into the well to the middle of the screened interval. Monitoring wells were purged at a rate of 200 mL/minute to minimize drawdown. If significant drawdown occurred, flow rates were reduced.

Drawdown was measured periodically throughout purging to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Purging of a well was considered complete when the following water quality parameters remained stable over three consecutive flow-thru cell volumes:

Parameter	Stabilization Guidelines
Dissolved Oxygen (DO)	+/- 10% or +/-0.2 mg/L, whichever is greatest
Oxidation-Reduction Potential (ORP)	+/- 20 mV
рН	+/- 0.2 units
Specific Conductivity	+/- 3%

Sampling commenced upon completion of purging. Prior to sample collection, the flow-thru cell was bypassed to allow for collection of uncompromised groundwater. Samples were collected at a flow rate less than or equal to the rate at which stabilization was achieved. Sample containers were filled based on laboratory analysis to be performed, in the following order:

- Volatile Organic Compounds (VOCs)
- Gas Sensitive Parameters (e.g., methane, carbon dioxide)
- General Chemistry (i.e., alkalinity, chloride, total and dissolved iron, total and dissolved manganese, nitrate, sulfate, and total and dissolved organic carbon)
- Field Parameters (i.e., dissolved oxygen, ferrous iron, and oxidation-reduction potential).

Samples collected for ferrous iron, dissolved iron and dissolved manganese analysis were filtered in the field using in-line 0.2 micron disposable filters, represented by a notation of "F (0.2)" in the sample nomenclature.

Quality assurance/quality control (QA/QC) samples consisting of analytical duplicates (AD) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%. In addition, trip blanks accompanied each shipment containing samples for VOC analysis.

Each investigative or QC sample was labeled immediately following collection. Each sample identification number consisted of the following nomenclature "AAAMW#-MMYY-QAC" where:

- "AAA" denotes "Chlorobenzene Process Area (CPA)" or "Benzene Storage Area (BSA)"and "MW-#" denotes "Monitoring Well Number":
- MMYY Month and year of sampling quarter, e.g.: First quarter (February) 2009, 0209
- "QAC" denotes QA/QC sample
 - o AD analytical duplicate
 - o **EB** equipment blank
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

Upon collection and labeling, sample containers were immediately placed inside an iced cooler, packed in such a way as to help prevent breakage and maintain inside temperature at approximately 4°C. Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, preservative used (if applicable), analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). Prior to shipment, coolers were sealed between the lid and sides of the cooler with a custody seal, and then shipped to TestAmerica in Savannah, Georgia by means of an overnight delivery service. Field sampling data sheets are included in **Appendix A**, COC forms are included in **Appendix B**.

Field personnel and equipment were decontaminated according to procedures specified in the LTMP Work Plan to ensure the health and safety of those present, maintain sample integrity, and minimize movement of contamination between the work area and off-site locations. Equipment used on-site was decontaminated prior to beginning work, between sampling locations and/or uses, and prior to demobilizing from the site. Non-disposable purging and sampling equipment was decontaminated between each sample acquisition by washing with an Alconox® or equivalent detergent wash, a potable water rinse, and a distilled water rinse. Personnel and small equipment decontamination was performed at the sample locations. Disposable sampling equipment, such as gloves were collected and bagged on a daily basis

and managed in accordance with Solutia procedures. Purge water was containerized and handled per Solutia procedures.

Biodegradation Evaluation Sampling - Bio-Trap[®] samplers and Stable Isotope Probes (SIPs), provided by Microbial Insights, Inc. (Rockford, TN), were utilized in the LTMP to provide information regarding biodegradation potential of the Shallow Hydrogeologic Unit (SHU), the MHU and the DHU. Bio-Trap[®] samplers are passive sampling tools which, over time, collect microbes across a membrane that serves as the sampling matrix. SIPs are similar passive sampling tools that are analyzed to measure the degradation of a specific contaminant (i.e., benzene and chlorobenzene).

On March 6, 2009, URS field personnel deployed Bio-Trap[®] samplers in each of the ten LTMP wells for PLFA analysis. A benzene SIP and a monochlorobenzene SIP were placed in monitoring wells BSAMW02D and CPAMW03D, respectively. Bio-Trap[®] samplers and SIPs were tied to nylon line attached to the well cap and lowered to the middle of the well screen.

On April 6, 2009, the Bio-Trap[®] samplers and SIPs were retrieved from the wells, sealed in Ziploc[®] bags, labeled with the proper well identification and placed in an iced sample cooler with a signed COC. Sealed sample coolers were sent to Microbial Insights, Inc. for analysis.

Surface Water and Sediment Monitoring - The surface water and sediment sampling was conducted concurrent with the 1Q09 groundwater sampling event. This coordination of surface water/sediment and groundwater sampling events was completed to confirm groundwater was discharging to the river at the time of sampling, and to assess the relationship between VOC concentrations in the river and in groundwater. Fluid levels in groundwater monitoring wells CPAMW-5D (elev. 389.64), BSAMW-5D (elev. 391.20) and BSAMW-4D (elev. 390.78) were gauged on the same day in which the surface water and sediment sampling occurred. The water levels in the wells were higher than the Mississippi River (~389.58) confirming discharge to the river.

Surface water and sediment samples were collected at three locations, R2007-1 through R2007-3 (**Figure 2**). Coordinates for each of the three sample locations were preloaded into a Trimble Global Positioning System (GPS) unit, which URS field personnel used for navigation to the sample locations. The river bed is scoured in this vicinity; therefore, field personnel positioned the sampling boat near the planned sample location, where the dredge was able to reach the river bed. In an effort to collect a sample representing the water column above the sediments and minimize potential contamination from the sediments or the sampling system, surface water samples were collected prior to sediment samples at each of the three locations.

Samples were analyzed for the following VOCs: benzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene along with semivolatile organic compounds (SVOCs) 1,4-dioxane, 4-chloroaniline, 2-chlorophenol and 1,2,4-trichlorobenzene.

QA/QC and shipping procedures were similar to those described above.

In-situ water quality parameters (temperature, pH, dissolved oxygen and conductivity) were also recorded at each of the three sample locations. These parameters were measured with a Horiba Model U-22 at a depth of one foot below the water surface, and recorded on field data sheets (**Appendix C**).

Surface Water Sampling

Surface water samples were collected at the sediment-water interface (within one foot of the bottom) at the pre-designated sampling locations. Samples were collected with a peristaltic pump and weighted intake. New tubing was used at each sampling location. Tubing was clamped to the cable of the sediment sampler (ponar dredge) and lowered with the dredge to the bottom of the river. Unfiltered surface water samples were used for chemical analysis. The samples for VOC and SVOC analysis were collected by directly filling appropriate containers from the peristaltic pump tubing to minimize VOC and/or preservative loss. Pump velocity was reduced during sampling to minimize volatilization.

Sediment Sampling

Sediment samples were collected with an 11.1 liter ponar grab sampler. The sampler was deployed from a davit along the side of the boat, and was raised and lowered with a winch. Prior to sampling at each location, the grab sampler and the other sampling devices (stainless steel bowl and spoon) were decontaminated with a distilled water and Alconox® wash, followed by a distilled water rinse. A single grab sample was sufficient to provide the needed sample quantity. Sediment samples were collected from the upper 2 inches (5-6 centimeters) of the river bed. Upon retrieval, the sediment sampler was opened and the sediment was transferred to the stainless steel bowl. The samples for VOC analysis were obtained using a 5 milliliter TerraCore sampler, which was inserted into the sediment below the surface and removed with care to prevent VOC loss.

COCs for surface water and sediment sampling are included in Appendix B.

3.0 LABORATORY PROCEDURES

Samples were analyzed by TestAmerica for VOCs, SVOCs and MNA parameters, using the following methodologies:

- VOCs, via USEPA SW-846 Method 8260B
- SVOCs, via USEPA SW-846 Method 8270C
- MNA parameters: alkalinity (310.1), carbon dioxide (310.1), chloride (325.2), total and dissolved iron (6010B), total and dissolved manganese (6010B), methane (RSK 175), nitrate (353.2), sulfate (375.4), and total and dissolved organic carbon (415.1).

Dichlorobenzenes were quantitated using Method 8260B because of potential volatilization losses associated with Method 8270C. Laboratory results were provided in electronic and hard copy formats.

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness, as described in the WGK Long Term Monitoring Work Plan. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix D**. Laboratory result pages (i.e. Form 1's) along with data validation review sheets are included in **Appendices E** and **F** (for groundwater and surface water/sediment sampling, respectively).

A total of 14 groundwater samples (10 investigative samples, 1 field duplicate, 1 MS/MSD pair and 1 equipment blank) were prepared and analyzed by TestAmerica for combinations of VOCs, SVOCs, dissolved gases, metals, and general chemistry. In addition, two trip blanks were included in the coolers that contained samples for VOC analysis and were analyzed for VOCs. The results for the various analyses were submitted as sample delivery groups (SDGs) KPS048 and KPS049. The samples contained in each SDG are listed below:

<u>KPS048</u>	<u>KPS049</u>
TB022509	BSAMW01S-0209
BSAMW04D-0209	CPAMW01D-0209
CPAMW04D-0209	CPAMW02D-0209
BSAMW05D-0209	CPAMW02D-0209-AD
BSAMW02D-0209	BSAMW03D-0209
CPAMW03D-0209	BSAMW03D-0209-EB
CPAMW05D-0209	
TB022609	

A total of 13 surface water and sediment samples (six investigative, two field duplicates, two MS/MSD pair and one equipment blank) were prepared and analyzed by TestAmerica for combinations of VOCs and SVOCs. In addition, one trip blank was included in the cooler that contained surface water samples for VOC analysis. The results for the various analyses were submitted as SDGs KRS005 and KRS006 (**Appendix F**). The samples contained in each SDG are listed below:

KRS005

KRS006

SW-R2007-1-0209 SW-R2007-3-0209 SW-R2007-3-0209 DUP SW-R2007-2-0209 SED-R2007-2-0209 EB TB-022609 SED-R2007-1-0209 SED-R2007-3-0209 SED-R2007-3-0209 DUP SED-R2007-2-0209

Evaluation of the groundwater analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2004), and the WGK Long Term Monitoring Plan (Solutia, 2008).

Evaluation of the surface water and sediment analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, (USEPA, 1999) and the WGK Long Term Monitoring Plan (URS, 2008).

Based on the above mentioned criteria, groundwater, surface water and sediment results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, laboratory control sample (LCS), surrogate and field duplicate data were achieved for these SDGs to meet the project objectives. Completeness which is defined to be the percentage of analytical results which are judged to be valid, including estimated (J/UJ) data was 100 percent.

5.0 OBSERVATIONS

Groundwater analytical detections and MNA results for the 1Q09 LTMP sampling event are presented in **Tables 2** and **3**, respectively. Nine constituents - benzene, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,4-dioxane, 4-chloroaniline, 2-chlorophenol and 1,2,4-trichlorobenzene - were reported in samples collected from the ten LTMP wells during this sampling event. Each of these constituents is discussed below:

Benzene - Benzene was detected in collected samples at levels above the laboratory reporting limit in eight of the ten wells sampled in 1Q09, ranging from 30 μ g/L (CPAMW-4D) to 830,000

 μ g/L (BSAMW-1S). Downgradient of the Former Benzene Storage Area, benzene was detected in the DHU at concentrations of 20,000 μ g/L (BSAMW-2D) and 120 μ g/L (BSAMW-3D). Near the river north of the Sauget Area 2 Groundwater Migration Control System (SA2 GMCS), benzene was detected in the DHU at concentrations of 82 μ g/L (BSAMW-4D).

Benzene was detected at the Former Chlorobenzene Process Area at concentrations of 4,200 μ g/L (CPAMW-1D) and 820/810 μ g/L (CPAMW-2D and duplicate) at the North Tank Farm. Downgradient of the Former Chlorobenzene Storage Area, benzene was detected in the DHU at a concentration of 86 μ g/L (CPAMW03D) and 30 μ g/L (CPAMW-4D). Benzene was not detected near the river north of the SA2 GMCS in DHU well CPAMW05D.

Chlorobenzenes (Total) - Total chlorobenzenes (e.g., sum of chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4, dichlorobenzene) were detected at levels above the laboratory reporting limit in nine of the ten wells sampled in 1Q09, ranging from 297 μ g/L (BSAMW-5D) to 51,720 μ g/L (CPAMW-2D)/(49,700 μ g/L-CPAMW-2D-AD). Elevated concentrations were also detected in source area well CPAMW01D (49,400 μ g/L). Downgradient of the Former Chlorobenzene Storage Area, total chlorobenzenes were detected in the DHU at concentrations of 487 μ g/L (CPAMW-3D) and 1,133 μ g/L (CPAMW-4D). Total chlorobenzenes were detected in the DHU near the river north of SA2 GMCS at a concentration of 1,512 μ g/L (CPAMW-5D).

Downgradient of the Former Benzene Storage Area, total chlorobenzenes were detected at concentrations of 2,900 μ g/L (BSAMW-2D) and 1,616 μ g/L (BSAMW-3D). North of the SA2 GMCS, near the river, total chlorobenzenes were detected in the DHU at concentrations of 2,390 μ g/L (BSAMW04D) and 297 μ g/L (BSAMW05D).

Figure 4 displays benzene and total chlorobenzenes results from the 1Q09 sampling event. These constituents provide a good depiction of the areal extent of contaminant migration from source areas at the WGK Facility.

1,4-Dioxane - Groundwater samples were collected from four monitoring wells downgradient of the Former Benzene and Chlorobenzene Storage Area to analyze for 1,4-Dioxane (BSAMW-2D, BSAMW-3D, BSAMW-4D, and BSAMW-5D). 1,4-Dioxane was detected in monitoring wells BSAMW-2D, BSAMW-3D, and BSAMW-4D at concentrations of 43 μ g/L, 19 μ g/L and 40 μ g/L, respectively.

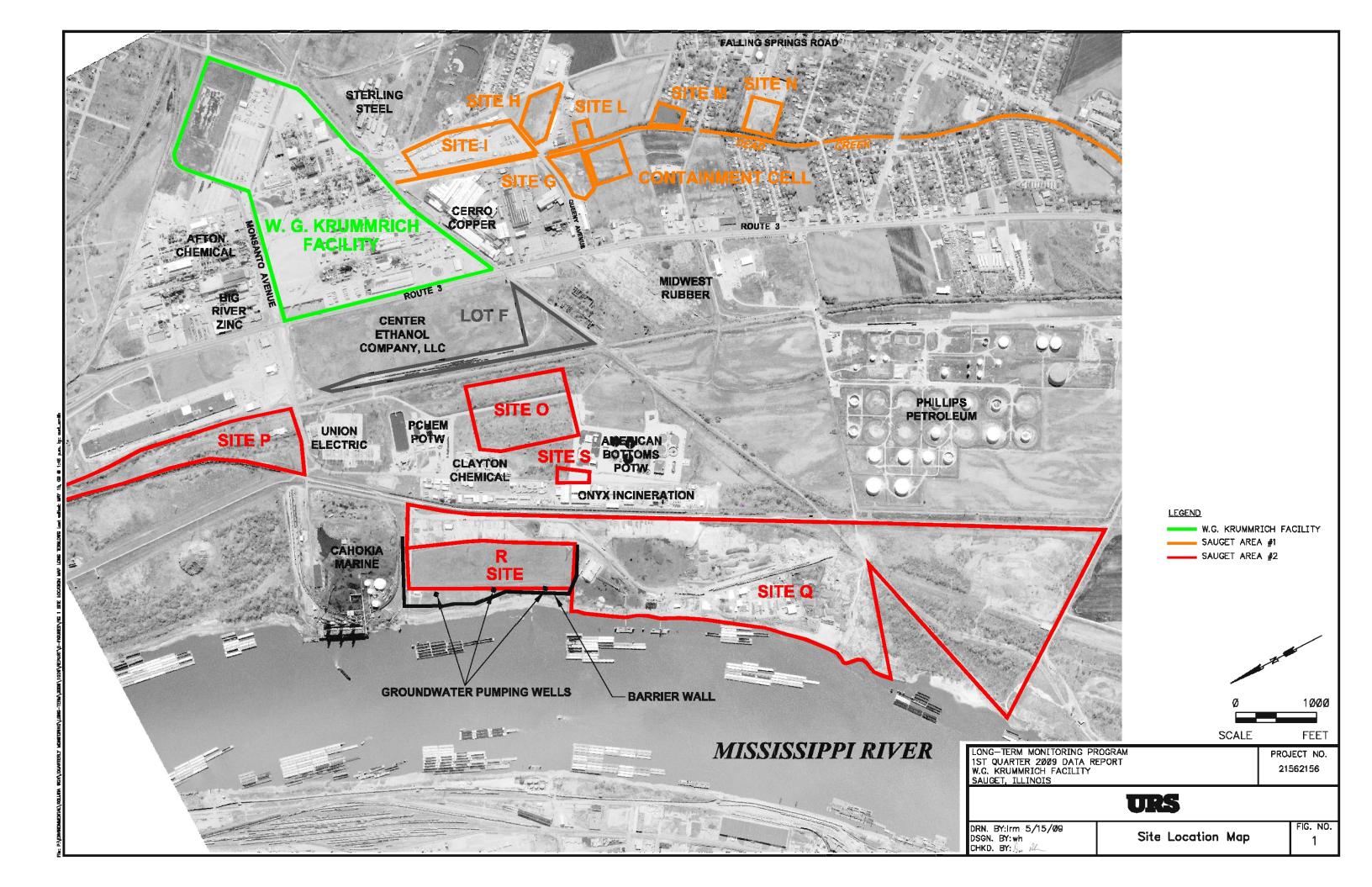
4-Chloroaniline - Groundwater samples for 4-Chloroaniline analysis were collected from monitoring wells CPAMW-3D and CPAMW-4D. 4-Chloroaniline was detected in monitoring wells CPAMW-3D (91 μg/L) and CPAMW-4D (170 μg/L).

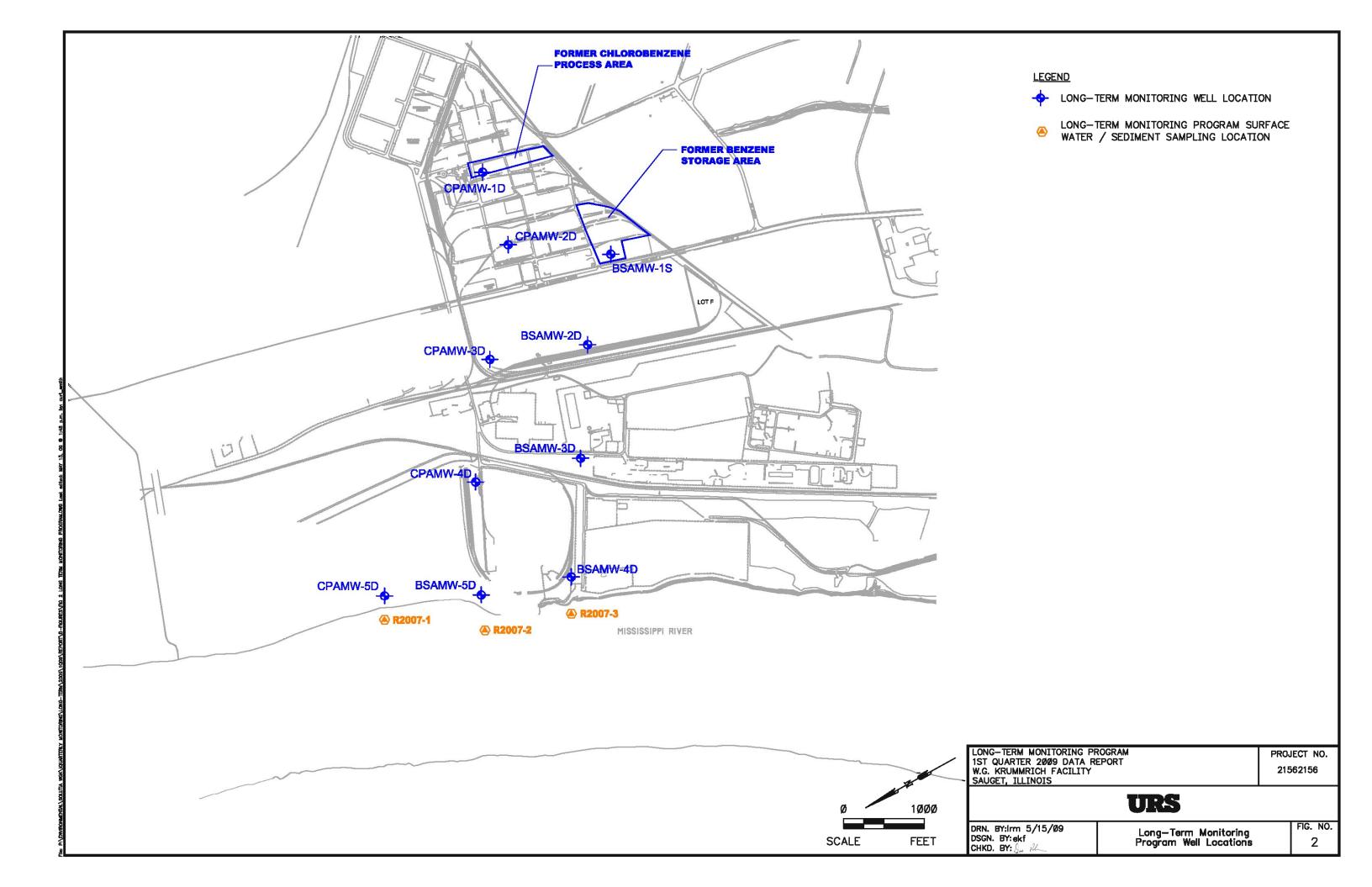
2-Chlorophenol - Of the nine samples available for analysis during 1Q09, 2-Chlorophenol was detected in six of the LTMP wells at concentrations ranging from an estimated 12 μ g/L (CPAMW-4D) to an estimated 42/79 μ g/L (CPAMW-2D and duplicate), both located along the limiting flow lines from the Chlorobenzene Process Area. 2-Chlorophenol was detected in four additional wells at concentrations of 14 μ g/L (BSAMW-2D), 17 μ g/L (BSAMW-3D), 13 μ g/L (BSAMW-4D) and an estimated 66 μ g/L (CPAMW-1D).

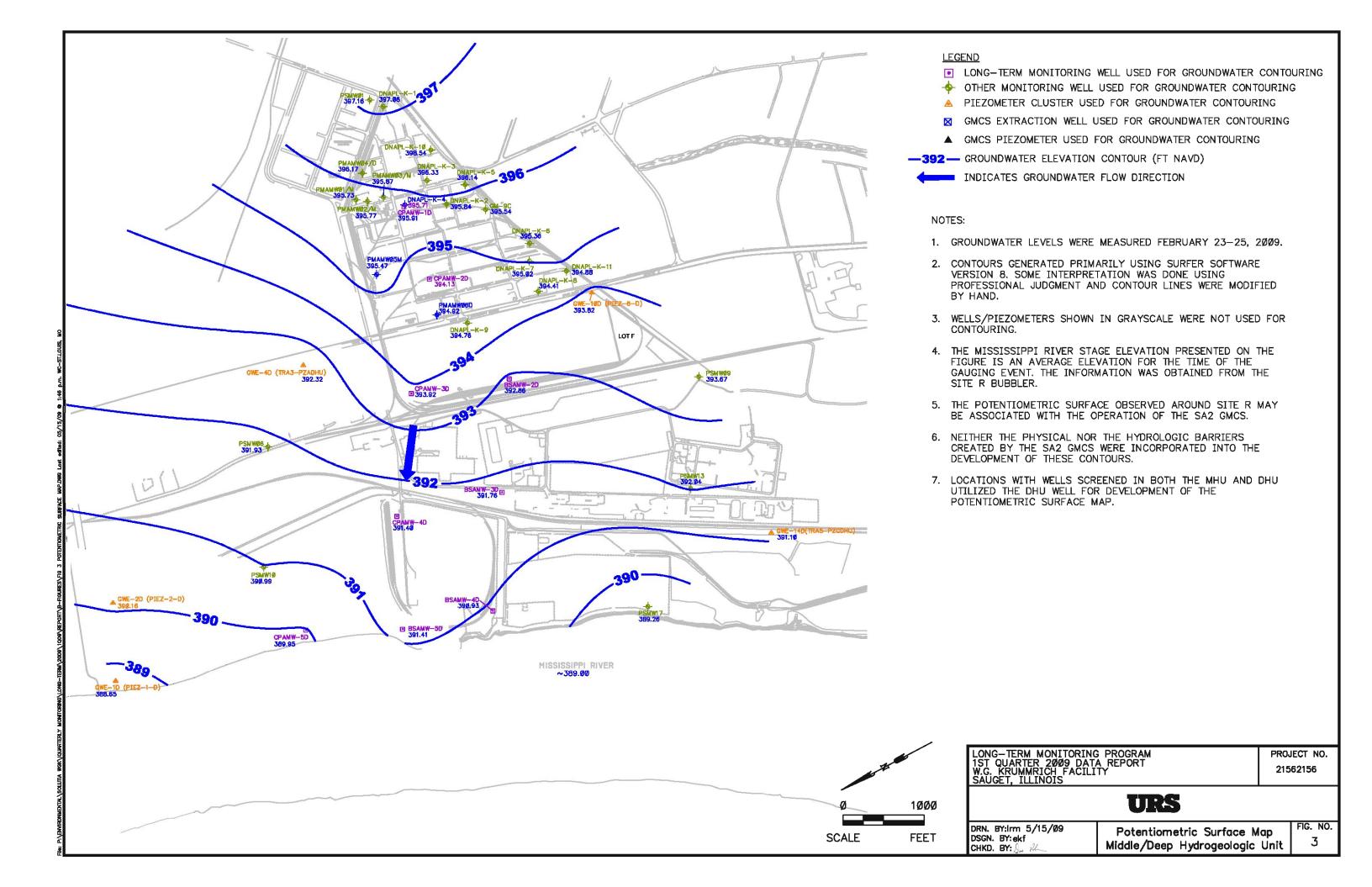
1,2,4-Trichlorobenzene – Samples from nine of the ten LTMP wells were analyzed for 1,2,4-Trichlorobenzene. Of the wells sampled, only the sample from monitoring well CPAMW-1D indicated a detection, with a concentration of 660 μ g/L.

Surface Water and Sediment Monitoring - Surface water and sediment samples were analyzed for VOCs benzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene along with SVOCs 1,4-dioxane, 4-chloroaniline, 2-chlorophenol and 1,2,4-trichlorobenzene. The results are summarized as follows:

- None of these constituents were detected in the surface water samples (VOC reporting limit 1 µg/L).
- Chlorobenzene was detected in one sediment sample at an estimated concentration of 2.9/2.0 µg/L (R2007-3 and duplicate). All other constituents were non-detect in the samples (variable reporting limits). Sample location R2007-3 is approximately 150 feet from the shoreline, and is downgradient from well BSAMW-4D.


These results indicate that constituents are attenuating prior to discharge to the river.


Monitored Natural Attenuation - The MNA results for this quarter are presented in **Table 3**. PLFA and SIP laboratory results are included in **Appendix G**. These data will be compared to other quarterly sampling data in the first annual natural attenuation evaluation report submitted following 2Q09 sampling.


6.0 REFERENCES

- Solutia Inc, 2008. Long Term Monitoring Program, Solutia, Inc., W.G. Krummrich Facility, Sauget, Illinois, April 2008.
- USEPA, 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review.
- USEPA, 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Figures

Tables

Table 1
Monitoring Well Gauging Information

			Construct	ion Details				February 2	23-25, 2009		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Product (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)	Area
Shallow Hydrogeologic U	Init (SHU 395-	380 feet NAVE	88)								
BSAMW-1S	409.49	412.31	19.68	24.86	389.63	384.63	17.82		27.33	394.49	WGK
Middle Hydrogeologic Ur	it (MHU 380-3	50 feet NAVD	88)								
PMAMW01M	410.08	410.08	54.54	59.54	355.54	350.54	14.35		59.66	395.73	WGK
PMAMW02M	411.93	411.93	56.87	61.87	355.06	350.06	16.16		27.42	395.77	WGK
PMAMW03M	412.10	412.10	57.07	62.07	355.03	350.03	16.23		61.88	395.87	WGK
PMAMW05M	411.27	410.97	52.17	57.17	359.10	354.10	15.50		57.02	395.47	WGK
PSMW01	409.37	412.59	34.56	39.56	374.81	369.81	15.43		46.09	397.16	WGK
Deep Hydrogeologic Unit	(DHU 350 fee	t NAVD 88 - B	edrock)								
BSAMW-2D	412.00	415.13	65.79	70.79	346.21	341.21	22.27		77.10	392.86	WGK
BSAMW-3D	412.91	415.74	104.80	109.80	308.11	303.11	23.98	-	114.97	391.76	WGK
BSAMW-4D	425.00	424.69	118.54	123.54	306.46	301.46	33.76		123.21	390.93	WGK
BSAMW-5D	420.80	420.49	116.25	120.85	304.95	299.95	29.08		120.95	391.41	WGK
CPAMW-1D	408.62	408.32	66.12	71.12	342.50	337.50	12.41		70.88	395.91	WGK
CPAMW-2D	408.51	408.20	99.96	104.96	308.55	303.55	14.07		104.80	394.13	WGK
CPAMW-3D	410.87	410.67	101.90	106.90	308.97	303.97	16.75		113.20	393.92	WGK
CPAMW-4D	421.57	421.20	116.44	121.44	305.13	300.13	29.80		114.81	391.40	WGK
CPAMW-5D	411.03	413.15	105.51	110.51	305.52	300.52	23.20		114.69	389.95	WGK
DNAPL-K-1	413.07	415.56	108.2	123.2	304.87	289.87	18.48		123.35	397.08	WGK
DNAPL-K-2	407.94	407.72	97.63	112.63	310.31	295.31	11.88		112.59	395.84	WGK
DNAPL-K-3	412.13	411.91	104.8	119.8	307.33	292.33	15.58		119.47	396.33	WGK
DNAPL-K-4	409.48	409.15	102.55	117.55	306.93	291.93	13.44		115.80	395.71	WGK
DNAPL-K-5	412.27	411.91	102.15	117.15	310.12	295.12	15.77		116.61	396.14	WGK
DNAPL-K-6	410.43	410.09	102.47	117.47	307.96	292.96	14.73		117.09	395.36	WGK
DNAPL-K-7	408.32	407.72	100.4	115.4	307.92	292.92	12.70		115.59	395.02	WGK
DNAPL-K-8	408.56	411.38	102.65	117.65	305.91	290.91	16.97		117.71	394.41	WGK
DNAPL-K-9	406.45	405.97	97.42	112.42	309.03	294.03	11.21		111.35	394.76	WGK
DNAPL-K-10	413.50	413.25	105.43	120.43	308.07	293.07	16.71		120.40	396.54	WGK
DNAPL-K-11	412.20	411.78	105.46	120.46	306.74	291.74	16.90		120.36	394.88	WGK
GM-9C	409.54	411.21	88	108	321.54	301.54	15.67		108.46	395.54	WGK

Table 1 Monitoring Well Gauging Information

			Construct	ion Details				February 2	23-25, 2009		
Well ID	Ground Elevation (feet)*	Casing Elevation* (feet)	Depth to Top of Screen (feet bgs)	Depth to Bottom of Screen (feet bgs)	Top of Screen Elevation* (feet)	Bottom of Screen Elevation* (feet)	Depth to Water (feet btoc)	Depth to Product (feet btoc)	Depth to Bottom (feet btoc)	Water Elevation* (feet)	Area
Deep Hydrogeologic Unit	(DHU 350 fee	t NAVD 88 - B	edrock) (conti	inued)							
GWE-1D (PIEZ-1D)	412.80	415.60	117	127	295.80	285.80	26.95		128.72	388.65	Sauget Area 2
GWE-2D (PIEZ-2D)	417.45	417.14	127	137	290.45	280.45	26.98		136.95	390.16	Sauget Area 2
GWE-4D (TRA3-PZADHU)	406.05	405.74	74	80	332.05	326.05	13.42		78.91	392.32	WGK
GWE-10D (PIEZ-6D)	410.15	412.87	102.5	112.5	307.65	297.65	19.05		115.00	393.82	Lot F
GWE-14D (TRA5-PZCDHU)	420.47	422.90	90	96	330.47	324.47	31.80		97.18	391.10	WGK
PMAMW04D	411.22	410.88	68.84	73.84	342.38	337.38	14.71		73.45	396.17	WGK
PMAMW06D	407.63	407.32	96.49	101.49	311.14	306.14	12.40		101.41	394.92	WGK
PSMW06	404.11	406.63	99.80	104.80	304.31	299.31	14.70		109.98	391.93	WGK
PSMW09	403.92	403.52	100.40	105.40	303.52	298.52	9.85		105.31	393.67	WGK
PSMW10	409.63	412.18	101.23	106.23	308.40	303.40	21.19		111.45	390.99	WGK
PSMW13	405.80	405.53	106.08	111.08	299.72	294.72	13.49		110.88	392.04	WGK
PSMW17 (BWMW-4D)	420.22	423.26	121.25	126.25	298.97	293.97	34.00		134.20	389.26	WGK

Notes:

* - Elevation based upon North American Vertical Datum (NAVD) 88 datum

bgs - below ground surface btoc - Below top of casing

NG - not gauged

Table 2 **Groundwater Analytical Results**

				VOC (µg/L)				SVOC (µg/L)				
Sample ID	Sample Date	Benzene	Chlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	4-Chloroaniline	2-Chlorophenol	1,4-Dioxane	1,2,4-Trichlorobenzene		
BENZENE STORAGE A	REA											
BSAMW01S-0209	3/2/2009	830000	<5000	<5000	<5000	<5000	NA	<9.7	NA	<9.7		
BSAMW02D-0209	2/26/2009	20000	2900	<200	<200	<200	NA	14	43	<9.7		
BSAMW03D-0209	3/2/2009	120	1200	32	14	370	NA	17	19	<9.7		
BSAMW04D-0209	2/25/2009	82	2300	26	<20	64	NA	13	40	<9.4		
BSAMW05D-0209	2/25/2009	<4	270	12	<4	15	NA	<9.4	<9.4	<9.4		
CHLOROBENZENE PRO	OCESS AREA											
CPAMW01D-0209	3/2/2009	4200	16000	20000	1400	12000	NA	66 J	NA	660		
CPAMW02D-0209	3/2/2009	820	31000	3000	720	17000	NA	42 J	NA	<9.7		
CPAMW02D-0209-AD	3/2/2009	810	30000	3000	700	16000	NA	79 J	NA	9.7 UJ		
CPAMW03D-0209	2/26/2009	86	460	11	<5	16	91	<9.4	NA	<9.4		
CPAMW04D-0209	2/25/2009	30	1100	15	<10	18	170	12	NA	<9.7		
CPAMW05D-0209	2/26/2009	<10	1500	<10	<10	12	NA*	NA*	NA*	NA*		

Notes:

μg/L = micrograms per liter

< or U = Result is non-detect, less than the reporting limit given.

BOLD indicates concentration greater than reporting limit.

AD = Analytical Duplicate

J = Estimated value

NA = sample not analyzed for select analyte in accordance with LTMP Work Plan

NA* = Due to laboratory error, SVOCs were inadvertently not analyzed for this sample

W.G. Krummrich Facility -Sauget, Illinois Long-Term Monitoring Program 1st Quarter 2009 Data Report

Table 3
Monitored Natural Attenuation Results Summary

Sample ID	Sample Date	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Chloride (mg/L)	Dissolved Oxygen (mg/L)	Ethane (ug/L)	Ethylene (ug/L)	Ferrous Iron (mg/L)	Iron (mg/L)	Iron, Dissolved (mg/L)	Manganese (mg/L)	Manganese, Dissolved (mg/L)	Methane (ug/L)	Nitrogen, Nitrate (mg/L)	Sulfate as SO4 (mg/L)	Dissolved Organic Carbon (mg/L)	Total Organic Carbon (mg/L)	ORP (mV)
Benzene Storage Area																		
BSAMW01S-0209	3/2/2009	850	22	100	10.24	< 0.35	< 0.33		1.3		0.37		11000	< 0.25	<5		6.9	-150.8
BSAMW01S-F(0.2)-0209	3/2/2009							0.75		1.1		0.36					13	
BSAMW02D-0209	2/26/2009	700	17	93	7.13	6.2	1.7		1.4		0.3		3200	< 0.05	160		4.9	-166.3
BSAMW02D-F(0.2)-0209	2/26/2009							0.39		1.3		0.32				3.8	3.8	
BSAMW03D-0209	3/2/2009	490	26	64	9.23	3.5	8.1		12		0.57		540	<0.25	240		3.7	-139.2
BSAMW03D-F(0.2)-0209	3/2/2009							>5		12		0.59					3.6	
BSAMW04D-0209	2/25/2009	600	22	120	6.28	5.9	< 0.33		8.7		0.55		110	< 0.05	130		5.4	-122.5
BSAMW04D-F(0.2)-0209	2/25/2009							>5		8.6		0.55				4.6	4.6	
BSAMW05D-0209	2/25/2009	810	17	270	5.27	26	< 0.33		19		0.88		13000	<0.05	<5		5.7	-171.9
BSAMW05D-F(0.2)-0209	2/25/2009							>5		18		0.83				5	5	
Chlorobenzene Process	Area																	
CPAMW01D-0209	3/2/2009	1100	<5	130	9.26	92	< 0.33		1.5		0.092		30000	<0.5	5.7		12	-123.6
CPAMW01D-F(0-2)-0209	3/2/2009							0.19		1		0.077					11	
CPAMW02D-0209	3/2/2009	610	25	67	13.43	14	0.7		6.1		0.35		2800	<0.25	<5		11	-144
CPAMW02D-F(0-2)-0209	3/2/2009							>5		5.2		0.33					10	
CPAMW03D-0209	2/26/2009	690	49	280	6.15	39	< 0.33		13		0.62		30000	< 0.05	<5		8.9	-150.8
CPAMW03D-F(0.2)-0209	2/26/2009							>5		14		0.69				7.5	7.5	
CPAMW04D-0209	2/25/2009	810	23	240	4.95	20	< 0.33		14		0.31		4800	< 0.05	72		5.6	-171.6
CPAMW04D-F(0.2)-0209	2/25/2009							>5		13		0.31				5	5	
CPAMW05D-0209	2/26/2009	280	66	280	6.37	7	< 0.33		89		3.2		44	< 0.05	1400		3.6	-94.7
CPAMW05D-F(0.2)-0209	2/26/2009							>5		85		3.1				3.5	3.5	

Notes:

DO and ORP were measured in the field using YSI 6920 equipped with a flow-thru cell. Values presented represent final measurements before sampling

Ferrous Iron readings were measured in the field using a LaMotte Colorimeter after the groundwater passed through a 0.2 μ filter.

mg/L = milligrams per liter

ug/L = micrograms per liter

< = Result is non-detect, less than the reporting limit given.

A blank space indicates sample not analyzed for select analyte.

F(0.2) = Sample was filtered utilizing a 0.2 μ filter in the field.

mV = millivolts

NC = Not collected

Appendix A Groundwater Purging and Sampling Forms

	: LTM Program	PROJECT	NUMBER: 2	1562159.0000)	FI	ELD PERSONNEL:	M. Corlo	ett, S. Moore	>	
MONITORING W	/2/09 ELL ID: <u>-BSAMW01</u>	Drc BSAM	: mostly su wois	unny, 25° SAMPL	LE ID:	BSAMW0	4-0209 mc B	ett, S. Modie Samwois-odo	09, BSAMWO	>15-f(0,2)-0
Depth to Water (bto Depth to LNAPL/Di	btoc): 27.50 ft oc): 17.96 ft NAPL (btoc): — ft creen (btoc): 22.50 ft	If Depth to Top Place Pump at If Depth to Top Place Pump at	of Screen is > Depth Total Well Depth – (of Screen is < Depth Total Well Depth – (de LNAPL or DNAPL): n to Water AND Screen L n.5 (Screen Length + DNA h to Water AND Water Co 0.5 X Water Column Heig nn height is < 4 ft, Place	APL Column Height Dlumn Height and S ght + DNAPL Colum) =25. &> creen Length are < 4ft, n Height) =	ft btoc (lume of Flow Through nimum Purge Volume = 3 x Flow Through Cell \ nbient PID/FID Reading ellbore PID/FID Reading	volume) 3,450	
PURGE DATA Pump Type:	Stainless Steel Mons	oon								
Purge Volume		Depth to			-	Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1000	18.10	colorless	hydrocarbon	6.95	/3.35	1.433	19.2	8.16	64.4
1700 2 4 00	1006			 '- - - - - - - - - -	7,30	13.84	1.680	14.6	8.5/ 9.69	42.0
3600	1018				7.30	13-75	1.684	5.7	10.62	-89.8
4800	1024				7.31	14.18	1-684	0.9	10.76	-101.6
6000	1030		1		7-30	14.28	1.687	0.1	10.78	-118.8
7200 5400	1036		1		7.79	14.34	1.688	-0.6	10.64	- 132.7
2400	1042		1		7.29	14-20	1.688	-1.0	10.54	-139,9
9600	1048		ļ ļ		7.29	14.13	1.687	-1,1	10.31	-147.3
[0 8 00	1054	V	V	V	7. 29	14,30	1.687	-1.3	10.04	-150.8
Start Time:	1000		Ela	psed Time:	1100 5	Ymin.	Water Qual	ity Meter ID: Y	'SI 6920	
Stop Time:	1054	2	Ave	erage Purge Rate (mL/mir		<u>ó</u>	Date Calibr	ated: 3/2/0	9	-
SAMPLING DA										
Sample Date:	3/2/09		Sar	nple Time:	1100		Analysis:	VOCs, SVOCs, Metals	, MNA	
Sample Method:	3/2/09 Stainless Steel Monsoon	n		nple Flow Rate:	1100 200 mL	<i>l</i> min	Date Calibr		,	
COMMENTS: MNA – Alkilinity	, CO2. Chloride, Ferr	ous Iron, Metha	ne, Nitrate, Sulfat				Ferrous Iron	(Filtered 0.2 micron)	= 0.75	орт

PROJECT NAME: DATE: ユ/ MONITORING WE	126/09	WEATHER	NUMBER: 2	1562154.000 t, breezy, S SAMPI	70/ FI	ELD PERSONNEL:				
month on the	EL ID. BOARITOL			O7 (IIII)	- ID1	BSAMW	030-0369,	MW02D-F (7.07 0001	
INITIAL DATA Well Diameter: 2 Total Well Depth (bto Depth to Water (bto Depth to LNAPL/DN Depth to Top of Sci Screen Length: 1	APL (btoc):ft reen (btoc): <u>72.05</u> ft	If Depth to Top Place Pump at If Depth to Top Place Pump at	:: Total Well Depth – 0 o of Screen is < Depth :: Total Well Depth – (0	e LNAPL or DNAPL):_ to Water AND Screen L .5 (Screen Length + DN/ to Water AND Water C).5 X Water Column Heig in height is < 4 ft, Place	enth is (4 feet, APL Column Height olumn Height and S ght + DNAPL Colum	creen Length are (4ft, n Height) =	Mir ft btoc (3 Arr ft btoc We	lume of Flow Through nimum Purge Volume 3 x Flow Through Cell nbient PID/FID Reading Illbore PID/FID Reading	= Volume) <u>3, 4</u> : <u>0. 0</u>	
PURGE DATA Pump Type:	Stainless Steel Mons	oon								
Purge Volume	7:	Depth to	Color	Odor	wIII	Temp	Cond.	Turbidity	DO (mall)	ORP
(mL)	Time 1109	Water (ft) 2∂ • 16	Color Colorless	hydrocarbon	7.06	(°C) /6.0/	(ms/cm) /.80/	(NTUs)	(mg/l) 5.08	(mv) -//2. 7
1200	1115	1	(810) 1233	7,05,70,00	7.11	15.85	1.829	0.3	<i>5</i> . 33	-130.0
2400	1121	į			7.15	15-64	1.849	-0.2	5.35	-142.7
3600	1127		!		2./7	15.74	1.844	-0.3	6.38	-150.1
4800	11 33				7.18	15.81	1.840	-0.5	6.80	-158,2
6000 7200	1139					15.92	1.840	-0.5	7.09	-164.8
8400	1151	√		V	7.18 1.18	15.87	1.832	-0.8	7.13	-166.3
Start Time: Stop Time:	1109			osed Time: rage Purge Rate (mL/mi	42 mi	'n.		ty Meter ID:	YSI 6920 109	-
SAMPLING DAT	A .			,						
Sample Date:	2/26/0	9	Sam	nple Time:	1200)	Analysis:	VOCs, SVOCs, Meta	ls, MNA	
Sample Method:	Stainless Steel Monsoo			nple Flow Rate:	700	mL/min	Date Calibra			
COMMENTS: MNA – Alkilinity.	CO2, Chloride, Ferr	rous fron, Metha	ane, Nitrate, Sulfate	e.TOC, DOC			Ferrous Iron	Filtered 0.2 micron)= 0. 3 9 pp)M

DATE: 3	: LTM Program / >/o 9 ELL ID: BSAMW03	PROJECT WEATHER	NUMBER:	21562154.00 y, 32° SAMPI	1000/ FIE LE ID:	ELD PERSONNEL:	M. Corb.	MW03D-020	ore_ 09, BSAMWO	30-F(0.a)-
Depth to Water (btd Depth to LNAPL/DN Depth to Top of Sc	intoc):	If Depth to Top Place Pump at: If Depth to Top t Place Pump at:	of Screen is > Depth Total Well Depth – 0 of Screen is < Depth Total Well Depth – (0	e LNAPL or DNAPL): to Water AND Screen L .5 (Screen Length + DN/ to Water AND Water C 0.5 X Water Column Heig to height is < 4 ft, Place	enth is (4 feet, APL Column Height) olumn Height and So ght + DNAPL Colum	creen Length are (4ft, n Height) =	Minft btoc (3 Am:	ume of Flow Through imum Purge Volume x Flow Through Cell bient PID/FID Reading Ilbore PID/FID Readin	= Volume) 3, 43 g: 0.0	
PURGE DATA Pump Type:	Stainless Steel Mons	soon								
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	рН	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
0 1320 3400 4800 6000	1535 1541 1547 1653 1559 1605	23.64	colorly	hydrocarbon	6.85 6.89 2.81 6.82 6.82	14.56 14.12 13.86 13.92 13.12 14.08	1.456 1.495 1.511 1.516 1.516 1.517	0.2 -0.2 -0.9 -1.5 -2.0 -2.3	5.38 7-14 8.40 9.65 9.30 9.23	-99.8 -110.6 -121.6 -129.7 -137.0 -139.2
Start Time: Stop Time:	1535 1605		•	sed Time:_ rage Purge Rate (mL/mir	30 min. n): 200		Water Qualit Date Calibra	y Meter ID:	YSI 6920	-
SAMPLING DATE Sample Date: Sample Method: COMMENTS:	3/2/09 Stainless Steel Monsoo			ple Time: ple Flow Rate:	•		Date Calibra		·	
MNA - Alkilinity.	CO2, Chloride, Ferr Equipment Blas	ous Iron, Methal	ne. Nitrate, Sulfate before this v	i, TOC, DOC Vell: BSAMWO	3D-0209- E B		Ferrous Iron (I	Filtered 0.2 micron)= DVEFFAN	132

PROJECT NAME:		PROJECT I		1562154 .00	000 FIL	ELD PERSONNEL:	M. Co	rbett, C. W	illiams_	
DATE: <u>2/2</u> MONITORING WEL	.5/09 LID: BSAMW04	WEATHER:		ny 55° SAMP	LE ID:	-BSAMW.0	4-0209 % BSA	1W04 D-029	_BSAM WO	4D-F(0.2)-020
							/			
NITIAL DATA										
Well Diameter: 2	r i	n Water Column	Height (do not includ	de LNAPL or DNAPL):	3	89.56 89.	5/ ft.btoc Vol	ume of Flow Through	Cell):	mL
Total Well Depth (bt	oc): 133 54 ft	f Depth to Top	of Screen is > Depth	to Water AND Screen L	enth is <4 feet,		Min	imum Purge Volume	= 7	
Depth to Water (btoo	33.98 ff	Place Pump at:	Total Well Depth - 0).5 (Screen Length + DN	APL Column Height)			x Flow Through Cel	Volume)_3,450	
	APL (btoc): f			h to Water AND Water C 0.5 X Water Column Hei				bient PID/FID Readin Ilbore PID/FID Readir		
Depth to Top of Scri Screen Length: <u>5</u>	een (btoc): <u>118.54</u> f	t If Screen Lengt	h and/or water colur	nn height is < 4 ft, Place	gnt + DNAPL Colum Pump at: Total Well	Depth - 2 ft = -		IIDOTE FIDIFID REAUTI		ppm
ocicen Length	,,	t ti ooroon zengt	ar arrajor mater dolar	in neight is 4 riq ridge	Tomp att Total Tool					
PURGE DATA										
Pump Type:	Stainless Steel Mon	soon								
Purge Volume		Depth to	1			Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рΗ	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1115	34.00	colorless	hydrocarbon	6.88	16.12	1.540	1.2	6.14	-134.5
1200	1121		colorless	1	6.88	16.13	1.546	-0.2	6.01	-136,0
2400	1127		1		6.89	16.00	1.548	-0.7	6.51	-/37./_
3600	1133				6.90	15.83	1.548	-1.2	5,89	-/32.0
4800	1139		 	 	6.91	15.95	1.545	-1.3	6.48	-130.0
7200	1145			 	6.92	15.84	1.544	-1.4	6.32	-129.1
8400	1157		1		6.92	15.95	1.538	-1.5	6.28	= 122.5
_0 100	115 1		<u> </u>		0:100	10.10		77.3		100.0
			1							_
	-									
Start Time:	1115		Ela	psed Time:	in): 42 min		Water Quali	ty Meter ID:	YSI 6920	_
Stop Time:	1157		Ave	rage Purge Rate (mL/m	in):		Date Calibra	ated: 2/25/	109	
								0/03/	1	
SAMPLING DAT	A							•		
		,								
Sample Date:		109		mple Time:	1205			VOCs, SVOCs, Meta	als, MNA	
Sample Method:	Stainless Steel Monso	ori	Sar	nple Flow Rate:	200		Date Calibra	ated: NA		
_										
COMMENTS:										
MNA – Alkilinity,	CO2, Chloride, Fer	rous fron, Metha	ne, Nitrate, Sulfate	e, TOC, DOC			Ferrous Iron (Filtered 0.2 micro	1) = Overrang	<u> </u>
									(

	LTM Program	PROJECT	NUMBER: _2/	562154.000	00/ FII	ELD PERSONNEL:	M. Col	beff, C. W	Illiams_	
	S/09 ELL ID: BSAMW051	WEATHER	· partly	cloudy 60 SAMPL	E ID:	BSAMWO				MWO5D-F(0.2) 1WO5D-0209-N
Depth to Water (bto Depth to LNAPL/DN	in otoc): 131,35 ft c): 29,37 ft hAPL (btoc): ft reen (btoc): 116.25 ft ft	If Depth to Top Place Pump at If Depth to Top Place Pump at	o of Screen is > Depth : Total Well Depth – 0 o of Screen is < Depth : Total Well Depth – (0	e LNAPL or DNAPL): to Water AND Screen Lo .5 (Screen Length + DNA n to Water AND Water Co .5 X Water Column Heig nn height is < 4 ft, Place	APL Column Height) Dlumn Height and S ght + DNAPL Colum	= 118.75 creen Length are (4ft, n Height) =	Mir ft btoc (3 Am ft btoc We	ume of Flow Through imum Purge Volume x Flow Through Cell bient PID/FID Reading libore PID/FID Readin	= Volume) 3,46	
PURGE DATA Pump Type:	Stainless Steel Monso	o <u>n</u>								
Purge Volume (mL) O 1200 3400 3600 4800	Time 1606 1612 1618 1624 1630	Depth to Water (ft) 29, 37 29.40	Color colorless	Odor hydrocar bon	pH 6.93 6.93 6.93 6.93	Temp (°C) (6.92 (6.92 (6.93 (6.72 (6.88	Cond. (ms/cm) 2.11/2 2.11/2 2.124 2.126 2.119	Turbidity (NTUs) 8.4 7.7 4.9 3.1 2.0	DO (mg/l) 6.89 6.73 5.59 5.4/ 5.2/	ORP (mv) -159.4 -163.5 -168.2 -172.4 -171.9
Start Time: Stop Time: SAMPLING DAT Sample Date: Sample Method:	TA 2/25/09 Stainless Steel Monsoor		Ave	osed Time:	24 min 200 1640 200		Water Quali Date Calibra Analysis: Date Calibra	vocs, Svocs, Metal		
COMMENTS: MNA – Alkilinity,	CO2, Chloride, Ferro	ous Iron, Metha	ne, Nitrate, Sulfate	e, TOC, DOC			Ferrous Iron (Filtered 0.2 micror	i) = Overrang	<u>je</u>

	: <u>LTM Program</u> / 2/09	PROJECT	T NUMBER:	71563154.000	<i>!</i> F	IELD PERSONNEL:	M. Col	bett, 3. Mos	re		
MONITORING WI			n. <u>san</u>	SAMPI	LE ID:	CPAMW)1-0209 ~~ CPAI	MW01D-020	9, CPAMWO	ID-F(0.2)-020	
INITIAL DATA								•			
Depth to Water (bto Depth to LNAPL/DI	btoc): 71.12 oc): /2.65 f NAPL (btoc):f creen (btoc): 66.12 ft	ft If Depth to To t Place Pump a t If Depth to To t Place Pump a	op of Screen is > Depth at: Total Well Depth – 0. op of Screen is < Depth at: Total Well Depth – (0	include LNAPL or DNAPL): 58. 47 Depth to Water AND Screen Lenth is (4 feet, pth – 0.5 (Screen Length + DNAPL Column Height) = 68.62 Depth to Water AND Water Column Height and Screen Length are (4 pth – (0.5 X Water Column Height + DNAPL Column Height) = 7 r column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = 7			ft btoc Wellbore PID/FID Reading: 5./ ppm				
PURGE DATA Pump Type:	Stainless Steel Mor	nsoon									
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO	ORP	
(mL)	Time	Water (ft)	Color	Odor	pH	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)	
7)	1140	12.66	light brown	hydrocarbon	9.00	15.16	0.942	139.4	7.49	-108.7	
1200 2400	1152	1	-		8.98 9.57	15.26	1.614	61-3	11-30	-134.3	
3600	1158	1			0,14	15,29	1.1048	8.9	10.94	-137.6	
4820	1204				4.16	15.30	1.675	7.0	10.66	-134.4	
5,000	1910				9.31	15.32	2,/33	4.9	9.85	-126.6	
7200	1216				4.32	15.36	2.141	6.3	9.66	-126.0	
8400	1222				9-02	15.38	2.158	7.7 6.8	9.39	-125.4	
9600	1278	V	₩	V	9.24	15.57	3.180	6. 8	9.26	-/23.6	
Start Time:	12/10		Elan	sed Time: 48	min.		Mater Qualify	Motor ID:	VCI 6020		
Stop Time:	1140		·	age Purge Rate (mL/mi						-	
SAMPLING DA	TA							1			
Sample Date:	3/2/09		Sam	ple Time:	1930		Analysis:	VOCs, SVOCs, Meta	Is MNA		
Sample Method:	Stainless Steel Monso	on		Sample Time: 1330 Sample Flow Rate: 200 m/c/min				Date Calibrated: NA			
COMMENTS: MNA – Alkilinity,	, CO2, Chloride, Fer	rous Iron, Meth	ane, Nitrate, Sulfate	TOC, DOC			Ferrous Iron (F	Filtered 0.2 micror	م <i>و 0.19</i> ا	om	

DATE: 3/2/09 WEATHER: Sunny, 32'				
PROJECT NAME: LTM Program DATE: 3/2/09 MONITORING WELL ID: CPAMW02D PROJECT NUMBER: 2/562/54,000/ FIELD PERSONNEL: S, Moder / M. Corbet Sunny, 32' SAMPLE ID: CPAMW02-0209 CPAMW01 D-0209, CPAMW01 D-0209	4 ML/0/D = 03/0-11			
CPAMUIOID - F(0.2) -0	209			
INITIAL DATA				
	1,150 mL			
Total Well Depth (btoc): 104.96 ft If Depth to Top of Screen is > Depth to Water AND Screen Lenth is (4 feet. Minimum Purge Volume =				
Depth to Water (btoc): 14.09 ft Place Pump at: Total Well Depth - 0.5 (Screen Length + DNAPL Column Height) = 102.46 ft btoc (3 x Flow Through Cell Volume) Depth to LNAPL/DNAPL (btoc): ft If Depth to Top of Screen is < Depth to Water AND Water Column Height and Screen Length are < 4ft, Ambient PID/FID Reading: 6	3,950 mL .0 ppm			
Depth to Top of Screen (btoc): 99.96 ft Place Pump at: Total Well Depth - (0.5 X Water Column Height + DNAPL Column Height) = ft btoc Wellbore PID/FID Reading:				
Screen Length: 5 ft If Screen Length and/or water column height is < 4 ft, Place Pump at: Total Well Depth - 2 ft = ft btoc				
PURGE DATA				
Pump Type: Stainless Steel Monsoon				
Purge Volume Depth to Temp Cond. Turbidity D((mL) Time Water (ft) Color Odor pH (°C) (ms/cm) (NTUs) (mg				
2400 1332 1 6.89 /6.24 1.308 /9.3 /3.	77 -138,5			
3600 338 1 6.86 6.82 1.321 9.0 13.8	5 -142.4			
4800 1344 V V 6.86 16.23 1.327 3.8 13.4	13 -144.0			
Start Time: 1320 Elapsed Time: 24 min. Water Quality Meter ID: YSI 6920				
	Date Calibrated: 3/2/09			
SAMPLING DATA				
Sample Date: 3/2/09 Sample Time: /350 Analysis: VOCs, SVOCs, Metals, MNA				
Sample Date: 3/2/09 Sample Time: /350 Analysis: VOCs, SVOCs, Metals, MNA Sample Method: Stainless Steel Monsoon Sample Flow Rate: 200 mL/n;n. Date Calibrated: NA				
COMMENTS:	~ "11.			
MNA - Alkilinity, CO2. Chloride, Ferrous Iron, Methane. Nitrate, Sulfate, TOC, DOC Ferrous Iron (Filtered 0.2 micron) =	75 pmc			
	srkinge			

	: LMT Program		NUMBER:	21562154.00	201	FIELD PERSONNEL:	M.Co	rbett, C.V	Villiams	
DATE:	/ <i>26/09</i> ELL ID: <u>CPAMW03I</u>	WEATHER	i: overcas	st, strong wine	PLE ID:	FIELD PERSONNEL:	03-0209-mc Ct	PAMWO3D-020	9, CPAMWOS	5D-F(0.2)-020
	btoc): 70 k 1/3.0 ft oc): 16.65 ft NAPL (btoc): — ft creen (btoc): 108.00 ft	If Depth to Top Place Pump at If Depth to Top Place Pump at	o of Screen is > Depth :: Total Well Depth – C o of Screen is < Dept :: Total Well Depth – (0.5 X Water Column He	Lenth is (4 feet, NAPL Column Heig Column Height and eight + DNAPL Coli	96.35 ght) = //0.56 Screen Length are (4ft umn Height) = Vell Depth - 2 ft =	Min ft btoc ft btoc ft btoc ft btoc	lume of Flow Through nimum Purge Volume 3 x Flow Through Cel nbient PID/FID Readin Ilbore PID/FID Readin	= I Volume) 3,4	
PURGE DATA Pump Type:	Stainless Steel Monso	oon								
Purge Volume (mL)	Time 1.30 4	Depth to Water (ft)	Color	Odor hydrocarbon	pH 6.84	Temp (°C) /7.35	Cond. (ms/cm) 2.138	Turbidity (NTUs)	DO (mg/l) 5.89	ORP (mv) -/.3.7./
2400 2400 3600	13/0			<i>'</i>	6.79 6.79	17.32	2.171 2.159 2.147	13.9 3.8 6.9	5.97 5.93 6.15	-144.9 -147.9 -150.8
									1	
Start Time: Stop Time:	1304 Elapsed Time:					Min. Water Quality Meter ID: YSI 6920 200 Date Calibrated: 2/26/09				
SAMPLING DATA Sample Date: 2/26/09 Sample Method: Stainless Steel Monsoon				nple Time: nple Flow Rate:	1330 200 nL	0 -/min	Analysis: VOCs, SVOCs, Metals, MNA Date Calibrated: NA			
COMMENTS: MNA – Alkilinity,	. CO2, Chloride, Ferro	ous Iron, Metha	ne, Nitrate, Sulfate	e. TOC, Doc	_	<u> </u>	Ferrous Iron (Filtered 0.2 micror	n) = overrang	72

DATE:	: LTM Program	PROJECT WEATHER	NUMBER:	1562154.00 1.60° SAMPL	00 [FI	ELD PERSONNEL:	M. Cov	bett C	. Williams		
MONITORING WI	ELL ID: CPAMW04	<u> </u>)/ SAMPL	-E ID:	CPANIVIC	4-0209mc CPAN	1W04D-02	09, CPAMWO	4D-F(0.2)-0	
Depth to Water (bto Depth to LNAPL/DI	btoc): 71.76 ft bc): 29.79 ft NAPL (btoc): f creen (btoc): 116.44	t Place Pump at t If Depth to Top t If Depth to Top t Place Pump at	o of Screen is > Depth : Total Well Depth – 0. o of Screen is < Depth : Total Well Depth – (0	e LNAPL or DNAPL): to Water AND Screen L 5 (Screen Length + DNA 1 to Water AND Water Co 0.5 X Water Column Heig 11 height is < 4 ft, Place	enth is (4 feet, APL Column Height) Dlumn Height and So ght + DNAPL Colum	creen Length are (4ft, n Height) =	Minit ft btoc (3) Amb	mum Purge Volum	ell Volume) <u>3, 45</u> ing: <u>0.6</u>		
PURGE DATA Pump Type:	Stainless Steel Mon	soon									
Purge Volume (mL)	Time	Depth to Water (ft)	Color	Odor	На	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (my)	
0	1410	29.79	colorless	hydrocarbon	6.94	16.77	2./3/	5.0	4.72	-151.5	
1200	1416			7	6.94	16.69	2.159	0.7	4.94 4.96 5.15 MC	-160.6	
2400 3600	1428		-		6.94	16.67	2.148	-0.8 -1.2	4.94	-162.7	
4800	1434	<u> </u>	V	V	6.95	16.61	2.145	-/.3	4.95	-171.6	
Start Time:	1410		Elap	sed Time:	30 min		Water Quality	Meter ID:	YSI 6920		
Stop Time:		434	Ave	rage Purge Rate (mL/mi)	Date Calibrated: 2/25/09				
SAMPLING DA	TA									•	
Sample Date: Sample Method:	2/25/09 Stainless Steel Monso	OD		Sample Time: 1440 Sample Flow Rate: 200 mL/min			Analysis: VOCs, SVOCs, Metals, MNA Date Calibrated: NA				
Sample Meurou.	Oraniess Steel MOUSO	UII		ipic i low itale.	200 ML)	min					
COMMENTS: MNA – Alkilinity	, CO2, Chloride, Fer	rous Iron, Metha	ne, Nitrate, Sulfate	e, TOC, Doc			Ferrous Iron (F	iltered 0.2 micr	on) = Overrange		
				•					J		

LOW FLOW GROUNDWATER SAMPLING DATA SHEET

PROJECT NAME: DATE: 2/2 MONITORING WE		PROJECT WEATHE	NUMBER: 2/ R: <u>overcas</u> 7	562154.000 1, breezy , SAN	PO! F SS** MPLE ID:	IELD PERSONNEL:	<u>M. Con</u> 5-0209 nc	LETT, C. Will CPAMWOSD-	1,0ms 1,0ms 10209, CPAMU	v05D-F(0.2)-0
Depth to Water (bto Depth to LNAPL/DN Depth to Top of Sci Screen Length:	APL (btoc): fi reen (btoc): 109.75 f 5 ff	If Depth to To Place Pump at If Depth to To Place Pump at If Screen Len	p of Screen is > Dept t: Total Well Depth – p of Screen is < Dep t: Total Well Depth –	th to Water AND Wate (0.5 X Water Column I	en Lenth is (4 feet, DNAPL Column Heigh er Column Height and S Height + DNAPL Colur	Screen Length are (4ft,	ft btoc Mi	olume of Flow Through inimum Purge Volume (3 x Flow Through Cell mbient PID/FID Readin ellbore PID/FID Readin	= Volume) 3,450 g: 0.0	
Pump Type: Purge Volume	Stainless Steel Mons	Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time	Water (ft)	Color	Odor	pН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0	1500	23.42	Colorless	none	6.41	14.91	3.604	8.5	3.5/	-76.2
1200	1506				6.36	14.93	3.674	4.1	4.66	-81.5
2400	1512				6.37	14.77	3.718	0.4	5.35	-87.9
3600	1518				6.38	14.74	3.724	-0.8	5-88	-90.1
4800	1524				6.39	14.70	3.725	-1.1	6.30	-91.4
6000	1530				6.39	14.70	3.726	-1.4	6.68	-92.6
7200	1536	<i>,</i>			6.39	14.76	3.726	-1.4	6.52	-94.5 -94.7
8400	1542	<i>V</i>	V	Ψ	6.40	/ų.73	3.730	-1.5	6.37	-94.7
Start Time: Stop Time:	1500 1542			apsed Time: erage Purge Rate (mL	42 min	2	Water Qua	lity Meter ID:		
otop rimez	· <u>5 · [</u>			orago rango riato (<i>'</i>	•
SAMPLING DAT								,	,	
Sample Date: Sample Method:	2/26/09 Stainless Steel Monsoc	on .	Sa	mple Time: mple Flow Rate:	1550 200 ml	-/min	•	VOCs, SVOCs, Meta rated: NA	als, MNA	
COMMENTS: MNA – Alkilinity,	CO2, Chloride, Fer	rous Iron, Meth	ane, Nitrate, Sulfa	te. TOC, Doc		•	Ferrous Iron	(Filtered 0.2 micror	n) = overran	ge

5.1

Appendix B

Chains-of-Custody

ANALYSIS REQUEST AND CHAIN OF CUSTODY F	RECORD		5102	Americ 2 LaRoc annah,	che Av	enue				F		(912) 3	testamericair 354-7858 2-0165	c.com	
) Alter	nate La	aborato	ory Nan	ne/Loca	ation		F	hone:				
THE LEADER IN ENVIRONMENTAL TESTING											ax:				
PROJECT REFERENCE PROJECT NO. PROJECT LOCATION (STATE) TL	MATRIX TYPE				_		QUIRED	ANALY	SIS			_	PAGE /		DF /
TAL (LAB) PROJECT MANAGER P.O. NUMBER CONTRACT NO.				3/	Total Fe/Mn (6010B)		کی مک	•	ત			(60/08)	STANDARD R	EPORT	
Lidya Gulizia CLIENT (SI7E) PM CLIENT PHONE CLIENT FAX	INDICATE	N.	SB B	370C*	3	310.1	orid S	7%	353.			3	DELIVERY		\supset
Thomas Adams 314-429-0100 314-429-0462	ION!	SQE/E	8 260B	ne	£ .	1,1	30	8	N)	1.51/	415.1	Felma	DATE DU		
CLIENT NAME CLIENT E-MAIL.	18 (G)	8	SO	80	13	3	2	2	\$	E		1 .	EXPEDITED F DELIVERY		\supset
URS Corporation Homas adams Quescorp.com	3 GRAB) an	700	Svoc	da	AIK/CO2	Saltag/ 375.4/	Methane R&K- 175	Nitrate	700	Doc	Diss	(SURCHARGE	•	
CLIENT ADDRESS 1001 Highlands Plaza Dr. West, Ste 300 St. Louis, NO 63110 COMPANY CONTRACTING THIS WORK (if applicable)	E (C) OR (WATER) SEMISOLI	SLIC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\(\frac{\gamma}{\delta}\)	F	₹	<u>v, iv</u>	<u>2</u>	{\ 6 3		1 7		DATE DU NUMBER OF (~	O I I DI MITTER
COMPANY CONTRACTING THIS WORK (if applicable) Solutia	COMPOSITE (C) OR GI AQUEOUS (WATER) SOLID OR SEMISOLID AIR	NONAQUEOUS LIQUID (OIL, SOLVENT,)	HCI	rore	T. S.	<u>5</u>	9 9	Ş	\$\\ \sqrt{8}	$\mathcal{J}_{\mathcal{I}}$	五	五克	PER SHIPMEN		סטטאווו ובט
SAMPLE SAMPLE IDENTIFICATION	COMPOSITE AQUEOUS (SOLID OR S	NS -		- 1		:DED 00	*********	L	T.32 /	4	<u> </u>			EMARKS	~
DATE TIME							r								
2/25/09 - TB022509	10		$X \downarrow$								<u></u>		*SVOCs	per	
1205 BSAMWO4D-0209			3	2	1			3	2	1			Semi-ar	nual,	ist.
1205 BSAMW04D-F(0.2)-0209	X									,	1_	1			
1440 CPAMWO4D-0209	X		3	2	1	1		3	2	1					
1440 CPAMWO4D-F(0.2)-0209							,								
1640 BSAMWOSD-0209			3	2	1	1	1	3	2	1		•			
1640 BSAMWOSD-0209-MS	X	7 7		2	•	,									
1640 BSAMWO5D-0209-MSD				2			•								
V 1640 BSAMWOSD-F(0,2)-0209											1	1			
1510 2211110020 1 (0.59						·····									
		H		-											
RELINQUISHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE)	I I I I I I I I I I I I I I I I I I I			DATE		TIME		RELIN	QUISHE	D BY: (s	L	L E)	DATE	T	IME
ml Clt 2/25/09 1800															
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)	RE)			DATE		TIME		RECEI	VED BY	: (SIGNAT	URE)		DATE	T	IME
	VAROPATORV	RATORY USE ONLY													
RECEIVED FOR LABORATORY BY: DATE TIME CUSTODY INTACT CUSTODY SAVANNAH					TODY SAVANNAH LABORATORY REMARKS										
(SIGNATURE) 2/26/09 0952 YES ONO	SEAL NO.														

Serial Number 019026

				AND CHAIN	OF CUSTODY R	ECC	ORD		510	2 LaRo	i ca Sav iche Av	enue				P		(912) 3	testamericaino 54-7858 -0165	com.	
Test	/\								⊃ Aite	rnate L	.aborato	ory Nar	ne/Loca	ation							
THE LEADE	R IN ENVIRO	ONMENTAL	TESTING					**************************************									hone: ax:				
PROJECT REFER			PROJECT NO.	54.00001	PROJECT LOCATION (STATE)		MATRI TYPE					RE	QUIREC	ANALY	SIS				PAGE /		OF /
TAL (LAB) PROJEC	CT MANAGER		P.O. NUMBER	1.00001	CONTRACT NO.	Lu Lu		T	SB	6 *		7-	(4	135	ď			Oglo	STANDARD RE	PORT	
Lidya G CLIENT (SITE) PM	ulizia		CLIENT PHON	•	CLIENT FAX	DICATI		VENT,	8260B	8370C*	147 000	310.1	450	SSK	353.2	2.5	<u>ن</u>	120	DATE DUE		
Thomas CLIENT NAME	Adams			-0100	314-429-0462	GRAB (G) INDICAT	Armitun Armental Article	L, SOL	100	. / Ø	fe/	0,	537	16.	y W	415.1	4/5	Je Je	EXPEDITED RI	EPORT	
VRS Cor	-poration	1	thomas-	_adams &	lursco-p.com		۵	io) ar	V0c	SVOC	Total Fe/Mn 6010B	41K/CO2	Sulfate 375.4 Chloride 325	Methane RSK175	Nitrate	78	DOC 415.1	Diss. Fe/Mn 60108	(SURCHARGE		
CLIENT ADDRESS	hlands	Plaza D	r. West,	Ste 300 s	5t. Louis, MO 63110	(C) OH	MISOL	SLIQI		S	37	4	30	5	1 3		ł	1	DATE DUE		S SUBMITTED
COMPANY CONT Solutia	RACTING THIS	WORK (if appl	icable)		63110	SITE	OH SE	NEOL	HC/	rone	1110g	a a a	\$ 2 2 2	z Zege	3/2	Ha	HC	HNa	PER SHIPMEN	T 2	_
SAMP			SAMPL	E IDENTIFICATIO	N	COMPOSITE (C) OR	AQUEOUS (WATER) SOLID OR SEMISOLID	AIR NONAQUEOUS LIQUID (OIL, SOLVENT,)		1		MBER C		,	SUBMIT				R	EMARKS	}
2/26/09	TIME / DOA	K <	4MM/42D	-0209			X		3	2	1	1	1	3	2	1			* SVOC	5 P-	er-
0/06/07	1200 BSAMWO2D-F(0.2)-0209		0209					V		-	,					1	* SVOC semi-ar	in ua	list.		
	1200 DAMWO2D-10209 1330 CPAMWO3D-0209					X		3	2	1	1	/	3_	2	1		•				
	1330 CPAMW03D-0209			209		X,										1	/				
		TB	922609				χ		\times												
	1550	CPAI	1W05D-	0209			X[3	2		1	1	3	a	1					*****
	1550	CPA	MN05D-	F(0.2)-	0209		Χ		ļ								1	1			
													-								
						11															
					100												-				
RELINQUISHED E	BY: (SIGNATURE)		DATE 2/2//09	TIME 1800	RELINQUISHED BY: (SIG	 BUTANA	RE)		J	DATE		TIME		RELI	NQUISHE	D BY: (SIGNATUF	RE)	DATE		TIME
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)						DATE		TIME		RECE	EIVED BY	: (SIGNAT	TURE)		DATE		TIME				
			1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					E ONLY			1		/ DE: ! :	DI/O						
			STODY AL NO.	STODY SAVANNAH LABORATORY REMARKS IL NO. LOG NO. 680 - 45055 2,1 2.4																	

ANALYSIS DEGLECT AND CHAIN OF CHOTODY DECODD													
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD Testamerica	9	5102	Americ 2 LaRoc annah, (che Av	enue				F	Phone:		testamericainc 354-7858 2-0165	.com
		Alter	nate La	aborato	ory Nar	ne/Loca	ation		-)hara:			
THE LEADER IN ENVIRONMENTAL TESTING										Phone: ax:			
PROJECT REFERENCE PROJECT NO. 21562154, 00001 (STATE) TL TYPE					RE	QUIRED	ANALY:	SIS			***************************************	PAGE /	OF /
TAL (LAB) PROJECT MANAGER P.O. NUMBER CONTRACT NO.		PD 2	C*	5 w	-	4. 4.	75 75	353,2				STANDARD REI	PORT
CLIENT PHONE CLIENT FAX S S S S S S S S S	LVENT	0988	8270C*	100 10 20 C	310.	375.4	9		415.1	415.	-IMn DIDB	DATE DUE	
CLIENT NAME CLIENT E-MAIL	IL, SOI		8	احـ	3	きら	å	1			13 a	EXPEDITED RE DELIVERY	PORT
CLIENT NAME URS Corporation Homas adams eurscorp. com SULVENT ADDRESS CLIENT E-MAIL. (C) RES RES RES RES RES RES RES RE	AIR NONAQUEOUS LIQUID (OIL, SOLVENT,)) 	3000	Total	Ar Ar	Sulfates Chlorides	Methane PSK	Nitrate	406	700	Diss	(SURCHARGE)	
CLIENT ADDRESS 100 St. LOWS MO COMPANY CONTRACTING THIS WORK (If applicable)	OS LIC	- 1	2	~~ F	_	る。		1/5 2		ļ .	Γ	DATE DUE	DOLERS SUBMITTED
CLIENT ADDRESS 100 Highlands Plazator. West Str 300 St. Louis, Mo COMPANY CONTRACTING THIS WORK (if applicable) Solution SAMPLE DATE TIME SAMPLE IDENTIFICATION TIME TIME		161	non	T. 50.	క్డ	3 8 8 8	Spire	\$	<u>₹</u>	多	T. S. T.	PER SHIPMENT	
SAMPLE SAMPLE IDENTIFICATION	NON/			NUM	IBER O	F CONT	AINERS	SUBMIT	TED			RE	MARKS
3/2/09 HOO BSAMWOIS-0209 GX		3	2		1	I	3	2	1			* SVOC	s oex
1 1100 BSAMWOIS-F(0.2)-0209 GX										1	1	Semi-a	nnual
1230 CPAMWOID-0209 GX		3	2	1	l	1	3	a	\perp		Ø.	lis	
1230 CPA MWOID - F(0,2) - 0209 GX										1	1		
1350 CPA MWO2D - 0209 GIX		3	2	l	1	1	3	2	1				
1350 CPAMWO2D-0209-AD GX		3	2	1	1	1	3	2	1	4	+	3/2/09	
1350 CPAMWO2D-F(0,2)-0209 GX		3	2.	4	+	-1	3	2		3/2/	09		
CPAMN 02D-F(0.2)-0209-AD3JE/09 GX				•		•				1	1	3/2/09	
1610 BSAMWO3D-0209 GX		2	2	1	(1	3	2	-	ļ			
16/D BSAMWO3D-F(0,2)-0209 GX									-1	1	1		
1530 BSAMWO3D-0209-EB GX		3	2							<u> </u>	'		
		Ž								<u> </u>			
PECENCED BY (SANATURE) PATE TIME RELINQUISHED BY: (SIGNATURE) PATE TIME RECEIVED BY: (SIGNATURE)		9	DATE		TIME		RELIN	QUISHE	D BY: (8	SIGNATUR	RE)	DATE	TIME
RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE)		-	DATE		TIME		RECEI	VED BY:	(SIGNAT	URE)		DATE	TIME
LABORATO	ORY USE	ONLY										1	
RECEIVED FOR LABORATORY BY: DATE TIME CUSTODY INTACT YES SEAL NO.	Y S	SAVANN LOG NO	INAH LABORATORY REMARKS										
(SIGNATURE) KL 3/3/09 0408 YES NO SEAL NO.		LOG NO.			3.8	.8 3.6							

		1 2				<u> </u>									Ser	al Nu	mber	01	43	364		
Tes	tAn	ANALYSIS N C I		T AND CHA	IN OF CUSTODY	RE	COF	₹D	X	510	stAmer 02 LaR vannah	oche A		n				Website Phone: Fax: (9	(912)	354-7		om
										Alte	ernate l	Labora	tony Na	me/Lo	cation			Phone:				
		RONMENTAL			Ψ				· ·	2 3	7/N	<u> </u>	\$ 3				1	Fax:				
JGK R	erence Liver Sp	+MPLING	PROJECT N	2154	PROJECT LOCATION (STATE)			ATRIX YPE		10x4	1.1.2. S		ナージャ	OURE	ANAL	/SIS				PAGI	=	1 OF 2
L(LAB) PRO LDYA	JECT MANAGER	1 2	P.O. NUMBE	R .	CONTRACT NO.	TE	1,1			200	200	9	100	200	2					1 -	NDARD REPO	RT
ENT (SITE)	PM SILMAN	,	CLIENT PHO	NE 0100	CLIENT FAX 314429 046Z	NDICA			CVENT	g 7 22	चैं चैं		4 2 C	10 -	<u> </u>						DATE DUE	
ENT NAME			CLIENT E-MA	All .		18 (G) A			30, 30		20		3/2	= 6	ارُ						EDITED REPO	RT .
ENT ADDRE	(off		P00_ D	111Manco	urscorp.com	B GR/		9) anno	2608	348		85608	874C							RCHARGE) DATE DUE	
MPANY COM	TRACTING TH	SLAZA (IS WORK (if appl	DR W. >	te 300 5	t. Lav. 5, MO 631 M	SITE (C) (2	AQUEOUS (WATER)	OR SEMIS	UEOUS LI	00 101 2d	1 2 870C (4-Cho.		Meo H		HV.		W.			NUM		ERS SUBMITTE
SAM DATE	IPLE TIME		SAMP	LE IDENTIFICATI	ON	COMPC	AQUEO	SOLID (NONAO	χ.σ		NUI	MBER O	F CON	TAINERS	SUBMIT	ITED				REMA	RKS
24/00	0930	SW-R 20	07-1-	· · · · · · · · · · · · · · · · · · ·	G	+			3	2	÷ .							·				
22	0930	SW-R 20	07-1-	0209 MS		1	X			3	2											
o G	0930	5W-RZ	007-1-1	209 MS	D	1	X			3	Z											
2	0940	SED-RZO	07-1-1	209		I		X					4	1								<u> </u>
	0940	SED-RZ	07-1-70	209ms				X					4	1								
	0940	SED-RZ			D			X		741-			4	1								
	1115	5W-RZ	007-3-	0209			X			3	ス											
	1115	SW-R2	007-3-	-0209 D	up		X			3	2											
	1130	SED-RZ	007-3-	-0Z09		II		X					4	1		-						
	1130	SED-RE	2007-3-	-0209 D	PUP	\prod		0					4	1		-						
\coprod	1230	5W-R2	007-2.	-0209		\prod	χ			3	2											
\bigvee	1240	SED-RZ		-0209		V	1	(4	1							- 1	
NOUISHED	BY TSDENATURE)	, _	DATE X/26/09	1700	RELINQUISHED BY: (SIG	NATU	RE)		•		DATE		TIME	•	RELIN	QUISHE	D BY: (s	SIGNATURE	≣)		DATE	TIME
EIVED BY: (S	ignature)		DATE	TIME	RECEIVED BY: (SIGNATUR	E)			1		DATE		TIME		RECE	VED BY:	(SIGNATI	JRE)			DATE	TIME
		0				_			USE O				41-4		l							<u> </u>
ATURE)	LABORATORY B		DATE	TIME	CUSTODY INTACT YES	CU SE	STO AL N	DY D.	LO	VANN OG NO).	امید ۵	LABOR	ATORY	REMAR		//1.2	2/2	, /	.7	emiser frames E	AP
LV.	2/4	<u> </u>	127709	1004	NO ()	<u> </u>			60	80	450	256				3.8	1110	100	1/1	· C	ᆜᄇ	ML

											Seri	al Nu	mber	01	.43	12	,		
Tes:	tAn	ANALYSIS REQUEST AND CHAI	N OF CUSTODY	RECO	RD	5	estAme 102 LaR avannah	oche A	venue						(912) 3	354-785	ericainc.co 8	om	
THE LEAD	ER IN ENVIF	ONMENTAL TESTING				Series Of the se	ternate	Laborat	ory Nar	ne/Loc	ation			Phone: Fax:					
PROJECT REFE	RENCE River SA	MPLING 21562154	PROJECT LOCATION (STATE)		ATRIX YPE	017	व दे दे		RE	QUIRED	ANALY	SIS				PAGE		2 OF	ک
TAL (LAB) PROJE LIPKA CLIENT (SITE) PI SOB CLIENT NAME	ECT MANAGER	P.O. NUMBER CLIENT PHONE 314 4 29 6100	CONTRACT NO.	(G) INDICATE			14-Ch Con				•					DELIVE DA EXPED	TE DUE		>
URS CLIENT ADDRES 1901 His	CORP Llands 1	BOB_ BILLMANQUE Plaza Da W Ste 300 St. Lo. S WORK (if applicable)	us MD 63110	COMPOSITE (C) OR GRAB (G) INDICAT AQUEQUS (WATER)	MISOLID	NONAQUEOUS LIQUID (OI	S240C											EBC CLIC	MITTED
OMPANY CON	TRACTING THIS	S WORK (if applicable)		OSITE OUS (M	OR SE	AOUEOL 185	Sod			Frank Fr	W		WE				IPMENT:	Eno oue	MITTED
SAMF DA TE	PLE TIME	SAMPLE IDENTIFICATIO	N *	COMP	SOLID	NONAC		NUM	MBER OF	CONTA	INERS	SUBMIT	TED				REMA	RKS	
2/2/19	1355	SED-R-2007-2-0908 EB		GX		3	2												
V 28	0930	TB 022609		CX		Z				.:						· · · · · · · · · · · · · · · · · · ·			
0																			
<u>ω</u>																			
	*. *. *. *. *. *. *. *. *. *. *. *. *. *								143			<u> </u>						<u></u>	
					_		<i>i</i>							ļ					
	· · · · · · · · · · · · · · · · · · ·																		
			·															· · · · · · · · · · · · · · · · · · ·	
				++	\dashv												·	<u> </u>	
	·			+	+												<u> </u>	<u></u>	
						_		. :								<u>. 14 9</u>	<u> </u>		
JINQUISHED	ly	726/09 1780	RELINQUISHED BY: (SIG	I GNATURE)			DATE		TIME		RELING	QUISHE	D BY: (s	BIGNATURE)	[ATE	TIME	
ECEIVED BY: (SIG	NATURE)	DATE' TIME	RECEIVED BY: (SIGNATUR	₹E)			DATE		TIME		RECEI	VED BY:	(SIGNAT	URE)		C	ATE	TIME	
				LABORA	TORY (USE ONLY													
SCEIVED FOR LA	ABOHATORY B		CUSTODY INTACT YES O NO O	CUSTOI SEAL N	DY O.	SAVAI LOG N		05%	LABORA	ATORY F	EMARI	(S							
V														to to to the second second			7	AL8240-68	30 (1207)

Appendix C

Surface Water and Sediment Sampling Forms

URS

Surface Water / Sediment Sampling Field Data Sheet

Num	ber:			Sampling Event:							
Te 2	154	<u></u>		F	EB	-09	(WGK)				
				Sam	ple l	Location:					
MSCI	~16	Muller			R	-200	7-1				
	Samı	ole Date/Time: ᠘,	126/09	Sam	ple (Coordinat	es:				
093	30	Sed: 094	10								
escrip	otions	and Observations	s: Gelin	· 5	iay	silty s	and (med). 15.51 Deptha				
r Cor	ıditior	is: 50s, colon	, elona	ly							
		Wa	ter Quality	y Par	ame	ters -	turb= 68.9				
Specific m5/cm 654 pH: 5.68 Conductance (\(\frac{\text{tumhos}}{\text{c}}\)): Water Dissolved 25.04											
t <u>ure (</u> °	C)	2.79		Disso Oxyg	lved gen (n	ng/L):	5.0T 8 25,01				
		Sa	mple Colle	cted	(che	ck)					
IJ				SW	Sed						
Vola	tile Or	gaic Compounds				Pesticides					
Semi	i-volatil	e Organic Compoun	ds			Metals					
Hert	oicides					Other					
			Photog	raph	ıs						
Dire	ction	Description		Num	ber_	Direction_	Description				
nts/N	otes:	DUP	collect	i A							
	r Con r Con vola Sem Herh tte/Tim Dire	Sampo 930 escriptions r Condition r Condition ture (°C)	Sample Date/Time: 2, OG30 Sed: OG4 escriptions and Observations The Conditions: 505, Calm Wanne (mmhos): 454 ture (°C) 2,79 Sample Date/Time: 54 Wanne (mmhos): 554 Volatile Orgaic Compounds Semi-volatile Organic Compounds Semi-volatile Organic Compounds te/Time: Direction Description	Sample Date/Time: 2/26/09 Sample Date/Time: 2/26/09 OG3D Sed: 0940 escriptions and Observations: Felica Water Quality Marce (pumbos): 654 ture (°C) 2.79 Sample Collection Volatile Organic Compounds Herbicides Photogete/Time: Direction Description	ng Personnel: Sample Date/Time: 2/26/09 Sam Sample Date/Time: 2/26/09 Sam OG30 Sed: 0940 escriptions and Observations: Fel: 7 9 r Conditions: 505, Calm, Clondy Water Quality Par ms/cm (654 ph: ture (°C) 2,79 Disso Oxyg Sample Collected Number Semi-volatile Organic Compounds Herbicides Photograph te/Time: Cam Direction Description Num	Sample Date/Time: \(\frac{1}{26/97}\) Sample Of Sed: \(\frac{1}{940}\) escriptions and Observations: The Conditions: \(\frac{1}{26/97}\) Code of Sed: \(\frac{1}{940}\) escriptions and Observations: Water Quality Parame Water Quality Parame Ph: Once (\(\frac{1}{1}\) mhos): Once (\(\frac{1}{2}\) mhos Sample Collected (che Sw Sed Volatile Organic Compounds Herbicides Photographs te/Time: Camera/D Direction Description Number	r Conditions: FOS_Calm, Llondy Water Quality Parameters The Compounds Sample Coordinate Water Quality Parameters Photographs Teplication Tepl				

E)

Surface Water / Sediment Sampling Field Data Sheet

Project 1	Number:		Sampling Event:							
2	156215	54			Fe	6209	/WGK			
Samplin	g Personn	el:	San	ple l	Location:					
		n, B. Mullay			R-20	07-2				
	Sam	ple Date/Time: 2/26/0	⁹ San	ıple (Coordinat	es:				
SW:	230	Sed: 1240								
Field De	scriptions	and Observations:			_		25.3			
		Brown Course	Sand d	j~	a vel		~ »· y			
Weather	Condition	(loudy 5	50							
		Water Qu	ality Par	rame	ters Turk	, 66.1				
Specific Conducta	nce (umhos):	0.6345	pH:		t. 74					
Water Temperat	ure (°C)	2.81	Disse Oxy		ng/L): ℓ	7.59				
		Sample C								
SW Sed			SW	Sed						
1	Volatile Or	gaic Compounds			Pesticides	-				
N	Semi-volati	le Organic Compounds			Metals					
	Herbicides				Other					
		Pho	otograpl	ns			_			
Photo Dat					isk ID:					
Number	Direction	Description	Num	ber	Direction	Description				
Comme	nts/Notes:									

URS

Surface Water / Sediment Sampling Field Data Sheet

Project Number:							Sampling Event:							
		2156	2154	/			F.	EB 09	ı	(WGK))			
		g Personn				Sam	ple I	Location:						
,	S.,	Jansa	n/B.	Mull	er	R2	007	1-3						
		Sam	ple Da	te/Time:	2/26/09	Sam	ple (Coordinate	es:					
SW:	1	115		Sed:	130									
Fiel	d De	scriptions	and C	Observati	ions:						42	25/2		
m	id.	Sand	bri	non b	ions: v/Small ,	blou	ek	gravel	P	coal.				
Wea		Condition		innd										
				•	Water Qualit	y Par	ame	ters		671				
Spec Cond		nce (µmhos)): <i>O</i> .	648		pH:	•	1.03		, ,				
Wate Tem		ure (°C)	2,89	5-		Disso Oxyg		ng/L): /8	(66					
					Sample Colle	ected	(che	ck)						
SW	Sed					SW	Sed							
V		Volatile Or	rgaic Co	ompounds				Pesticides						
V	V	Semi-volati	ile Orga	anic Comp	ounds			Metals						
		Herbicides						Other						
					Photog	graph	ıs							
		e/Time:						isk ID:						
Num	ber	Direction	Descr	iption		Num	ber	Direction	Des	cription				
			-											
			_											
Con	nmer	its/Notes:				M	5 0	+ MSD	· C	collecte	A h	ere.		

Appendix D Quality Assurance Report

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

Long-Term Monitoring Program 1st Quarter 2009 Data Report

Prepared for

Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

May 2009

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100

Project # 21562154.00001

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	4
3.0	TRIP BLANKS, LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES	5
4.0	SURROGATE SPIKE RECOVERIES	5
5.0	LABORATORY CONTROL SAMPLES RECOVERIES	5
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	6
7.0	FIELD DUPLICATE RESULTS	6
8.0	INTERNAL STANDARD RESPONSES	7
9.0	RESULTS REPORTED FROM DILUTIONS	7

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater, surface water and sediment samples collected in February and March of 2009 at the Solutia W.G. Krummrich plant as part of the 1st Quarter 2009 Long-Term Monitoring Program. The samples were collected by URS Corporation personnel and analyzed by TestAmerica Laboratories located in Savannah, Georgia using USEPA methods, Standard methods and USEPA SW-846 methodologies. Groundwater samples were tested for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, dissolved gasses, and general chemistry.

One hundred percent of the data were subjected to a data quality review (Level III validation). The Level III validations were performed in order to confirm that the analytical data provided by Test America were acceptable in quality for their intended use.

A total of 14 groundwater samples (10 investigative samples, one field duplicate pair, one MS/MSD pair, and one equipment blank) were analyzed by Test America. In addition, three trip blank sets were included in the coolers that contained groundwater samples for VOC analysis and were analyzed for VOCs by USEPA SW-846 Method 8260B. These samples were analyzed as two Sample Delivery Groups (SDGs) KPS048 and KPS049 utilizing the following USEPA SW-846 Methods:

- Method 8260B for VOCs (Benzene, Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene and 1,4-Dichlorobenzene)
- Method 8270 for SVOCs (4-Chloroaniline, 2-Chlorophenol, 1,4-Dioxane and 1,2,4-Trichlorobenzene)
- Method 6010B for total and dissolved iron and manganese

Samples were also analyzed for dissolved gasses and general chemistry parameters by the following methods:

- Method RSK-175 for Dissolved Gasses (Ethane, Ethylene, and Methane)
- USEPA Method 310.1 for Alkalinity and Free Carbon Dioxide
- USEPA Method 325.2 for Chloride
- USEPA Method 353.2 for Nitrogen, Nitrate-Nitrite
- USEPA Method 375.4 for Sulfate
- USEPA Method 415.1 for Total and Dissolved Organic Carbon

A total of 13 surface water and sediment samples (six investigative surface water and sediment), two field duplicates, two MS/MSD pairs and one equipment blank) were analyzed by TestAmerica for combinations of VOCs and SVOCs. In addition, one trip blank was included in the cooler that contained surface water samples for VOC analysis and were analyzed for VOCs by USEPA SW-846 Method 8260B. The results

were analyzed as two sample delivery groups (SDGs) KRS005 and KRS006 utilizing the following USEPA SW-846 Methods:

- Method 8260 for VOCs (benzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene).
- Method 8270C for SVOCs (2-chlorophenol, 4-chloroaniline, 1,4-dioxane, and 1,2,4-trichlorobenzene).

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004 and the Long-Term Monitoring Plan, 2008.

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Qualifiers assigned by the data reviewer have been applied to the laboratory reporting forms (Form-1s). The qualifiers indicate data that did not meet acceptance criteria and corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below.

TABLE 1 Laboratory Data Qualifiers

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
E	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Х	Spike recovery exceeds upper or lower control limits.
F	MS, MSD or RPD exceeds upper or lower control limits.
Р	The difference between the results of the two GC columns is greater than 40%
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TABLE 2 URS Data Qualifiers

URS Qualifier	Definition
U	The analyte was analyzed for but was not detected.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Based on the criteria outlined, it is recommended that the results reported for these analyses are accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, matrix duplicate, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined as the percentage of analytical results that are judged to be valid, including estimated (J/UJ) data was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- Receipt condition and sample holding times
- Laboratory method blanks, field equipment blanks and trip blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) sample recoveries and relative percent difference (RPD) values
- Field duplicate results
- · Results reported from dilutions
- Internal standard responses

Inorganics/General chemistry

- Receipt condition and sample holding times
- Laboratory method blank and field equipment blank samples
- LCS recoveries
- MS/MSD sample recoveries and matrix duplicate RPD values
- · Field duplicate and laboratory duplicate results
- Results reported from dilutions

The following sections present the results of the data review.

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance. Upon review of the KPS048 data, the COC designated sample CPAMW05D-0209 for SVOCs. The URS project officer was notified and since the SVOC sample was outside holding time criteria it was decided that the sample would be recollected during the next scheduled event for SVOC analysis (i.e., 3Q09). The laboratory case narrative indicated that three out of three unpreserved vials for dissolved gases and two out of three HCI preserved vials for VOC analysis for sample CPAMW03D-0209 were received by the laboratory with headspace. The remaining vial without headspace was used for the requested analysis. Also, one out of two 1-Liter Ambers for sample BSAMW02D-0209 was received by the laboratory broken. The remaining intact bottles contained sufficient sample for the requested analyses. No qualifications of data were required.

Upon review of the KPS049 data, the cooler receipt form indicated that all three vials for trip blank TB030209 were received by the laboratory broken. All requested VOC analyses for the investigative samples were completed, without an associated trip blank.

Upon review of the KRS005 and KRS006 data, the cooler receipt forms indicated a sample ID discrepancy between the COCs and sample labels. The field duplicate samples on the COCs were listed as DUP and the sample labels listed –AD at the end of the sample ID. Samples were logged in by the laboratory using the DUP sample ID designation. This did not affect the quality of the data. No qualification of data was required.

Additionally, upon review of the KRS006 data, the cooler receipt form indicated that one MS sample vial and two MSD sample vials for sample SED-R2007-1-0209 were received by the laboratory with low sample volume. Sufficient sample was available to perform all requested analyses. No qualification of data was required.

3.0 TRIP BLANKS, LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Trip blank samples are used to assess VOC cross contamination of samples during shipment to the laboratory. Trip blanks were submitted with each cooler shipped containing samples for VOC analyses for a total of three trip blank samples. All associated samples were nondetect; therefore, no qualification of data was required.

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. All method blank samples were nondetect. No qualification of data was required.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. All equipment blank samples were nondetect with the exception of those that are further discussed in data reviews in **Appendix E**. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification. No qualification of data was required.

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for VOCs and SVOCs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet acceptance criteria.

All groundwater surrogate recoveries were within evaluation criteria with the exception of those that are further discussed in data reviews in **Appendix E**. Analytical data that required qualification based on surrogate data are included in the table below. Surrogates that were associated with quality control samples or were diluted out and not recovered did not require qualification. In addition, no qualification of data was required if only one SVOC acid or base fraction surrogate was outside criteria and USEPA National Functional Guidelines for Organic Data Review indicates to qualify data if two or more surrogates per SVOC fraction are outside criteria. Qualifications based on surrogate spike recoveries are included in the table below:

Field ID	Parameter	Analyte	Qualification
CPAMW01D-0209	SVOCs	2-Chlorophenol	J
CPAMW02D-0209-AD	SVOCs	2-Chlorophenol	J

Surface water and sediment surrogate recoveries were within evaluation criteria; therefore, no qualification of data was required.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Groundwater, surface water and sediment laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria. No qualification of data was required.

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for 10 investigative samples meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent RPD was the only factor out of criteria. Also, USEPA National Functional Guidelines for Organic Data Review (October 1999) states that organic data should not be qualified based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

Groundwater samples spiked and analyzed as MS/MSDs and their respective recoveries are discussed further in data reviews in **Appendix E**. No qualification of data was required.

Surface water and sediment samples spiked and analyzed as MS/MSDs and their respective recoveries are discussed further in data reviews in **Appendix F**. No qualification of data was required.

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One pair of field duplicate samples were collected for the 10 investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). All groundwater field duplicate RPDs were within evaluation criteria with the exception of the field duplicates discussed further in data reviews in **Appendix E**. Qualifications based on groundwater field duplicates are included in the table below.

Field ID	Field duplicate ID	Parameter	Analyte	RPD	Qualification
CPAMW02D-0209	CPAMW02D-0209-AD	SVOCs	2-Chlorophenol	> 2x	J
			-	RL	

All surface water and sediment field duplicate RPDs were within evaluation criteria; therefore, no qualification of data was required.

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50 percent to +100 percent for VOCs and SVOCs.

The internal standards area responses for VOCs and SVOCs were verified for the data review. All groundwater IS responses met the criteria as described above with the exception of those that are further discussed in data reviews in **Appendix E**. Qualifications based on internal standard responses are included in the table below. The compound 2-Chlorophenol was detected and previously qualified due to high surrogate recovery. No additional qualification was required.

Field ID	Parameter	Analyte	Qualification
CPAMW02D-0209-AD	SVOCs	1,2,4-Trichlorobenzene	UJ

All surface water and sediment internal standard responses met the criteria as described above; therefore, no qualification of data was required.

9.0 RESULTS REPORTED FROM DILUTIONS

VOC, SVOC, chloride, sulfate, alkalinity, and free carbon dioxide groundwater samples were diluted due to high levels of target analytes. The diluted sample results for these analytes were reported for the associated samples. Surface water and sediment samples did not require a dilution.

Appendix E Groundwater Analytical Results (with Data Review Sheets)

SDG KPS048

Results of Samples from Wells:

BSAMW-2D

BSAMW-4D

BSAMW-5D

CPAMW-3D

CPAMW-4D

CPAMW-5D

Solutia Krummrich Data Review

Laboratory SDG: KPS048

Reviewer: Elizabeth Kunkel

Date Reviewed: 4/1/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

USEPA National Functional Guidelines for Inorganic Data Review 2004.

Applicable Work Plan: Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2008)

Sample Identification #	Sample Identification #
TB022509	BSAMW04D-0209
BSAMW04D-F(0.2)-0209	CPAMW04D-0209
CPAMW04D- F(0.2)-0209	BSAMW05D-0209
BSAMW05D- F(0.2)-0209	BSAMW02D-0209
BSAMW02D- F(0.2)-0209	CPAMW03D-0209
CPAMW03D- F(0.2)-0209	TB022609
CPAMW05D-0209	CPAMW05D- F(0.2)-0209

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

No, sample CPAMW05D-0209 on the COC was designated for SVOC analysis. However, the laboratory mistakenly did not analyze CPAMW05D-0209 for SVOCs. The URS project officer was notified and since the SVOC samples were outside holding time criteria it was decided that the sample would be recollected at a future date.

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that three out of three unpreserved vials for dissolved gases analyses and two out of three HCl preserved vials for VOC analysis for sample CPAMW03D-0209 were received by the laboratory with headspace. The MSD recovery for chlorobenzene was outside evaluation criteria in sample BSAMW05D-0209. Samples were diluted due to high levels of target analytes. These issues did not require qualification of the data.

The cooler receipt form indicated that one out of two 1-Liter Ambers for sample BSAMW02D-0209 was received by the laboratory broken. The remaining intact bottles contained sufficient sample for the requested analyses. This did not affect the quality of the data. No qualification of data was required.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample BSAMW05D-0209 was spiked and analyzed for VOCs and SVOCs. Sample BSAMW02D-0209 was spiked and analyzed for total and dissolved iron and manganese. Sample CPAMW05D-F(0.2)-0209 was spiked and analyzed for dissolved organic carbon.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
BSAMW05D-0209	VOCs	Chlorobenzene	85/ 71	7	85-116/30

USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

Yes, sample BSAMW02D-0209 was duplicated and analyzed for alkalinity and carbon dioxide.

Were laboratory duplicate sample RPDs within criteria?

Yes

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

No

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied?

No

SAMPLE SUMMARY

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
Lab Gample 1D	Chefft Cample 18	Olient Matrix	Campieu	Neceivea
680-45017-1	TB022509 /	Water	02/25/2009 0000	02/26/2009 0852
680-45017-2	BSAMW04D-0209 /	Water	02/25/2009 1205	02/26/2009 0852
680-45017-3	BSAMW04D-F(0.2)-0209 /	Water	02/25/2009 1205	02/26/2009 0852
680-45017-4	CPAMW04D-0209 /	Water	02/25/2009 1440	02/26/2009 0852
680-45017-5	CPAMW04D-F(0.2)-0209 /	Water	02/25/2009 1440	02/26/2009 0852
680-45017-6	BSAMW05D-0209 /	Water	02/25/2009 1640	02/26/2009 0852
680-45017-6MS	BSAMW05D-0209-MS	Water	02/25/2009 1640	02/26/2009 0852
680-45017-6MSD	BSAMW05D-0209-MSD	Water	02/25/2009 1640	02/26/2009 0852
680-45017-7	BSAMW05D-F(0.2)-0209	Water	02/25/2009 1640	02/26/2009 0852
680-45055-1	BSAMW02D-0209 /	Water	02/26/2009 1200	02/27/2009 1004
680-45055-2	BSAMW02D-F(0.2)-0209 /	Water	02/26/2009 1200	02/27/2009 1004
680-45055-3	CPAMW03D-0209 /	Water	02/26/2009 1330	02/27/2009 1004
680-45055-4	CPAMW03D-F(0.2)-0209	Water	02/26/2009 1330	02/27/2009 1004
680-45055-5TB	TB022609	Water	02/26/2009 0000	02/27/2009 1004
680-45055-6	CPAMW05D-0209	Water	02/26/2009 1550	02/27/2009 1004
680-45055-7	CPAMW05D-F(0.2)-0209	Water	02/26/2009 1550	02/27/2009 1004

SAMPLE RESULTS

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

TB022509

Lab Sample ID:

680-45017-1

Client Matrix:

Water

Date Sampled:

02/25/2009 0000

Date Received:

02/26/2009 0852

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation:

Dilution:

Date Analyzed: Date Prepared: 1.0

02/27/2009 1638 02/27/2009 1638

Analysis Batch: 680-131584

Instrument ID:

GC/MS Volatiles - A C2 a1730.d

Lab File ID:

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	1.0	U	1.0
Chlorobenzene	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
	0/ D = -		A

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	92	75 - 120
Dibromofluoromethane	107	75 - 121
Toluene-d8 (Surr)	100	75 - 120

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW04D-0209

Lab Sample ID: Client Matrix:

680-45017-2

Water

Date Sampled:

02/25/2009 1205

Date Received:

02/26/2009 0852

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5030B

Dilution:

20

02/27/2009 1736

Date Analyzed: Date Prepared:

02/27/2009 1736 🗸

Analysis Batch: 680-131584

Instrument ID:

GC/MS Volatiles - A C2

Lab File ID:

a1734.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL	
Benzene	82		20	
Chlorobenzene	2300		20	
1,2-Dichlorobenzene	26		20	
1,3-Dichlorobenzene	20	U	20	
1,4-Dichlorobenzene	64		20	
Surrogate	%Rec	Acceptance Limits		
4-Bromofluorobenzene	90	75 - 120		
Dibromofluoromethane	99	75 - 121		
Toluene-d8 (Surr)	102	75 - 120		

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW04D-0209

Lab Sample ID:

680-45017-4

Client Matrix:

Water

Date Sampled:

02/25/2009 1440

Date Received:

02/26/2009 0852

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5030B

Dilution:

02/27/2009 1804 -

Analysis Batch: 680-131584

Instrument ID: Lab File ID:

GC/MS Volatiles - A C2 a1736.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Date Analyzed: Date Prepared:

02/27/2009 1804

Analyte	Result (ug/L)	Qualifier	RL
Benzene	. 30		10
Chlorobenzene	1100		10
1,2-Dichlorobenzene	15		10
1,3-Dichlorobenzene	10	U	10
1,4-Dichlorobenzene	18		10

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	94	75 - 120
Dibromofluoromethane	96	75 - 12 1
Toluene-d8 (Surr)	102	75 - 120

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW05D-0209

Lab Sample ID:

680-45017-6

Client Matrix:

Water

Date Sampled:

02/25/2009 1640

Date Received:

02/26/2009 0852

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5030B

Dilution:

Date Analyzed:

4.0

03/02/2009 1547

Analysis Batch: 680-131676

Instrument ID: Lab File ID:

GC/MS Volatiles - A C2 a1760.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Date Prepared:

03/02/2009 1547

Analyte	Result (ug/L)	Qualifier	RL
Benzene	4.0	ΰ	4.0
Chlorobenzene	270		4.0
1,2-Dichlorobenzene	12		4.0
1,3-Dichlorobenzene	4.0	U	4.0
1,4-Dichlorobenzene	15		4.0

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	93	75 - 120
Dibromofluoromethane	96	75 - 121
Toluene-d8 (Surr)	102	75 - 120

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW02D-0209

Lab Sample ID: Client Matrix:

680-45055-1

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation:

Dilution: Date Analyzed:

Date Prepared:

200

03/05/2009 1509 03/05/2009 1509

Analysis Batch: 680-131967

Instrument ID:

GC/MS Volatiles - A C2 a1846.d

Lab File ID:

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	20000	, c. i	200
Chlorobenzene	2900		200
1,2-Dichlorobenzene	200	Ü	200
1,3-Dichlorobenzene	200	U	200
1,4-Dichlorobenzene	200	U	200
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	88		75 - 120
Dibromofluoromethane	101		75 - 121
Toluene-d8 (Surr)	103		75 - 120

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW03D-0209

Lab Sample ID: Client Matrix:

680-45055-3

Water

Date Sampled:

02/26/2009 1330

Date Received:

02/27/2009 1004

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Preparation:

5030B

5.0

Dilution: Date Analyzed:

Date Prepared:

03/05/2009 1536 / 03/05/2009 1536

Analysis Batch: 680-131967

Instrument ID:

GC/MS Volatiles - A C2 a1847.d

Lab File ID:

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	86		5.0
Chlorobenzene	460		5.0
1,2-Dichlorobenzene	11		5.0
1,3-Dichlorobenzene	5.0	U	5.0
1,4-Dichlorobenzene	16		5.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	94		75 - 120
Dibromofluoromethane	95		75 - 1 21
Toluene-d8 (Surr)	107		75 - 120

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

TB022609

Lab Sample ID:

680-45055-5TB

Client Matrix:

Water

Date Sampled:

02/26/2009 0000

Date Received:

02/27/2009 1004

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Preparation:

5030B

Dilution:

Date Analyzed: Date Prepared:

03/05/2009 1443 /

1.0

03/05/2009 1443

Analysis Batch: 680-131967

Instrument ID:

GC/MS Volatiles - A C2

Lab File ID:

a1845.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	1.0	U	1.0
Chlorobenzene	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Surrogate	%Rec		Acceptance Limits
4 D			

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW05D-0209

Lab Sample ID: Client Matrix:

680-45055-6

Water

Date Sampled:

02/26/2009 1550

Date Received:

02/27/2009 1004

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5030B

Dilution:

10

03/05/2009 1602 /

Date Analyzed: Date Prepared:

03/05/2009 1602

Analysis Batch: 680-131967 Instrument ID:

GC/MS Volatiles - A C2 a1848.d

Lab File ID: Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	10	U	10
Chlorobenzene	1500		10
1,2-Dichlorobenzene	10	U	10
1,3-Dichlorobenzene	10	U	10
1,4-Dichlorobenzene	12		10
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	94	75 - 120	
Dibromofluoromethane	97	75 - 121	
Toluene-d8 (Surr)	106		75 - 120

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW04D-0209

Lab Sample ID:

680-45017-2

Date Sampled:

02/25/2009 1205

Client Matrix:

Water

Date Received:

02/26/2009 0852

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
--

Method:

8270C

Analysis Batch: 680-131778

Instrument ID:

GC/MS SemiVolatiles - T

Preparation:

3520C

Prep Batch: 680-131376

Lab File ID:

t4914.d

Dilution:

1.0

Initial Weight/Volume:

Date Analyzed: Date Prepared: 03/04/2009 1134 / 02/27/2009 1308

Final Weight/Volume:

1060 mL 1 mL

Injection Volume:

1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
1,2,4-Trichlorobenzene	9.4	U	9.4
1,4-Dioxane	40		9.4
2-Chlorophenol	13		9.4

%Rec	Acceptance Limits
83	38 - 116
96	40 - 139
78	50 - 113
93	36 - 110
83	45 - 112
43	10 - 121
	83 96 78 93 83

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW04D-0209

Lab Sample ID:

680-45017-4

Client Matrix:

Water

Date Sampled:

02/25/2009 1440

Date Received:

02/26/2009 0852

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131778

Instrument ID:

GC/MS SemiVolatiles - T

Preparation: Dilution:

3520C 1.0

Prep Batch: 680-131376

Lab File ID:

t4915.d

Initial Weight/Volume:

1030 mL

Date Analyzed:

03/04/2009 1157

Date Prepared:

02/27/2009 1308

Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
4-Chloroaniline	170		19
2-Chlorophenol	12		9.7
1,2,4-Trichlorobenzene	9.7	U	9.7

Surrogate	%Rec	Acceptance Limits	
Phenol-d5	72	38 - 116	
2-Fluorophenol	7 9	36 ~ 110	
2,4,6-Tribromophenol	87	40 - 139	
Nitrobenzene-d5	71	4 5 - 112	
2-Fluorobiphenyl	77	50 - 113	
Terphenyl-d14	51	10 - 121	

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW05D-0209

Lab Sample ID:

680-45017-6

Client Matrix:

Water

Date Sampled:

02/25/2009 1640

Date Received:

02/26/2009 0852

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131778

Instrument ID:

GC/MS SemiVolatiles - T

Preparation:

3520C

Lab File ID:

t4916.d

Dilution:

1.0

Prep Batch: 680-131376

Initial Weight/Volume:

Date Analyzed:

03/04/2009 1221

Final Weight/Volume:

1060 mL 1 mL

Date Prepared:

02/27/2009 1308

Injection Volume:

1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
1,2,4-Trichlorobenzene	9.4	U	9.4
1,4-Dioxane	9.4	U	9.4
2-Chlorophenol	9.4	U	9.4

Surrogate	%Rec	Acceptance Limits
Phenol-d5	76	38 - 116
2,4,6-Tribromophenol	87	40 - 139
2-Fluorobiphenyl	72	50 - 113
2-Fluorophenol	81	36 - 110
Nitrobenzene-d5	72	4 5 - 112
Terphenyl-d14	53	10 - 121

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW02D-0209

Lab Sample ID: Client Matrix:

680-45055-1

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

3520C

Prep Batch: 680-131614

Lab File ID:

n2167.d

Dilution: 1.0

Date Analyzed:

03/05/2009 2144

Date Prepared:

03/03/2009 1213 /

Initial Weight/Volume: Final Weight/Volume:

1030 mL

Injection Volume:

1 mL 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
1,2,4-Trichlorobenzene	9.7	U	9.7
1,4-Dioxane	43		9.7
2-Chlorophenol	14		9.7

Surrogate	%Rec	Acceptance Limits
Phenol-d5	81	38 - 116
2,4,6-Tribromophenol	99	40 - 139
2-Fluorobiphenyl	86	50 - 113
2-Fluorophenol	88	36 - 110
Nitrobenzene-d5	88	4 5 - 112
Terphenyl-d14	27	10 - 121

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW03D-0209

Lab Sample ID:

680-45055-3

Client Matrix:

Water

Date Sampled:

02/26/2009 1330

Date Received:

02/27/2009 1004

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

3520C

Prep Batch: 680-131614

Lab File ID:

n2168.d

Dilution:

1.0

•

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

2-Chlorophenol

1,2,4-Trichlorobenzene

03/05/2009 2206 03/03/2009 1213 / Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Analyte	
4-Chloroaniline	·

Result (ug/L) 91 9.4

U U

Qualifier

19 9.4 9.4

RL

Surrogate	%Rec	Acceptance Limits
Phenol-d5	82	38 - 116
2-Fluorophenol	83	36 - 110
2,4,6-Tribromophenol	107	40 - 139
Nitrobenzene-d5	88	4 5 - 112
2-Fluorobiphenyl	85	50 - 113
Terphenyl-d14	52	10 - 121

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW04D-0209

Lab Sample ID:

680-45017-2

Client Matrix:

Water

Date Sampled:

02/25/2009 1205

Date Received:

02/26/2009 0852

RSK-175 Dissolved Gases (GC)

Method:

RSK-175

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID

Preparation: Dilution:

Date Prepared:

N/A

Lab File ID:

U03049.D

1.0

Initial Weight/Volume:

1000 uL

Date Analyzed:

03/03/2009 2005 N/A

Final Weight/Volume:

1 mL

Injection Volume: Column ID:

1 uL PRIMARY

Analyte	Result (ug/L)	Qualifier	RL
Ethane	5.9		0.35
Ethylene	0.33	U	0.33
Methane	110		0.19

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW04D-0209

Lab Sample ID:

680-45017-4

Client Matrix:

Water

Date Sampled:

02/25/2009 1440

Date Received:

02/26/2009 0852

RSK-175 Dissolved Gases (GC)

Method:

RSK-175

Preparation:

N/A 1.0

Dilution: Date Analyzed:

03/03/2009 2017

Date Prepared:

N/A

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03050.D

Initial Weight/Volume: Final Weight/Volume:

1000 uL 1 mL

Injection Volume:

1 uL

Column ID:

PRIMARY

Qualifier Analyte Result (ug/L) RL Ethane 20 0.35 U Ethylene 0.33 0.33

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

RSK-175

03/03/2009 2017

N/A

1.0

N/A

Analysis Batch: 680-131790

Instrument ID:

GC Volatiles - U TCD

Lab File ID:

U03050.D

Initial Weight/Volume:

1000 uL 1 mL

Final Weight/Volume: Injection Volume:

1 uL

Column ID:

PRIMARY

Analyte

Result (ug/L)

Qualifier

RL

Methane

4800

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW05D-0209

Lab Sample ID:

680-45017-6

Client Matrix:

Water

Date Sampled:

02/25/2009 1640

Date Received:

02/26/2009 0852

RSK-175 Dissolved Gases (GC)

Method: Preparation: RSK-175

N/A

1.0

N/A

Dilution: 03/03/2009 2030 Date Analyzed:

Date Prepared:

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03051.D

Initial Weight/Volume: Final Weight/Volume:

1000 uL 1 mL

Injection Volume:

1 uL

Column ID:

PRIMARY

Analyte	Result (ug/L)	Qualifier	RL
Ethane	26		0.35
Ethylene	0.33	U	0.33

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

RSK-175

03/03/2009 2030

N/A

1.0

N/A

Analysis Batch: 680-131790

Instrument ID:

GC Volatiles - U TCD

Lab File ID:

U03051.D

Initial Weight/Volume:

1000 uL 1 mL

Final Weight/Volume: Injection Volume:

1 uL

Column ID:

PRIMARY

Analyte	Result (ug/L)	Qualifier	RL
Methane	13000		0.19

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW02D-0209

Lab Sample ID:

680-45055-1

Client Matrix:

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

RSK-175 Dissolved Gases (GC)

Method:

RSK-175 N/A

Preparation:

1.0

N/A

Dilution: 03/03/2009 2043 Date Analyzed:

Date Prepared:

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID U03052.D

Lab File ID: Initial Weight/Volume:

1000 uL.

Final Weight/Volume:

1 mL.

Injection Volume:

1 uL.

Column ID:

PRIMARY

Qualifier RL. Analyte Result (ug/L) Ethane 0.35 6.2 Ethylene 1.7 0.33

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

RSK-175 N/A

03/03/2009 2043

1.0

N/A

Analysis Batch: 680-131790

Instrument ID:

GC Volatiles - U TCD

Lab File ID:

U03052.D Initial Weight/Volume: 1000 uL

Final Weight/Volume: 1 mL

Injection Volume: 1 uL

Column ID: PRIMARY

Analyte

Result (ug/L)

Qualifier

RL

Methane

3200

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW03D-0209

Lab Sample ID:

680-45055-3

Client Matrix:

Water

Date Sampled:

02/26/2009 1330

Date Received:

02/27/2009 1004

RSK-175 Dissolved Gases (GC)

Method: Preparation: RSK-175

N/A

1.0

03/03/2009 2056 Date Analyzed:

Date Prepared:

Dilution:

N/A

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03053.D

Initial Weight/Volume: Final Weight/Volume:

1000 uL 1 mL

Injection Volume:

1 uL

Column ID:

PRIMARY

Qualifier Result (ug/L) RL Analyte Ethane 39 0.35 U 0.33 Ethylene 0.33

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

RSK-175 N/A

03/03/2009 2056

1.0

N/A

Analysis Batch: 680-131790

Instrument ID:

GC Volatiles - U TCD

Lab File ID:

U03053.D

Initial Weight/Volume: 1000 uL

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Column ID:

PRIMARY

Analyte Methane Result (ug/L) 30000

Qualifier

RL 0.19

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW05D-0209

Lab Sample ID:

680-45055-6

Client Matrix:

Water

Date Sampled:

02/26/2009 1550

Date Received:

02/27/2009 1004

RSK-175 Dissolved Gases (GC)

Method:

RSK-175

1.0

Preparation: Dilution:

Date Analyzed:

Date Prepared:

N/A

03/03/2009 2108

N/A

Analysis Batch: 680-131702

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03054.D

Initial Weight/Volume:

1000 uL 1 mL

Final Weight/Volume: Injection Volume:

1 uL

Column ID:

PRIMARY

Analyte	Result (ug/L)	Qualifier	RL
Ethane	7.0		0.35
Ethylene	0.33	U	0.33
Methane	44		0.19

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

Client: URS Corporation

BSAMW04D-0209

Lab Sample ID:

680-45017-2

Client Matrix:

Water

Date Sampled:

02/25/2009 1205

Date Received:

02/26/2009 0852

6010B Metals (ICP)-Total Recoverable

Method:

6010B

Preparation: Dilution:

3005A

1.0

Date Analyzed: Date Prepared:

03/04/2009 1809 03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

50 mL 50 mL

Result (mg/L)

Qualifier

RL

Iron Manganese

Analyte

8.7 0.55 0.050 0.010

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

Client: URS Corporation

BSAMW04D-F(0.2)-0209

Lab Sample ID:

Client Matrix:

680-45017-3

Water

Date Sampled:

02/25/2009 1205

Date Received:

02/26/2009 0852

6010B Metals (ICP)-Dissolved

Method: Preparation: 6010B

3005A

Dilution:

1.0

Date Analyzed:

03/04/2009 1814 /

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID: Initial Weight/Volume: N/A 50 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

RL

Iron, Dissolved

Result (mg/L

0.050

Manganese, Dissolved

8.6 0.55

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW04D-0209

Lab Sample ID:

Client Matrix: Water

680-45017-4

6010B Metals (ICP)-Total Recoverable

Analysis Batch: 680-131870 Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Preparation:

Dilution:

1.0

6010B

3005A

Date Analyzed: Date Prepared:

03/04/2009 1819 4 03/03/2009 1050

Lab File ID:

02/25/2009 1440

02/26/2009 0852

Initial Weight/Volume:

Date Sampled:

Date Received:

N/A 50 mL

Final Weight/Volume:

50 mL

Analyte

Method:

Result (mg/L)

Qualifier

Iron

14

RL 0.050

Manganese

0.31

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW04D-F(0.2)-0209

Lab Sample ID:

680-45017-5

Client Matrix: Water Date Sampled:

02/25/2009 1440

Date Received:

02/26/2009 0852

6010B Metals (ICP)-Dissolved

Method: Preparation: 6010B 3005A

Dilution:

Date Analyzed:

Date Prepared:

03/04/2009 1824 -

1.0

03/03/2009 1050

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

50 mL 50 mL

Analyte

Result (mg/L)

Qualifier

RL

Iron, Dissolved. Manganese, Dissolved 13

Analysis Batch: 680-131870

Prep Batch: 680-131644

0.31

0.050 0.010

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW05D-0209

Lab Sample ID: Client Matrix:

680-45017-6

Water

Date Sampled:

02/25/2009 1640

Date Received:

02/26/2009 0852

6010B Metals (ICP)-Total Recoverable

Method:

6010B

Preparation: Dilution:

3005A 1.0

Date Analyzed:

03/04/2009 1829

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID: Initial Weight/Volume: N/A

50 mL

Final Weight/Volume:

50 mL

Analyte

Result (mg/L)

Qualifier

RL

Iron Manganese 19 0.88

0.050 0.010

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID: BSAMW05D-F(0.2)-0209

Lab Sample ID: Client Matrix: 680-45017-7

Water

Date Sampled:

02/25/2009 1640

Date Received:

02/26/2009 0852

6010B Metals (ICP)-Dissolved

Method:

6010B 3005A

Preparation: Dilution:

1.0

Date Analyzed:

03/04/2009 1834 7

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume:

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	18		0.050
Manganese, Dissolved	0.83		0.010

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW02D-0209

Lab Sample ID:

680-45055-1

Client Matrix:

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Total Recoverable

Result (mg/L)

Method:

6010B 3005A

Preparation: Dilution:

1.0

Date Analyzed:

03/04/2009 1839

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870 Insti

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

50 mL 50 mL

Analyte			

Iron 1.4 Manganese 0.30 Qualifier

RL

0.050

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

BSAMW02D-F(0.2)-0209

Lab Sample ID:

680-45055-2

Client Matrix:

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Dissolved

6010B

Preparation: Dilution:

Method:

3005A

1.0

Date Analyzed: Date Prepared: 03/04/2009 1914

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume:

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	1.3		0.050
Manganese, Dissolved	0.32		0.010

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW03D-0209

Lab Sample ID:

680-45055-3

Client Matrix: Water Date Sampled:

02/26/2009 1330

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Total Recoverable

Method:

6010B

Preparation: Dilution:

3005A 1.0

Date Analyzed:

03/04/2009 1919

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID: Initial Weight/Volume: N/A

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL.
Iron	13		0.050
Manganese	0.62		0.010

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

CPAMW03D-F(0.2)-0209

Lab Sample ID:

680-45055-4

Client Matrix: Water Date Sampled:

02/26/2009 1330

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Dissolved

Method:

6010B 3005A

Preparation: Dilution:

1.0

Date Analyzed:

03/04/2009 1924 -

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID: Initial Weight/Volume: N/A

Final Weight/Volume:

50 mL

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	14		0.050
Manganese, Dissolved	0.69		0.010

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

Client: URS Corporation

CPAMW05D-0209

Lab Sample ID: Client Matrix: 680-45055-6

Water

Date Sampled:

02/26/2009 1550

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Total Recoverable

Method:

6010B

Preparation: Dilution: 3005A 1.0

Date Analyzed:

03/04/2009 1929

Date Prepared:

03/03/2009 1050

Analysis Batch: 680-131870

Prep Batch: 680-131644

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

50 mL

Weight/Volume: 50 mL

Analyte	Result (mg/L)	Qualifier	RL
Iron	89		0.050
Manganese	3.2		0.010

Job Number: 680-45017-1

Sdg Number: KPS048

Client Sample ID:

Client: URS Corporation

CPAMW05D-F(0.2)-0209

Lab Sample ID:

680-45055-7

Client Matrix:

Water

Date Sampled:

02/26/2009 1550

Date Received:

02/27/2009 1004

6010B Metals (ICP)-Dissolved

Method:

6010B 3005A

Analysis Batch: 680-131870

Instrument ID:

ICP/AES - D

Preparation:

1.0

Prep Batch: 680-131644

85

3.1

Lab File ID:

Dilution:

Initial Weight/Volume:

N/A

Date Analyzed:

03/04/2009 1934

Final Weight/Volume:

50 mL 50 mL

Date Prepared:

03/03/2009 1050

Result (mg/L)

Qualifier

RL

Analyte

Iron, Dissolved

Manganese, Dissolved

0.050

Client: URS Corporation Job Number: 680-45017-1

Sdg Number: KPS048

		General Che	mistry			
Client Sample ID:	BSAMW04D-0209					
Lab Sample ID: Client Matrix:	680-45017-2 Water			Date Sampled: Date Received:		25/2009 1205 26/2009 0852
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	120 Anly Batch: 680-131572	mg/L Date Analyzed	03/02/2009 1311	2.0	2.0	325.2
Nitrate as N	0.050 Anly Batch: 680-131374	U mg/L Date Analyzed	02/26/2009 1425	0.050	1.0	353.2
Sulfate	130 Anly Batch: 680-131582	mg/L Date Analyzed	03/02/2009 1439	25	5.0	375.4
Total Organic Carbon	5.4 Anly Batch: 680-132774	mg/L Date Analyzed	03/13/2009 1353	1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	600 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2107	5.0	1.0	310.1
Carbon Dioxide, Free	22 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2107	5.0	1.0	310.1
Client Sample ID:	BSAMW04D-F(0.2)-0209					
Lab Sample ID: Client Matrix:	680-45017-3 Water			Date Sampled: Date Received:		25/2009 1205 26/2009 0852
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	rbon-D 4.6 Anly Batch: 680-132784	mg/L Date Analyzed	03/13/2009 1915	1.0	1.0	415.1

Job Number: 680-45017-1

Sdg Number: KPS048

	.
General	Chemistry

Client Sample ID:

CPAMW04D-0209

Lab Sample ID: Client Matrix:	680-45017-4 Water			Date Sampled: Date Received:		5/2009 1440 6/2009 0852
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	240 Anly Batch: 680-131572	mg/L Date Analyzed	03/02/2009 1313	5.0	5.0	325.2
Nitrate as N	0.050 Anly Batch: 680-131374	U mg/L Date Analyzed	02/26/2009 1425	0.050	1.0	353.2
Sulfate	72 Anly Batch: 680-131582	mg/L Date Analyzed	03/02/2009 1445	25	5.0	375.4
Total Organic Carbon	5.6 Anly Batch: 680-132774	mg/L Date Analyzed	03/13/2009 1409	1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	810 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2046	5.0	1.0	310.1
Carbon Dioxide, Free	23 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2046	5.0	1.0	310.1
Client Sample ID:	CPAMW04D-F(0.2)-0209					
Lab Sample ID: Client Matrix:	680-45017-5 Water			Date Sampled: Date Received:		5/2009 1 44 0 6/2009 0852
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Ca	rbon-D 5.0 Anly Batch: 680-132784	mg/L Date Analyzed	03/13/2009 1915	1.0	1.0	415.1

Job Number: 680-45017-1

Sdg Number: KPS048

General	Chemistry	

Client Sample ID:

BSAMW05D-0209

Client Sample ID:	BSAMW05D-0209					
Lab Sample ID:	680-45017-6			Date Sampled:	02/2	5/2009 1640
Client Matrix:	Water			02/2	02/26/2009 0852	
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	270	mg/L	/	5.0	5.0	325.2
	Anly Batch: 680-131572	Date Analyzed	03/02/2009 1313 €			
Nitrate as N	0.050	U mg/L	/	0.050	1.0	353.2
	Anly Batch: 680-131374	Date Analyzed	02/26/2009 1425			
Sulfate	5.0	U mg/L		5.0	1.0	375.4
Cultate	Anly Batch: 680-131582	Date Analyzed	03/02/2009 1430	0.0	1.0	010.4
T. () () () () () ()	- 7			4.0	4.0	445.4
Total Organic Carbon	5.7 Anly Batch: 680-132774	mg/L Date Analyzed	03/13/2009 1425	1.0	1.0	415.1
Anglida	Result	Qual Units		RL	Dil	Method
Analyte	810			5.0		
Alkalinity	Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2058	5.0	1.0	310.1
Carbon Dioxide, Free	17	mg/L		5.0	1.0	310.1
Curbon Bloxide, 71cc	Anly Batch: 680-131820	Date Analyzed	03/04/2009 2058	0.0	1.0	010.1
Client Sample ID:	BSAMW05D-F(0.2)-0209					
Lab Sample ID:	680-45017-7			Date Sampled:	02/25/2009 1640	
Client Matrix:	Water			Date Received:	02/2	6/2009 0852
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	rbon-D 5.0	mg/L		1.0	1.0	415.1
	Anly Batch: 680-132784	Date Analyzed	03/13/2009 1915 🗸			

Job Number: 680-45017-1

Sdg Number: KPS048

General	Chemistry
---------	-----------

Client Sample ID:

BSAMW02D-0209

Lab Sample ID:

680-45055-1

Client Matrix:

Water

Date Sampled:

02/26/2009 1200

Date Received:

02/27/2009 1004

Analyte	Result	Qual Units		RL Dil	Method
Chloride	93	mg/L	/	1.0 1.0	325.2
	Anly Batch: 680-132741	Date Analyzed	03/16/2009 1543 /		
Nitrate as N	0.050	U mg/L	,	0.050 1.0	353.2
	Anly Batch: 680-131520	Date Analyzed	02/27/2009 1326		
Sulfate	160	mg/L	/	25 5.0	375.4
	Anly Batch: 680-132708	Date Analyzed	03/16/2009 1313		
Total Organic Carbon	4.9	mg/L	/	1.0 1.0	415.1
	Anly Batch: 680-132774	Date Analyzed	03/13/2009 1506 /		

Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	700	mg/L		5.0	1.0	310.1
	Anly Batch: 680-131820	Date Analyzed	03/04/2009 2137 .			
Carbon Dioxide, Free	17	mg/L		5.0	1.0	310.1
	Anly Batch: 680-131820	Date Analyzed	03/04/2009 2137			

Client Sample ID:

BSAMW02D-F(0.2)-0209

Lab Sample ID:

680-45055-2

Client Matrix:

Water

Date Sampled: Date Received:

RL

1.0

02/26/2009 1200 02/27/2009 1004

415.1

Analyte

Dissolved Organic Carbon-D

on-D 3.8 Anly Batch: 680-132784

Result

Qual Units mg/L Date Analyzed

03/13/2009 1915 🗸

Dil Method

Job Number: 680-45017-1

Sdg Number: KPS048

General	Chemistry

Client Sample ID:

CPAMW03D-0209

Lab Sample ID: Client Matrix:	680-45055-3 Water			Date Sampled: Date Received:		6/2009 1330 7/2009 1004
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	280 Anly Batch: 680-132741	mg/L Date Analyzed	03/16/2009 1634 /	5.0	5.0	325.2
Nitrate as N	0.050 Anly Batch: 680-131520	U mg/L Date Analyzed	02/27/2009 1326 /	0.050	1.0	353.2
Sulfate	5.0 Anly Batch: 680-132708	U mg/L Date Analyzed	03/16/2009 1242	5.0	1.0	375.4
Total Organic Carbon	8.9 Anly Batch: 680-132774	mg/L Date Analyzed	03/13/2009 1520 /	1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	690 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2118	5.0	1.0	310.1
Carbon Dioxide, Free	49 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2118	5.0	1.0	310.1
Client Sample ID:	CPAMW03D-F(0.2)-0209					
Lab Sample ID: Client Matrix:	680-45055-4 Water			Date Sampled: Date Received:		6/2009 1330 7/2009 1004
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	rbon-D 7.5 Anly Batch: 680-132784	mg/L Date Analyzed	03/13/2009 1915	1.0	1.0	415.1

Job Number: 680-45017-1

Sdg Number: KPS048

					Sag	Number: KPS
		General Che	emistry			
Client Sample ID:	CPAMW05D-0209					
Lab Sample ID: Client Matrix:	680-45055-6 Water			Date Sampled: Date Received:		26/2009 1550 27/2009 1004
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	280 Anly Batch: 680-132741	mg/L Date Analyzed	03/16/2009 1634	5.0	5.0	325.2
Nitrate as N	0.050 Anly Batch: 680-131520	U mg/L Date Analyzed	02/27/2009 1326 /	0.050	1.0	353.2
Sulfate	1400 Anly Batch: 680-132708	mg/L Date Analyzed	03/16/2009 1337	250	50	375.4
Total Organic Carbon	3.6 Anly Batch: 680-132774	mg/L Date Analyzed	03/13/2009 1536	1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	280 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2125	5.0	1.0	310.1
Carbon Dioxide, Free	66 Anly Batch: 680-131820	mg/L Date Analyzed	03/04/2009 2125	5.0	1.0	310.1
Client Sample ID:	CPAMW05D-F(0.2)-0209					
_ab Sample ID: Client Matrix:	680-45055-7 Water			Date Sampled: Date Received:		6/2009 1550 7/2009 1004
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	rbon-D 3.5 Anly Batch: 680-132784	mg/L Date Analyzed	03/13/2009 1915	1.0	1.0	415.1

DATA REPORTING QUALIFIERS

Client: URS Corporation

Job Number: 680-45017-1

Sdg Number: KPS048

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	F	MS or MSD exceeds the control limits
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
GC VOA		
	U	Indicates the analyte was analyzed for but not detected.
Metals		
	U	Indicates the analyte was analyzed for but not detected.
General Chemistry		
	U	Indicates the analyte was analyzed for but not detected.

SDG KPS049

Results of Samples from Wells:

BSAMW-1S

BSAMW-3D

CPAMW-1D

CPAMW-2D

Solutia Krummrich Data Review

Laboratory SDG: KPS049

Reviewer: Elizabeth Kunkel

Date Reviewed: 4/1/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

USEPA National Functional Guidelines for Inorganic Data Review 2004.

Applicable Work Plan: Long-Term Monitoring Program (LTMP) Work Plan (Solutia 2008)

Sample Identification #	Sample Identification #
BSAMW01S-0209	BSAMW01S-F(0.2)-0209
CPAMW01D-0209	CPAMW01D-F(0-2)-0209
CPAMW02D-0209	CPAMW02D-0209-AD
CPAMW02D-F(0-2)-0209	BSAMW03D-0209
BSAMW03D-F(0.2)-0209	BSAMW03D-0209-EB

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

No, all three vials for trip blank TB030209 were received by the laboratory broken, please see section 2.0 of this report.

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that VOCs were detected in the equipment blank. Surrogate recoveries were outside evaluation criteria in samples CPAMW01D-0209, CPAMW02D-0209 and CPAMW02D-0209-AD. The internal standard recovery for 1,4-Dichlorobenzene-d₄ was outside evaluation criteria in sample CPAMW02D-0209-AD. In addition samples were qualified due to a greater than two times (2X) the reporting limit difference between the parent and field duplicate results. These issues are addressed further in the appropriate sections below.

The cooler receipt form indicated that all three vials for trip blank TB030209 were received by the laboratory broken. All requested VOC analyses for the investigative

samples were completed.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration	Units
BSAMW03D-0209-EB	VOCs	Benzene	5.0	ug/L
BSAMW03D-0209-EB	VOCs	Chlorobenzene	6.2	ug/L
BSAMW03D-0209-EB	VOCs	1,2-	4.1	ug/L
		Dichlorobenzene		
BSAMW03D-0209-EB	VOCs	1,4-	11	ug/L
		Dichlorobenzene		

Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

No

Field ID	Parameter	Surrogate	Recovery	Criteria
CPAMW01D-0209	SVOCs	Phenol-d ₅	125	38-116
CPAMW01D-0209	SVOCs	2-Fluorophenol	181	36-110
CPAMW02D-0209	SVOCs	2-Fluorophenol	135	36-110
CPAMW02D-0209-AD	SVOCs	Phenol-d ₅	236	38-116
CPAMW02D-0209-AD	SVOCs	2-Fluorophenol	274	36-110

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Since only one acid fraction surrogate was outside criteria for sample CPAMW02D-0209 and Functional Guidelines indicates to qualify data if two or more surrogates per SVOC fraction are outside criteria, no qualification of the SVOC data was required.

Field ID	Parameter	Analyte	Qualification	
CPAMW01D-0209	SVOCs	2-Chlorophenol	J	
CPAMW02D-0209-AD	SVOCs	2-Chlorophenol	J	

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample BSAMW01S-0209 was spiked and analyzed for total and dissolved iron and manganese. Sample BSAMW03D-F(0.2)-0209 was spiked and analyzed for dissolved organic carbon.

Were MS/MSD recoveries within evaluation criteria?

Yes

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

No

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
CPAMW02D-0209-AD	SVOCs	1,4- Dichlorobenzene-d ₄	57311	82470-329880

Analytical data that required qualification based on IS data are included in the table below. The compound 2-chlorophenol was detected and previously qualified due to high surrogate recovery; therefore, no additional qualification was required.

Field ID	Parameter	Analyte	Qualification
CPAMW02D-0209-AD	SVOCs	1,2,4-Trichlorobenzene	UJ

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID		
CPAMW02D-0209	CPAMW02D-0209-AD		

Were field duplicates within evaluation criteria?

No

Field ID	Field Duplicate ID	Parameter	Analyte	RPD	Qualification
CPAMW02D-	CPAMW02D-	SVOCs	2-Chlorophenol	> 2x RL	J
0209	0209-AD		_		

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Analytes were detected in samples that were diluted.

12.0 Additional Qualifications

Were additional qualifications applied?

No

SAMPLE SUMMARY

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-45126-1 680-45126-2 680-45126-3	BSAMW01S-0209 BSAMW01S-F(0.2)-0209 CPAMW01D-0209	Water Water Water	03/02/2009 1100 03/02/2009 1100 03/02/2009 1230 03/02/2009 1230	03/03/2009 0908 03/03/2009 0908 03/03/2009 0908
680-45126-4 680-45126-5 680-45126-6FD	CPAMW01D-F(0-2)-0209 / CPAMW02D-0209-AD / CPAMW02D-0209-AD	Water Water Water	03/02/2009 1350 03/02/2009 1350	03/03/2009 0908 03/03/2009 0908 03/03/2009 0908
680-45126-7 680-45126-8 680-45126-9 680-45126-10EB	CPAMW02D-F(0-2)-0209 / BSAMW03D-0209 / BSAMW03D-F(0.2)-0209 / BSAMW03D-0209-EB /	Water Water Water Water	03/02/2009 1350 03/02/2009 1610 03/02/2009 1610 03/02/2009 1530	03/03/2009 0908 03/03/2009 0908 03/03/2009 0908 03/03/2009 0908

SAMPLE RESULTS

TestAmerica Savannah

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW01S-0209

Lab Sample ID:

680-45126-1

Client Matrix:

Water

Date Sampled:

03/02/2009 1100

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation: Dilution:

5000

Date Analyzed: Date Prepared:

03/04/2009 1323 03/04/2009 1323

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0882.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	830000		5000
Chlorobenzene	5000	U	5000
1,2-Dichlorobenzene	5000	U	5000
1,3-Dichlorobenzene	5000	U	5000
1,4-Dichlorobenzene	5000	U	5000
Surrogate	%Rec	Acceptance Limits	
4-Bromofluorobenzene	93		75 - 120
Dibromofluoromethane	103		75 - 121
Toluene-d8 (Surr)	105		75 - 120

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW01D-0209

Lab Sample ID:

680-45126-3

Client Matrix:

Water

Date Sampled:

03/02/2009 1230

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation: Dilution:

Date Analyzed: Date Prepared: 200

03/04/2009 1352 03/04/2009 1352

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0884.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	4200		200
Chlorobenzene	16000		200
1,2-Dichlorobenzene	20000		200
1,3-Dichlorobenzene	1400		200
1,4-Dichlorobenzene	12000		200
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97		75 - 120
Dibromofluoromethane	103		75 - 121
Toluene-d8 (Surr)	109		75 - 120

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209

Lab Sample ID:

680-45126-5

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation:

Dilution:

8260B

5030B

Date Analyzed: Date Prepared: 200

03/04/2009 1422 03/04/2009 1422

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0886.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	820		200
Chlorobenzene	31000		200
1,2-Dichlorobenzene	3000		200
1,3-Dichlorobenzene	720		200
1,4-Dichlorobenzene	17000		200
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	96		75 - 120
Dibromofluoromethane	103		75 - 121
Toluene-d8 (Surr)	107		75 - 120

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209-AD

Lab Sample ID:

680-45126-6FD

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Preparation:

5030B

Lab File ID:

p.8880q

Dilution:

200

03/04/2009 1451

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared:

03/04/2009 1451

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	810		200
Chlorobenzene	30000		200
1,2-Dichlorobenzene	3000		200
1,3-Dichlorobenzene	700		200
1,4-Dichlorobenzene	16000		200
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120
Dibromofluoromethane	103		75 - 121
Toluene-d8 (Surr)	106		75 - 120

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209

Lab Sample ID: Client Matrix: 680-45126-8

Water

Date Sampled:

03/02/2009 1610

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Preparation:

5030B

, manyone Datom of

Lab File ID:

p0890.d

Dilution:

10

Initial Weight/Volume:

p0030.u

75 - 121

75 - 120

5 mL

Date Analyzed: Date Prepared:

Dibromofluoromethane

Toluene-d8 (Surr)

03/04/2009 1520 03/04/2009 1520 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	120		10
Chlorobenzene	1200		10
1,2-Dichlorobenzene	32		10
1,3-Dichlorobenzene	14		10
1,4-Dichlorobenzene	370		10
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120

104

108

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209-EB

Lab Sample ID: Client Matrix:

680-45126-10EB

Water

Date Sampled:

03/02/2009 1530

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation: Dilution:

03/04/2009 1254 Date Analyzed:

Date Prepared:

1.0

03/04/2009 1254

Analysis Batch: 680-131794

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

b.0880q

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	5.0		1.0
Chlorobenzene	6.2		1.0
1,2-Dichlorobenzene	4 .1		1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	11		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	96	75 - 120	
Dibromofluoromethane	106	75 - 121	
Toluene-d8 (Surr)	105	75 - 120	

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209-EB

Lab Sample ID:

680-45126-10EB

Client Matrix:

Water

Date Sampled:

03/02/2009 1530

Date Received:

03/03/2009 0908

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation:

1.0

Dilution: Date Analyzed:

03/04/2009 1648 < 03/04/2009 1648 Date Prepared:

Analysis Batch: 680-131794

Run Type: RA

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0896.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	4.2		1.0
Chlorobenzene	6.0		1.0
1,2-Dichlorobenzene	4.0		1.0
1,3-Dichlorobenzene	1.0	υ	1.0
1,4-Dichlorobenzene	11		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	96		75 - 120
Dibromofluoromethane	103		75 - 121
Toluene-d8 (Surr)	107		75 - 120

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample (D: BSAMW01S-0209

Lab Sample ID:

680-45126-1

Client Matrix:

Water

Date Sampled:

03/02/2009 1100

Date Received:

03/03/2009 0908

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analyte

8270C

Analysis Batch: 680-132146

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

Lab File ID:

Prep Batch: 680-131720

f0454.d

Dilution:

1.0

Initial Weight/Volume:

1030 mL

Date Analyzed:

03/09/2009 1713

Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Date Prepared:

03/04/2009 1334 /

Qualifier Result (ug/L)

RL 9.7

2-Chlorophenol 1,2,4-Trichlorobenzene 9.7 9.7

%Rec

U U

9.7

Surrogate Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14

65 < 69 132 / 75 / 75 ′ 73 /

40 - 139 45 - 112 50 - 113 10 - 121

38 - 116

36 - 110

Acceptance Limits

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW01D-0209

Lab Sample ID: Client Matrix:

680-45126-3

Water

Date Sampled:

03/02/2009 1230

Date Received:

03/03/2009 0908

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-132233

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

Lab File ID:

f0486.d

Dilution:

Prep Batch: 680-131720

Initial Weight/Volume:

1030 mL

Date Analyzed:

4.0

03/10/2009 1511

Final Weight/Volume: Injection Volume:

1 mL

Date Prepared:

03/04/2009 1334 /

1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
2-Chlorophenol	66	"J"	39
1,2,4-Trichlorobenzene	660		39

Surrogate	%Rec		Acceptance Limits	
Phenol-d5	(125)	X	38 - 116	
2-Fluorophenol	(181)	X	36 - 110	
2,4,6-Tribromophenol	121		40 - 139	
Nitrobenzene-d5	81 /		45 - 112	
2-Fluorobiphenyl	90		50 - 113	
Terphenyl-d14	33		10 - 121	

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209

Lab Sample ID:

680-45126-5

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

8270C Semivolatile Com	pounds by Gas	: Chromatogra	phy/Mass S	pectrometry	(GC/MS)

Method:

8270C

Analysis Batch: 680-132146

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

f0456.d

Prep Batch: 680-131720

Lab File ID:

Dilution: Date Analyzed: 1.0

Initial Weight/Volume:

1030 mL 1 mL

Date Prepared:

03/09/2009 1759 03/04/2009 1334 🗸 Final Weight/Volume: Injection Volume:

1.0 uL

Analyte 2-Chlorophenol Result (ug/L) 42

Qualifier

Ū

Х

RL

1,2,4-Trichlorobenzene

9.7 %Rec 9.7 9.7

Surrogate Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14

38 - 116

36 - 110

Acceptance Limits

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209-AD

Lab Sample ID:

680-45126-6FD

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analyte

8270C

Analysis Batch: 680-132146

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

Lab File ID:

Dilution:

1.0

Prep Batch: 680-131720

79

9.7

f0457.d

Initial Weight/Volume: Final Weight/Volume:

1030 mL

Date Analyzed: Date Prepared:

03/09/2009 1821

Injection Volume:

1 mL 1.0 uL

03/04/2009 1334

Result (ug/L) Qualifier

ŔĹ 9.7

9.7

2-Chlorophenol	
1,2,4-Trichlorobenzene	

Surrogate		
Phenol-d5	 	
2-Fluorophenol		
2,4,6-Tribromophenol		

2	z-Fluoropnenoi
2	2,4,6-Tribromophenol
1	Nitrobenzene-d5
2	2-Fluorobiphenyl
7	erphenyl-d14

%Rec		Acceptance Limits
(236)	EX	38 - 116
274)	EX	36 - 110
121		40 - 139
83		45 - 112
82		50 - 113
51		10 - 121

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209

Lab Sample ID: Client Matrix:

680-45126-8

Water

Date Sampled:

03/02/2009 1610

Date Received:

03/03/2009 0908

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS	8270C Semivolatile Compo	ounds by Gas Chromatog	raphy/Mass Spectrometry	(GC/MS)
---	--------------------------	------------------------	-------------------------	---------

Method:

8270C

Analysis Batch: 680-132146

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

f0458.d

Prep Batch: 680-131720

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

1030 mL

Date Analyzed: Date Prepared:

03/09/2009 1844 03/04/2009 1334 - Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
1,2,4-Trichlorobenzene	9.7	U	9.7
1,4-Dioxane	19		9.7
2-Chlorophenol	17		9.7

Surrogate	%Rec	Acceptance Limits
Phenol-d5	76	38 - 116
2,4,6-Tribromophenol	112	40 - 139
2-Fluorobiphenyl	81 /	50 - 113
2-Fluorophenol	80 /	36 - 110
Nitrobenzene-d5	82	4 5 - 112
Terphenyl-d14	42 /	10 - 121

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209-EB

Lab Sample ID:

680-45126-10EB

Client Matrix:

Water

Date Sampled:

03/02/2009 1530

Date Received:

03/03/2009 0908

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

82**7**0C

Analysis Batch: 680-132146

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

3520C

Prep Batch: 680-131720

Lab File ID:

f0459.d

Dilution:

Date Analyzed:

1.0 03/09/2009 1906

Initial Weight/Volume: Final Weight/Volume: 1030 mL 1 mL

Date Prepared:

03/04/2009 1334

Injection Volume:

1.0 uL

Analyte 1,2,4-Trichlorobenzene 1,4-Dioxane 2-Chlorophenol

Result (ug/L) 9.7 9.7 9.7

Qualifier

U

U

U

RL

9.7

9.7

9.7

Surrogate	%Rec
Phenol-d5	76 /
2,4,6-Tribromophenol	115 🖊
2-Fluorobiphenyl	85 /
2-Fluorophenol	79 /
Nitrobenzene-d5	81
Terphenyl-d14	64

Acceptance Limits 38 - 116

> 50 - 113 36 - 110 45 - 112 10 - 121

40 - 139

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW01S-0209

Lab Sample ID:

680-45126-1

Client Matrix:

Water

Date Sampled:

03/02/2009 1100

Date Received:

03/03/2009 0908

RSK-175 Dissolved Gases (GC)

Method:

RSK-175

Preparation:

N/A

Dilution: Date Analyzed:

Date Prepared:

1.0

03/11/2009 1652

N/A

Analysis Batch: 680-132366

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03114.D

Initial Weight/Volume:

1000 uL 1 mL

Final Weight/Volume: Injection Volume:

1 uL

Column ID:

PRIMARY

Result (ug/L) Qualifier RL Analyte 0.35 Ethane 0.35 Ū υ 0.33 0.33 Ethylene

Method: Preparation:

Dilution:

RSK-175

N/A

1.0

Date Analyzed: Date Prepared: N/A

03/11/2009 1652

Analysis Batch: 680-132368

Instrument ID:

GC Volatiles - U TCD

Lab File 1D:

U03114.D

Initial Weight/Volume: 1000 uL

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Column ID:

PRIMARY

Analyte Methane Result (ug/L) 11000

Qualifier

RL 0.19

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW01D-0209

Lab Sample ID:

680-45126-3

Client Matrix:

Water

Date Sampled:

03/02/2009 1230

Date Received:

03/03/2009 0908

RSK-175 Dissolved Gases (GC)

Method: Preparation:

Dilution:

Analyte

Methane

RSK-175

N/A

1.0

Date Analyzed: Date Prepared:

03/11/2009 1704

N/A

Analysis Batch: 680-132366

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03115.D

Initial Weight/Volume: Final Weight/Volume:

1000 uL 1 mL

Injection Volume:

1 uL

Column ID:

Qualifier

PRIMARY

RL

0.19

Analyte		Result (ug/L)	Qualifier	RL
Ethane		92		0.35
Ethylene		0.33	U	0.33
Method:	RSK-175	Analysis Batch: 680-132368	Instrumen	t ID: GC Volatiles - U TCD
Preparation:	N/A		Lab File II	D: U03115.D
Dilution:	1.0		Initial Wei	ght/Volume: 1000 uL
Date Analyzed:	03/11/2009 1704		Final Weig	ght/Volume: 1 mL
Date Prepared:	N/A		Injection \	/olume: 1 uL
			Column II	D: PRIMARY

Result (ug/L)

30000

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209

Lab Sample ID:

680-45126-5

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

RSK-175 Dissolved Gases (GC)

Method:

Preparation: Dilution:

N/A

Date Analyzed:

Date Prepared:

RSK-175

1.0 03/11/2009 1717

N/A

Analysis Batch: 680-132366

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03116.D

Initial Weight/Volume: Final Weight/Volume:

1000 uL 1 mL

Injection Volume:

1 uL

Column ID:

PRIMARY

RL

0.35

0.33

Analyte Ethane

Ethylene Method:

Preparation:

RSK-175

1.0

Dilution:

Date Analyzed: Date Prepared:

N/A

03/11/2009 1717

N/A

Result (ug/L) 14

0.70

Analysis Batch: 680-132368

Instrument ID:

GC Volatiles - U TCD

Lab File ID: U03116.D

Initial Weight/Volume:

Final Weight/Volume:

1 mL 1 uL

1000 uL

Injection Volume: Column 1D:

PRIMARY

Analyte Methane Result (ug/L) 2800

Qualifier

Qualifier

RL

0.19

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209

Lab Sample ID:

680-45126-8

Client Matrix:

Water

Date Sampled:

03/02/2009 1610

Date Received:

03/03/2009 0908

RSK-175 Dissolved Gases (GC)

Method:

RSK-175

Preparation: Dilution:

1.0

Date Analyzed:

N/A

Date Prepared:

N/A

03/11/2009 1730

Analysis Batch: 680-132366

Instrument ID:

GC Volatiles - U FID

Lab File ID:

U03117.D

Initial Weight/Volume:

1000 uL

Final Weight/Volume: Injection Volume:

1 mL 1 uL

Column ID:

PRIMARY

Result (ug/L) Qualifier RL Analyte 3.5 0.35 Ethane 8.1 0.33 Ethylene

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

RSK-175

03/11/2009 1730

N/A

1.0

N/A

Analysis Batch: 680-132368

Instrument ID:

GC Volatiles - U TCD

Lab File ID:

U03117.D

Initial Weight/Volume: 1000 uL

Final Weight/Volume:

1 mL

Injection Volume:

1 uL

Column ID:

PRIMARY

Analyte

Result (ug/L)

Qualifier

RL

Methane

540

0.19

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

Client: URS Corporation

BSAMW01S-0209

Lab Sample ID: Client Matrix:

680-45126-1

Water

Date Sampled:

03/02/2009 1100

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Total Recoverable

Method:

6010B 3005A

Preparation: Dilution:

1.0

Date Analyzed:

03/19/2009 1510 *

03/16/2009 1153 Date Prepared:

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume:

50 mL

Final Weight/Volume:

50 mL

Analyte	Result (mg/L)	Qualifier	RL
Iron	1.3		0.050
Manganese	0.37		0.010

Analysis Batch: 680-133188

Prep Batch: 680-132687

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW01S-F(0.2)-0209

Lab Sample ID:

680-45126-2

Client Matrix:

Water

Date Sampled:

03/02/2009 1100

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Dissolved

Method:

6010B 3005A

Preparation: Dilution:

1.0

Date Analyzed:

03/19/2009 1525 /

Date Prepared:

03/16/2009 1153

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume:

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	1.1		0.050
Manganese, Dissolved	0.36		0.010

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW01D-0209

Lab Sample ID:

680-45126-3

Client Matrix:

Water

Date Sampled:

03/02/2009 1230

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Total Recoverable

Method: Preparation: 6010B

3005A 1.0

Dilution: Date Analyzed: Date Prepared:

03/19/2009 1540

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID: Initial Weight/Volume: N/A

Final Weight/Volume:

50 mL 50 mL

03/16/2009 1153

Anaiyte

Result (mg/L)

Qualifier

RL

Iron Manganese

1.5 0.092 0.050 0.010

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW01D-F(0-2)-0209

Lab Sample ID:

680-45126-4

Client Matrix:

Water

Date Sampled:

03/02/2009 1230

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Dissolved

Method: Preparation: 6010B

3005A

Dilution:

1.0

Date Analyzed:

03/19/2009 1555 /

Date Prepared:

03/16/2009 1153

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

50 mL 50 mL

Result (mg/L)

Qualifier

RL

Iron, Dissolved Manganese, Dissolved

Analyte

1.0 0.077 0.050 0.010

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-0209

Lab Sample ID:

680-45126-5

Client Matrix:

Method:

Dilution:

Preparation:

Water

6010B Metals (ICP)-Total Recoverable

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

Lab File ID:

Date Sampled:

Date Received:

ICP/AES - D

03/02/2009 1350

03/03/2009 0908

N/A 50 mL

Initial Weight/Volume: Final Weight/Volume:

50 mL

Date Prepared:

Date Analyzed:

03/19/2009 1600

03/16/2009 1153

6010B

3005A

1.0

Result (mg/L)

6.1

0.35

Qualifier

RL

Analyte Iron

Manganese

0.050 0.010

Page 28 of 62

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

CPAMW02D-F(0-2)-0209

Lab Sample ID:

680-45126-7

Client Matrix:

Water

Date Sampled:

03/02/2009 1350

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Dissolved

Method:

6010B 3005A

Preparation: Dilution:

1.0

ate Analyzed: 03

Date Analyzed: Date Prepared:

03/19/2009 1605

03/16/2009 1153

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	5.2		0.050
Manganese, Dissolved	0.33		0.010

Job Number: 680-45126-1 Client: URS Corporation

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209

Lab Sample ID:

680-45126-8

Client Matrix:

Date Sampled:

03/02/2009 1610

Water

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Total Recoverable

Method: Preparation: 6010B

3005A

Dilution:

1.0

Date Analyzed: Date Prepared: 03/19/2009 1610 03/16/2009 1153

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID:

Initial Weight/Volume:

N/A 50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron	12		0.050
Manganese	0.57		0.010

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID: BSAMW03D-F(0.2)-0209

Lab Sample ID:

680-45126-9

Client Matrix:

Water

Date Sampled:

03/02/2009 1610

Date Received:

03/03/2009 0908

6010B Metals (ICP)-Dissolved

Method: Preparation: 6010B

3005A

Dilution: Date Analyzed:

Date Prepared:

03/19/2009 1615 03/16/2009 1153

Analysis Batch: 680-133188

Prep Batch: 680-132687

Instrument ID:

ICP/AES - D

Lab File ID:

N/A

Initial Weight/Volume:

50 mL

Final Weight/Volume:

Analyte	Result (mg/L)	Qualifier	RL
Iron, Dissolved	12		0.050
Manganese, Dissolved	0.59		0.010

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

		General Che	mistry			
Client Sample ID:	BSAMW01S-0209					
Lab Sample ID: Client Matrix:	680-45126-1 Water			Date Sampled: Date Received:		2/2009 1100 3/2009 0908
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	100 Anly Batch: 680-132265	mg/L Date Analyzed	03/10/2009 1200	2.0	2.0	325.2
Nitrate as N	0.25 Anly Batch: 680-131729	U mg/L Date Analyzed	03/03/2009 1602	0.25	5.0	353.2
Sulfate	5.0 Anly Batch: 680-132708	U mg/L Date Analyzed	03/16/2009 1244	5.0	1.0	375.4
Total Organic Carbon	6.9 Anly Batch: 680-133129	mg/L Date Analyzed	03/18/2009 1551 /	1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	850 Anly Batch: 680-132390	mg/L Date Analyzed	03/10/2009 1656	5.0	1.0	310.1
Carbon Dioxide, Free	22 Anly Batch: 680-132390	mg/L Date Analyzed	03/10/2009 1656	5.0	1.0	310.1
Client Sample ID:	BSAMW01S-F(0.2)-0209					
Lab Sample ID: Client Matrix:	680-45126-2 Water			Date Sampled: Date Received:		2/2009 1100 3/2009 0908
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	bon-D 13 Anly Batch: 680-133130	mg/L Date Analyzed	03/18/2009 1836	1.0	1.0	415.1

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

General	Chemistry	

Client Sample ID:

CPAMW01D-0209

Client Sample ID:	CPAMW01D-0209					
Lab Sample ID:	680-45126-3			Date Sampled:	03/	02/2009 1230
Client Matrix:	Water			Date Received:	03/	03/2009 0908
Analyte	Result	Qual Units		RL	Dil	Method
Chloride	130 Anly Batch: 680-132265	mg/L Date Analyzed	03/10/2009 1200	2.0	2.0	325.2
Nitrate as N	0.50 Anly Batch: 680-131729	U mg/L Date Analyzed	03/03/2009 1602	0.50	10	353.2
Sulfate	5.7 Anly Batch: 680-132708	mg/L Date Analyzed	03/16/2009 1244	5.0	1.0	375.4
Total Organic Carbon	12 Anly Batch: 680-133129	mg/L Date Analyzed	03/18/2009 1608	. 1.0	1.0	415.1
Analyte	Result	Qual Units		RL	Dil	Method
Alkalinity	1100 Anly Batch: 680-132390	mg/L Date Analyzed	03/10/2009 1710	5.0	1.0	310.1
Carbon Dioxide, Free	5.0 Anly Batch: 680-132390	U mg/L Date Analyzed	03/10/2009 1710	5.0	1.0	310.1
Client Sample ID:	CPAMW01D-F(0-2)-0209					
Lab Sample ID: Client Matrix:	680-45126-4 Water			Date Sampled: Date Received:		02/2009 1230 03/2009 0908
Analyte	Result	Qual Units		RL	Dil	Method
Dissolved Organic Car	rbon-D 11 Anly Batch: 680-133130	mg/L Date Analyzed	03/18/2009 1836	1.0	1.0	415.1

Client: URS Corporation Job Number: 680-45126-1

Sdg Number: KPS049

General	Chemistry
---------	-----------

Client Sample ID:

CPAMW02D-0209

Lab Sample ID:

680-45126-5

Date Sampled:

03/02/2009 1350

Client Matrix:	Water				Date Received:	03/03/2	009 (0908
Analida		Desuit	01	l lm/An	D.	D'1 .		

Allalyte	Nesun	Qual Office		KL.	Dii	Method
Chloride	67	mg/L		1.0	1.0	325.2
	Anly Batch: 680-132265	Date Analyzed	03/10/2009 1150			
Nitrate as N	0.25	U mg/L		0.25	5.0	353.2
	Anly Batch: 680-131729	Date Analyzed	03/03/2009 1602			
Sulfate	5.0	U mg/L		5.0	1.0	375.4
	Anly Batch: 680-132708	Date Analyzed	03/16/2009 1244			
Total Organic Carbon	11	mg/L		/ 1.0	1.0	415.1
	Anly Batch: 680-133129	Date Analyzed	03/18/2009 1622 /			

Analyte	Result	Qual Units	F	RL Dil	Method
Alkalinity	610 Anly Batch: 680-132390	mg/L Date Analyzed	03/10/2009 1720	5.0 1.0	310.1
Carbon Dioxide, Free	25 Anly Batch: 680-132390	mg/L Date Analyzed	03/10/2009 1720	5.0 1.0	310.1

Client Sample ID:

CPAMW02D-F(0-2)-0209

Lab Sample ID:

680-45126-7

Client Matrix:

Water

Date Sampled: Date Received: 03/02/2009 1350 03/03/2009 0908

Analyte Result Qual Units RL Dil Method Dissolved Organic Carbon-D 10 1.0 1.0 mg/L 415.1 03/18/2009 1836 Anly Batch: 680-133130 Date Analyzed

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Client Sample ID:

BSAMW03D-0209

BOAINTTOOD-0203					
680-45126-8			Date Sampled:	03/0	02/2009 1610
			-		03/2009 0908
Result	Qual Units		RL	Dil	Method
64	mg/L		1.0	1.0	325.2
Anly Batch: 680-132265	Date Analyzed	03/10/2009 1151			
0.25	ປ mg/L		0.25	5.0	353.2
Anly Batch: 680-131729	Date Analyzed	03/03/2009 1602			
240	ma/L		50	10	375.4
Anly Batch: 680-132708	Date Analyzed	03/16/2009 1328			
3.7	ma/L		1.0	1.0	415.1
Anly Batch: 680-133129	Date Analyzed	03/18/2009 1639			
Result	Qual Units		RL	Dil	Method
490	mg/L		5.0	1.0	310.1
Anly Batch: 680-132390	Date Analyzed	03/10/2009 1729 /			
26	mg/L		5.0	1.0	310.1
Anly Batch: 680-132390	Date Analyzed	03/10/2009 1729			
BSAMW03D-F(0.2)-0209					
680-45126-9			Date Sampled:	03/0	02/2009 1610
Water			Date Received:	03/0	3/2009 0908
Result	Qual Units		RL	Dil	Method
bon-D 3.6	mg/L		1.0	1.0	415.1
Anly Batch: 680-133130	Date Analyzed	03/18/2009 1836			
	Result 64 Anly Batch: 680-132265 0.25 Anly Batch: 680-131729 240 Anly Batch: 680-132708 3.7 Anly Batch: 680-132708 Result 490 Anly Batch: 680-132390 26 Anly Batch: 680-132390 BSAMW03D-F(0.2)-0209 680-45126-9 Water Result bon-D 3.6	Result Qual Units	Result Qual Units	Date Sampled: Date Received: RL	Result Qual Units RL Dil

DATA REPORTING QUALIFIERS

Client: URS Corporation

Job Number: 680-45126-1

Sdg Number: KPS049

Lab Section	Qualifier	Description
GC/MS VOA		
	ប	Indicates the analyte was analyzed for but not detected.
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	Е	Result exceeded calibration range, secondary dilution required.
	x	Surrogate exceeds the control limits
GC VOA		
	U	Indicates the analyte was analyzed for but not detected.
Metals		
	U	Indicates the analyte was analyzed for but not detected.
General Chemistry		
	U	Indicates the analyte was analyzed for but not detected.

Appendix F Surface Water and Sediment Analytical Results (with Data Review Sheets)

SDG KRS005

Results of Surface Water Samples from Sampling Points:

R2007-1

R2007-2

R2007-3

Solutia Krummrich Data Review

Laboratory SDG: KRS005

Reviewer: Elizabeth Kunkel

Date Reviewed: 4/3/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Long-Term Monitoring Program (LTMP) Work Plan (Solutia

2008)

Sample Identification #	Sample Identification #		
SW-R2007-1-0209	SW-R2007-3-0209		
SW- R2007-3-0209 DUP	SW-R2007-2-0209		
SED-R2007-2-0209 EB	TB-022609		

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that the MS/MSD RPD for 1,4-Dioxane was outside evaluation criteria in sample SW-R2007-1-0209. This issue is addressed further in the appropriate section below.

The cooler receipt form indicates a sample ID discrepancy between the COC and sample labels. The field duplicate samples on the COC were listed as DUP and the sample labels listed -AD at the end of the sample ID. Samples were logged in by the laboratory using the DUP sample ID designated. This did not affect the quality of the data. No qualification of data was required.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample SW-R2007-1-0209 was spiked and analyzed for VOCs and SVOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
SW-R2007-1-0209	SVOCs	1,4-Dioxane	36/57	45	11-110/40

USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria; therefore, no qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
N/A				

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
SW-R2007-3-0209	SW- R2007-3-0209
	DUP

Were field duplicates within evaluation criteria?

Yes

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples were not analyzed at a dilution.

12.0 Additional Qualifications

Were additional qualifications applied?

No

SAMPLE SUMMARY

Client: Solutia Inc. Job Number: 680-45056-1

Sdg Number: KRS005

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-45056-1	SW-R2007-1-0209	Water	02/26/2009 0930	02/27/2009 1116
680-45056-1MS	SW-R2007-1-0209	Water	02/26/2009 0930	02/27/2009 1116
680-45056-1MSD	SW-R2007-1-0209	Water	02/26/2009 0930	02/27/2009 1116
680-45056-3	SW-R2007-3-0209	Water	02/26/2009 1115	02/27/2009 1116
680-45056-4	SW-R2007-3-0209 DUP	Water	02/26/2009 1115	02/27/2009 1116
680-45056-7	SW-R2007-2-0209	Water	02/26/2009 1230	02/27/2009 1116
680-45056-9	SED-R2007-2-0209 EB	Water	02/26/2009 1355	02/27/2009 1116
680-45056-10	TB-022609	Water	02/26/2009 0930	02/27/2009 1116

SAMPLE RESULTS

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-1-0209

Lab Sample ID:

680-45056-1

Date Sampled:

02/26/2009 0930

Client Matrix:

Water

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method:

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2

Preparation:

8260B 5030B

,

Lab File ID:

p0854.d

Dilution:

1.0

/

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 03/03/2009 1525 03/03/2009 1525 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Benzene	1.0	U	0.32	1.0
Chlorobenzene	1.0	U	0.34	1.0
1,2-Dichlorobenzene	1.0	U	0.33	1.0
1,3-Dichlorobenzene	1.0	U	0.31	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	97 //	75 - 120
Dibromofluoromethane	109	75 - 121
Toluene-d8 (Surr)	101	75 - 120

Job Number: 680-45056-1 Client: Solutia Inc.

Sdg Number: KRS005

Client Sample (D:

SW-R2007-3-0209

Lab Sample ID:

680-45056-3

Client Matrix:

Water

Date Sampled:

02/26/2009 1115

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation:

8260B 5030B

Dilution:

Date Analyzed:

1.0

03/03/2009 1555 /

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0856.d

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

Date Prepared:	03/03/2009	155

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Benzene	1.0	U	0.32	1.0	
Chlorobenzene	1.0	U	0.34	1.0	
1,2-Dichlorobenzene	1.0	U	0.33	1.0	
1,3-Dichlorobenzene	1.0	U	0.31	1.0	
1,4-Dichlorobenzene	1.0	U	0.33	1.0	

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	96	75 - 120
Dibromofluoromethane	107	75 - 121
Toluene-d8 (Surr)	103	75 - 120

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-3-0209 DUP

Lab Sample ID:

680-45056-4

Date Sampled:

02/26/2009 1115

Client Matrix:

Water

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2 p0858.d

Preparation:

5030B

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed:

03/03/2009 1624

Final Weight/Volume:

5 mL

Date Prepared:

03/03/2009 1624

Analyte	Result (ug/L)	Qualifier	MDL	RL
Benzene	1.0	U	0.32	1.0
Chlorobenzene	1.0	U	0.34	1.0
1,2-Dichlorobenzene	1.0	U	0.33	1.0
1,3-Dichlorobenzene	1.0	U	0.31	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	99 /	75 - 120
Dibromofluoromethane	106	75 - 12 1
Toluene-d8 (Surr)	104	75 - 120

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-2-0209

Lab Sample ID: Client Matrix:

680-45056-7

Water

Date Sampled:

02/26/2009 1230

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Preparation:

5030B

Dilution:

Date Analyzed:

Date Prepared:

1.0

03/03/2009 1653 -03/03/2009 1653

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0860.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Benzene	1.0	U	0.32	1.0	
Chlorobenzene	1.0	U	0.34	1.0	
1,2-Dichlorobenzene	1.0	U	0.33	1.0	
1,3-Dichlorobenzene	1.0	U	0.31	1.0	
1,4-Dichlorobenzene	1.0	U	0.33	1.0	

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	97	75 - 120
Dibromofluoromethane	103	75 - 121
Toluene-d8 (Surr)	102	75 - 120

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SED-R2007-2-0209 EB

Lab Sample ID: Client Matrix:

680-45056-9

Water

Date Sampled:

02/26/2009 1355

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5030B

1.0

Dilution: Date Analyzed:

Date Prepared:

03/03/2009 1456 03/03/2009 1456

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0852.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Benzene	1.0	U	0.32	1.0	
Chlorobenzene	1.0	U	0.34	1.0	
1,2-Dichlorobenzene	1.0	U	0.33	1.0	
1,3-Dichlorobenzene	1.0	U	0.31	1.0	
1,4-Dichlorobenzene	1.0	U	0.33	1.0	

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	97	75 - 120
Dibromofluoromethane	108	75 - 121
Toluene-d8 (Surr)	101	75 - 120

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

TB-022609

Lab Sample ID:

680-45056-10

Client Matrix:

Water

Date Sampled:

02/26/2009 0930

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

5030B

Preparation: Dilution:

1.0

Date Analyzed:

Date Prepared:

03/03/2009 1427 -03/03/2009 1427

Analysis Batch: 680-131678

Instrument ID:

GC/MS Volatiles - P C2

Lab File ID:

p0850.d

Initial Weight/Volume:

5 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Benzene	1.0	U	0.32	1.0	
Chlorobenzene	. 1.0	υ	0.34	1.0	
1,2-Dichlorobenzene	1.0	U	0.33	1.0	
1,3-Dichlorobenzene	1.0	U	0.31	1.0	
1,4-Dichlorobenzene	1.0	U	0.33	1.0	

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	97	75 - 120
Dibromofluoromethane	109	75 - 12 1
Toluene-d8 (Surr)	100	75 - 120

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-1-0209

Lab Sample ID:

680-45056-1

Client Matrix:

Water

Date Sampled:

02/26/2009 0930

Date Received:

02/27/2009 1116

8270C Semivolatile Comp	oounds by Gas	Chromatograp	hv/Mass S	pectrometr	v (GC/MS)

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

3520C

Prep Batch: 680-131614

Lab File ID:

n2169.d

Dilution:

1.0

Initial Weight/Volume:

Date Analyzed: Date Prepared: 03/05/2009 2229 03/03/2009 1213 Final Weight/Volume:

1030 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
2-Chlorophenol	9.7	U	0.97	9.7	
4-Chloroaniline	19	U	4.7	19	
1,4-Dioxane	9.7	IJ	2.5	9.7	
1,2,4-Trichlorobenzene	9.7	U	0.69	9.7	

Surrogate	%Rec	Acceptance Limits
Phenol-d5	83 /	38 - 116
2-Fluorophenol	82	36 - 110
2,4,6-Tribromophenol	102	40 - 139
Nitrobenzene-d5	89 /	4 5 - 112
2-Fluorobiphenyl	90	50 - 113
Terphenyl-d14	48	10 - 121

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-3-0209

Lab Sample ID: Client Matrix:

680-45056-3

Water

Date Sampled:

02/26/2009 1115

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

Lab File ID:

n2170.d

3520C

Prep Batch: 680-131614

Dilution:

1.0

Initial Weight/Volume:

1030 mL

Date Analyzed:

03/05/2009 2251 /

Final Weight/Volume:

1 mL

Date Prepared:

03/03/2009 1213 🔏

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
2-Chlorophenol	9.7	U	0.97	9.7	
4-Chioroaniline	19	U	4.7	19	
1,4-Dioxane	9.7	U	2.5	9.7	
1,2,4-Trichlorobenzene	9.7	U	0.69	9.7	

Surrogate	%Rec	Acceptance Limits
Phenol-d5	79 🗸	38 - 116
2-Fluorophenol	78	36 - 110
2,4,6-Tribromophenol	97 🗸	40 - 139
Nitrobenzene-d5	86	4 5 - 112
2-Fluorobiphenyl	82 /	50 - 113
Terphenyl-d14	41 /	10 - 121

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-3-0209 DUP

Lab Sample ID:

680-45056-4

Date Sampled:

02/26/2009 1115

Client Matrix:

Water

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3520C Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

Prep Batch: 680-131614

Lab File ID:

n2171.d

Dilution:

1.0

Initial Weight/Volume:

1030 mL

Date Analyzed:

03/05/2009 2314

Final Weight/Volume:

1 mL

Date Prepared:

03/03/2009 1213 🖊

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
2-Chlorophenol	9.7	U	0.97	9.7	
4-Chloroaniline	19	U	4.7	19	
1,4-Dioxane	9.7	U	2.5	9.7	
1,2,4-Trichlorobenzene	9.7	U	0.69	9.7	

Surrogate	%Rec	Acceptance Limits
Phenol-d5	86	38 - 116
2-Fluorophenol	87 /	36 - 110
2,4,6-Tribromophenol	105	40 - 139
Nitrobenzene-d5	91 /	45 - 112
2-Fluorobiphenyl	91 /	50 - 113
Terphenyl-d14	55	10 - 121

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SW-R2007-2-0209

Lab Sample ID: Client Matrix:

680-45056-7

Water

Date Sampled:

02/26/2009 1230

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass	Spectrometry (GC/MS)
---	----------------------

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

3520C

Lab File ID:

n2172.d

Dilution:

1.0

Prep Batch: 680-131614

Date Analyzed: Date Prepared: 03/05/2009 2336 03/03/2009 1213 Initial Weight/Volume: Final Weight/Volume:

1030 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
2-Chlorophenol	9.7	U	0.97	9.7
4-Chloroaniline	19	U	4.7	19
1,4-Dioxane	9.7	U	2.5	9.7
1,2,4-Trichlorobenzene	9.7	U	0.69	9.7

Surrogate	%Rec	Acceptance Limits
Phenol-d5	87 /	38 - 116
2-Fluoropheriol	87	36 - 110
2,4,6-Tribromophenol	106	40 - 139
Nitrobenzene-d5	89	45 - 112
2-Fluorobiphenyl	90 /	50 - 113
Terphenyl-d14	51 ´	10 - 121

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Client Sample ID:

SED-R2007-2-0209 EB

Lab Sample ID:

680-45056-9

03/05/2009 2359 /

03/03/2009 1213 🗸

Client Matrix:

Water

Date Sampled:

02/26/2009 1355

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131938

Instrument ID:

GC/MS SemiVolatiles - N

Preparation:

3520C

Lab File ID:

n2173.d

Dilution: Date Analyzed:

Date Prepared:

1.0

Prep Batch: 680-131614

Initial Weight/Volume: Final Weight/Volume:

1030 mL 1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
2-Chlorophenol	9.7	U	0.97	9.7
4-Chloroaniline	19	U	4.7	19
1,4-Dioxane	9.7	U	2.5	9.7
1,2,4-Trichlorobenzene	9.7	U	0.69	9.7

Surrogate	%Rec	Acceptance Limits
Phenol-d5	84 /	38 - 116
2-Fluorophenol	84 /	36 - 110
2,4,6-Tribromophenol	103 /	40 - 139
Nitrobenzene-d5	87 /	4 5 - 112
2-Fluorobiphenyl	83 🗸	50 - 113
Terphenyl-d14	38 /	10 - 121

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-45056-1

Sdg Number: KRS005

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	-	,
GC/MS Semi VOA		
	U	Indicates the analyte was analyzed for but not detected.
	F	RPD of the MS and MSD exceeds the control limits
TestAmerica Savannah		

Page 18 of 30

SDG KRS006

Results of Sediment Samples from Sampling Points:

R2007-1

R2007-2

R2007-3

Solutia Krummrich Data Review

Laboratory SDG: KRS006

Reviewer: Elizabeth Kunkel

Date Reviewed: 4/3/2009

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: Long-Term Monitoring Program (LTMP) Work Plan (Solutia

2008)

Sample Identification #	Sample Identification #
SED-R2007-1-0209	SED-R2007-3-0209
SED-R2007-3-0209 DUP	SED-R2007-2-0209

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated that SVOC MS/MSD recoveries and MS/MSD RPDs were outside evaluation criteria in sample SED-R2007-1-0209. This issue is addressed further in the appropriate section below.

The cooler receipt form indicated that one MS sample vial and two MSD sample vials for sample SED-R2007-1-0209 were received by the laboratory with low sample volume. However, sufficient sample was available to perform all requested analyses. Additionally, there was a sample ID discrepancy between the COC and sample labels. The field duplicate samples on the COC were listed as DUP and the sample labels listed -AD at the end of the sample ID. Samples were logged in by the laboratory using the DUP sample ID designated. This did not affect the quality of the data. No qualification of data was required.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

No

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample SED-R2007-1-0209 was spiked and analyzed for VOCs and SVOCs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
SED-R-2007-1- 0209	SVOCs	4-Chloroaniline	60/143	82	21-110/50
SED-R-2007-1- 0209	SVOCs	2-Chlorophenol	51/105	70	44-110/50
SED-R-2007-1- 0209	SVOCs	1,4-Dioxane	0/65	200	10-110/50
SED-R-2007-1- 0209	SVOCs	1,2,4-Trichlorobenzene	48/108	77	42-110/50

USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria; therefore, no qualification of data was required.

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
SED-R2007-3-0209	SED-R2007-3-0209 DUP

Were field duplicates within evaluation criteria?

Yes

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

Samples were not analyzed at a dilution.

12.0 Additional Qualifications

Were additional qualifications applied?

No

SAMPLE SUMMARY

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

			Date/Time	Date/Time	
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received	
					_
680-45056-2	SED-R2007-1-0209	Solid	02/26/2009 0940	02/27/2009 1116	
680-45056-2MS	SED-R2007-1-0209	Solid	02/26/2009 0940	02/27/2009 1116	
680-45056-2MSD	SED-R2007-1-0209	Solid	02/26/2009 0940	02/27/2009 1116	
680-45056-5	SED-R2007-3-0209	Solid	02/26/2009 1130	02/27/2009 1116	
680-45056-6	SED-R2007-3-0209 DUP	Solid	02/26/2009 1130	02/27/2009 1116	
680-45056-8	SED-R2007-2-0209	Solid	02/26/2009 1240	02/27/2009 1116	

SAMPLE RESULTS

TestAmerica Savannah

Page 6 of 29

Client: Solutia Inc. Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-1-0209

Lab Sample ID:

680-45056-2

Client Matrix:

Solid

% Moisture:

29.3

Date Sampled:

02/26/2009 0940

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: 8260B

5035

Analysis Batch: 680-132158 Prep Batch: 680-131535

Instrument ID: Lab File ID:

GC/MS Volatiles - M m0165.d

Dilution: 1.0

Date Analyzed: Date Prepared: 03/09/2009 1331 4 03/02/2009 1053

Initial Weight/Volume:

2.7 g

Final Weight/Volume:

5 g

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Benzene	13	Ū	2.1	13
Chlorobenzene	13	U	1.9	13
1,2-Dichlorobenzene	13	U	1.7	13
1,3-Dichlorobenzene	13	U	2.2	13
1,4-Dichlorobenzene	13	U	1.3	13

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	71	65 - 124
Dibromofluoromethane	90	65 - 124
Toluene-d8 (Surr)	88	65 - 132

Job Number: 680-45056-2 Client: Solutia Inc.

Sdg Number: KRS006

Client Sample ID:

SED-R2007-3-0209

Lab Sample ID:

680-45056-5

Client Matrix:

Solid

% Moisture:

18.3

Date Sampled:

02/26/2009 1130

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method: Preparation:

8260B 5035

Analysis Batch: 680-132158

Instrument ID: Lab File ID:

GC/MS Volatiles - M

Dilution:

Prep Batch: 680-131535

Initial Weight/Volume:

m0166.d

Date Analyzed:

1.0

03/09/2009 1354

Final Weight/Volume:

7.7 g 5 g

Date Prepared:

Analyte

Benzene

03/02/2009 1053

Qualifier	MDL	RL
υ	0.63	4.0
J	0.58	4.0

Surrogate	%Rec		Accept	ance Limits
1,4-Dichlorobenzene	4.0	υ	0.41	4.0
1,3-Dichlorobenzene	4.0	υ	0.66	4.0
1,2-Dichlorobenzene	4.0	υ	0.52	4.0
Chlorobenzene	2.9	J	0.58	4.0

4.0

Surrogate	70KeC	Acceptance t
4-Bromofluorobenzene	80	65 - 124
Dibromofluoromethane	92	65 - 124
Toluene-d8 (Surr)	92	65 - 132

DryWt Corrected: Y Result (ug/Kg)

Client: Solutia Inc. Job Number: 680-45056-2

65 - 132

Sdg Number: KRS006 Client Sample ID: SED-R2007-3-0209 DUP

02/26/2009 1130 Lab Sample ID: 680-45056-6 Date Sampled: 02/27/2009 1116 Date Received: Client Matrix: Solid % Moisture: 17.1

8260B Volatile Organic Compounds (GC/MS)

8260B Analysis Batch: 680-132158 Instrument ID: GC/MS Volatiles - M Method:

Preparation: 5035 Prep Batch: 680-131535 Lab File ID: m0167.d

6.3 g Dilution: 1.0 Initial Weight/Volume:

03/09/2009 1417 -Date Analyzed: Final Weight/Volume: 5 g 03/02/2009 1053 Date Prepared:

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL	
Benzene	4.8	U	0.76	4.8	
Chlorobenzene	2.0	J	0.70	4.8	
1,2-Dichlorobenzene	4.8	U	0.62	4.8	
1,3-Dichlorobenzene	4.8	U	0.79	4.8	
1,4-Dichlorobenzene	4.8	U	0.49	4.8	
Surrogate	%Rec		Accept	ance Limits	
4-Bromofluorobenzerie	75 /		65 - 1	124	
Dibromofluoromethane	98		65 - 1	124	

Toluene-d8 (Surr)

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-2-0209

Lab Sample ID:

680-45056-8

Client Matrix:

Solid

% Moisture:

16.5

Date Sampled:

02/26/2009 1240

Date Received:

02/27/2009 1116

8260B Volatile Organic Compounds (GC/MS)

Method:

8260B

Analysis Batch: 680-132158

Instrument ID:

GC/MS Volatiles - M

Preparation:

5035

Lab File ID:

m0168.d

Dilution:

1.0

Prep Batch: 680-131535

Initial Weight/Volume:

6.3 g

03/09/2009 1439 Date Analyzed:

Final Weight/Volume:

5 g

Date Prepared:

03/02/2009 1053

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
Benzene	4.8	U	0.75	4.8
Chlorobenzene	4.8	U	0.69	4.8
1,2-Dichlorobenzene	4.8	U	0.62	4.8
1,3-Dichlorobenzene	4.8	U	0.79	4.8
1.4-Dichlorobenzene	4.8	U	0.48	4.8

Surrogate	%Rec	Acceptance Limits
4-Bromofluorobenzene	89	65 - 124
Dibromofluoromethane	92	65 - 124
Toluene-d8 (Surr)	94	65 - 132

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-1-0209

Lab Sample ID:

680-45056-2

Client Matrix:

Solid

% Moisture:

29.3

Date Sampled:

02/26/2009 0940

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131776

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3550B

Lab File ID:

g5497.d

Dilution:

1.0

Prep Batch: 680-131485

Initial Weight/Volume:

30.06 g

Date Analyzed:

03/02/2009 1924

Final Weight/Volume:

1 mL

Date Prepared:

03/01/2009 1436 🗸

Injection Volume:

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL	
4-Chloroaniline	930	U	24	930	
2-Chlorophenol	470	U	24	470	
1,4-Dioxane	470	U	120	470	
1,2,4-Trichlorobenzene	470	U	24	470	

Surrogate	%Rec	Acceptance Limits
2-Fluorobiphenyl	73	44 - 110
2-Fluorophenol	76 🖊	41 - 110
Nitrobenzene-d5	55 /	36 - 110
Phenol-d5	68 /	43 - 110
Terphenyl-d14	76	10 - 112
2,4,6-Tribromophenol	88	36 - 128

Client: Solutia Inc. Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-3-0209

Lab Sample ID: Client Matrix:

Solid

680-45056-5

% Moisture:

18.3

Date Sampled:

02/26/2009 1130

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-131776

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3550B

Prep Batch: 680-131485

Lab File ID:

g5500.d

Dilution:

1.0

Initial Weight/Volume:

30.08 g

03/02/2009 2032 Date Analyzed:

Date Prepared:

03/01/2009 1436

Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
4-Chloroaniline	810	U	21	810
2-Chlorophenol	400	U	21	400
1,4-Dioxane	400	ប	100	400
1,2,4-Trichlorobenzene	400	U	21	400

Surrogate	%Rec	Acceptance Limits
2-Fluorobiphenyl	75 /	44 - 110
2-Fluorophenol	79 /	41 - 110
Nitrobenzene-d5	58	36 - 110
Phenol-d5	68	43 - 110
Terphenyl-d14	79	10 - 112
2,4,6-Tribromophenol	85	36 - 128

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-3-0209 DUP

Lab Sample ID: Client Matrix:

680-45056-6

Solid

% Moisture:

17.1

Date Sampled:

02/26/2009 1130

Date Received:

02/27/2009 1116

8270C Semivolatile Compou	anda bu Can Chramatanı	anhu/Maaa Cnastromata	/CC/MICS
62700 Semivolatile Compot	mus by Gas Unfomatodr	abiiv/wass obectrometry	(GU/NO)

Method:

8270C 3550B

Instrument ID:

GC/MS SemiVolatiles - T

t5054.d

Preparation:

Analysis Batch: 680-132488 Prep Batch: 680-131485

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

30.02 g

Date Analyzed:

03/11/2009 1156

Final Weight/Volume:

1 mL

Date Prepared:

03/01/2009 1436 <

Injection Volume:

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL	
4-Chloroaniline	800	U	20	800	
2-Chlorophenol	400	U	20	400	
1,4-Dioxane	400	U	100	400	
1,2,4-Trichlorobenzene	400	U	20	400	

Surrogate	%Rec	Acceptance Limits
2-Fluorobiphenyl	64	44 - 110
2-Fluorophenol	68	41 - 110
Nitrobenzene-d5	55 /	36 - 110
Phenol-d5	64	43 - 110
Terphenyl-d14	60	10 - 112
2,4,6-Tribromophenol	67 /	36 - 128

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

Client Sample ID:

SED-R2007-2-0209

Lab Sample ID: Client Matrix:

680-45056-8

Solid

% Moisture:

16.5

Date Sampled:

02/26/2009 1240

Date Received:

02/27/2009 1116

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-132487

Instrument ID:

GC/MS SemiVolatiles - T

Preparation:

3550B

Lab File ID:

t5041.d

Prep Batch: 680-131485

Dilution:

1.0

Initial Weight/Volume:

30.18 g

Date Analyzed:

03/10/2009 1649

Final Weight/Volume: Injection Volume:

1 mL 1.0 uL

Duito	, analyzou.
Date	Prepared:

03/01/2009 1436 🖊

Analyte	DryWt Corrected: Y Result (ug/Kg)	Qualifier	MDL	RL
4-Chloroaniline	790	U	20	790
2-Chlorophenol	390	U	20	390
1,4-Dioxane	390	U	99	390
1.2.4-Trichlorobenzene	390	บ	20	390

Surrogate	%Rec	Acceptance Limits
2-Fluorobiphenyl	52 /	44 - 110
2-Fluorophenol	57 /	41 - 110
Nitrobenzene-d5	51 🖊	36 - 110
Phenol-d5	54	43 - 110
Terphenyl-d14	53 /	10 - 112
2,4,6-Tribromophenol	66	36 - 128

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

		Gen	eral Che	emistry			
Client Sample ID:	SED-R2007-1-0209						
Lab Sample ID:	680-45056-2				Date Sampled:	02/2	26/2009 0940
Client Matrix:	Solid	•		Date Received:	d: 02/27/2009 1116		
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	29 Anly Batch: 680-131530	Date Ana	% lyzed	0.010 03/02/2009 1049	0.010	1.0	PercentMoisture
Client Sample ID:	SED-R2007-3-0209						
Lab Sample ID:	680-45056-5				Date Sampled:	02/2	26/2009 1130
Client Matrix:	Solid				Date Received:	02/2	27/2009 1116
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	18 Anly Batch: 680-131530	Date Anal	% lyzed	0.010 03/02/2009 1049	0.010	1.0	PercentMoisture
Client Sample ID:	SED-R2007-3-0209 DUP						
Lab Sample ID:	680-45056-6				Date Sampled:	02/2	26/2009 1130
Client Matrix:	Solid				Date Received:	02/2	27/2009 1116
Analyte	Result	Qual	Units	RL	RL_	Dit	Method
Percent Moisture	17 Anly Batch: 680-131530	Date Anal	% yzed	0.010 03/02/2009 1049	0.010	1.0	PercentMoisture
Client Sample ID:	SED-R2007-2-0209						
Lab Sample ID:	680-45056-8				Date Sampled:	02/2	6/2009 1240
Client Matrix:	Solid				Date Received:		
Analyte	Result	Qual	Units	RL	RL	Dil	Method
Percent Moisture	16 Anly Batch: 680-131530	Date Anal	% yzed	0.010 03/02/2009 1049	0.010	1.0	PercentMoisture

DATA REPORTING QUALIFIERS

Client: Solutia Inc.

Job Number: 680-45056-2

Sdg Number: KRS006

Lab Section	Qualifier	
GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Semi VOA		
	υ	Indicates the analyte was analyzed for but not detected.
	F	MS or MSD exceeds the control limits
	Е	Result exceeded calibration range, secondary dilution required.
	F	RPD of the MS and MSD exceeds the control limits
	X	Surrogate exceeds the control limits

Appendix G Microbial Insights Data Package

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Client: Thomas Adams Phone: 314.429.0100

URS Corp

1001 Highlands Plaza Dr. West

Suite 300

St. Louis, MO 63110 Fax: 314.429.0462

Client Project #: 21562154.00001 Client Project Name: Solutia WG Krummrich Long Term Monit

Purchase Order #:

Analysis Requested: PLFA, PLFA+SIP

Greg a. Danies

Comments:

Reviewed By:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Solutia WG Krummrich Long Term Monitoring

Tel. (865) 573-8188 Fax. (865) 573-8133

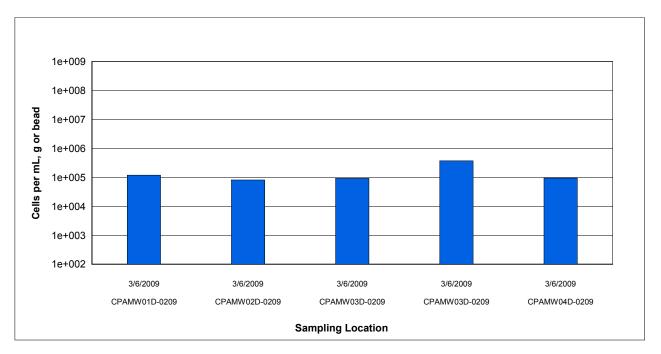
URS Corp

MI Project Number: 016GC Date Received: 03/07/2009 **PLFA**

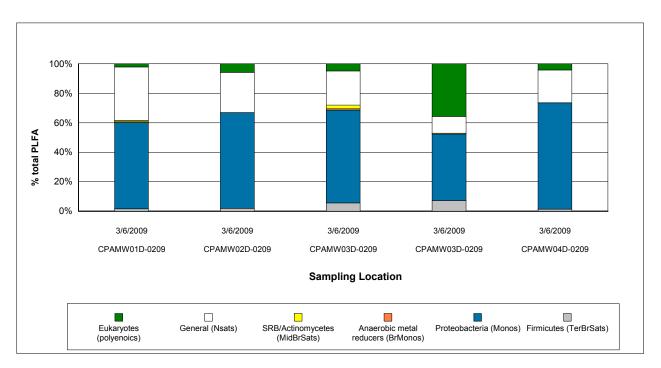
Sample Information

Client:

Project:


<u> </u>					
Sample Name:	CPAMW01D-020	CPAMW02D-020	CPAMW03D-	CPAMW03D-0	CPAMW04D-02
Sample Date:	9 03/06/2009	9 03/06/2009	0209 03/06/2009	209 03/06/2009	09 03/06/2009
Sample Matrix:	beads	beads	beads	beads	beads
Analyst:	MG	MG	MG	MG	MG
Biomass Concentrations					
Total Biomass (cells/bead)	1.19E+05	8.19E+04	9.33E+04	3.73E+05	9.50E+04
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	1.62	1.99	5.60	7.26	1.38
Proteobacteria (Monos)	58.60	64.76	63.06	45.19	72.08
Anaerobic metal reducers (BrMonos)	0.51	0.15	0.84	0.00	0.00
SRB/Actinomycetes (MidBrSats)	0.86	0.00	2.45	0.53	0.31
General (Nsats)	36.26	27.29	23.16	11.32	22.04
Eukaryotes (polyenoics)	2.13	5.82	4.90	35.71	4.20
Physiological Status (Proteobacteria or	nly)				
Slowed Growth	0.20	0.11	0.47	0.14	0.18
Decreased Permeability	0.10	0.16	0.16	0.48	0.13

Legend:
NA = Not Analyzed NS = Not Sampled


PLFA

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:016GCProject:Solutia WG Krummrich Long Term MonitoringDate Received:03/07/2009

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Tel. (865) 573-8188 Fax. (865) 573-8133

URS Corp

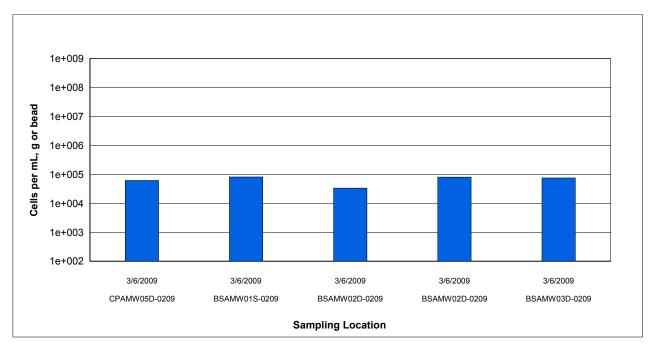
PLFA

Solutia WG Krummrich Long Term Monitoring Project:

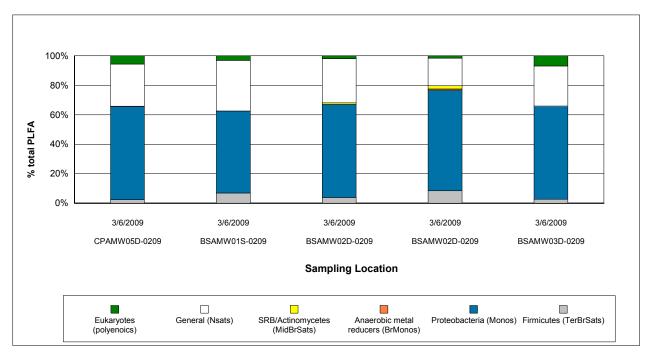
MI Project Number: 016GC Date Received: 03/07/2009

Sample Information

Client:


Sample Name:	CPAMW05D-020 9	BSAMW01S-020 9	BSAMW02D- 0209	BSAMW02D-0 209	BSAMW03D-02 09
Sample Date:	03/06/2009	03/06/2009	03/06/2009	03/06/2009	03/06/2009
Sample Matrix:	beads	beads	beads	beads	beads
Analyst:	MG	MG	MG	MG	MG
Biomass Concentrations					
Total Biomass (cells/bead)	6.15E+04	8.18E+04	3.35E+04	8.08E+04	7.53E+04
Community Structure (% total PLFA)					
Firmicutes (TerBrSats)	2.55	6.92	3.94	8.49	2.75
Proteobacteria (Monos)	62.99	55.62	63.08	68.29	63.22
Anaerobic metal reducers (BrMonos)	0.31	0.00	0.00	0.69	0.00
SRB/Actinomycetes (MidBrSats)	0.00	0.00	1.05	2.19	0.00
General (Nsats)	28.53	34.26	30.04	18.69	27.14
Eukaryotes (polyenoics)	5.62	3.17	1.91	1.64	6.90
Physiological Status (Proteobacteria only	')				
Slowed Growth	0.06	0.37	0.03	0.02	0.43
Decreased Permeability	0.13	0.59	0.12	0.10	0.16

Legend:
NA = Not Analyzed NS = Not Sampled


PLFA

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:016GCProject:Solutia WG Krummrich Long Term MonitoringDate Received:03/07/2009

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

MICROBIAL INSIGHTS, INC.

2340 Stock Creek Blvd. Rockford, TN 37853-3044

Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:016GCProject:Solutia WG Krummrich Long Term MonitoringDate Received:03/07/2009

PLFA

Sample Information

 Sample Name:
 BSAMW04D-020
 BSAMW05D-020

 9
 9

 Sample Date:
 03/06/2009
 03/06/2009

 Sample Matrix:
 beads
 beads

 Analyst:
 MG
 MG

Biomass Concentrations

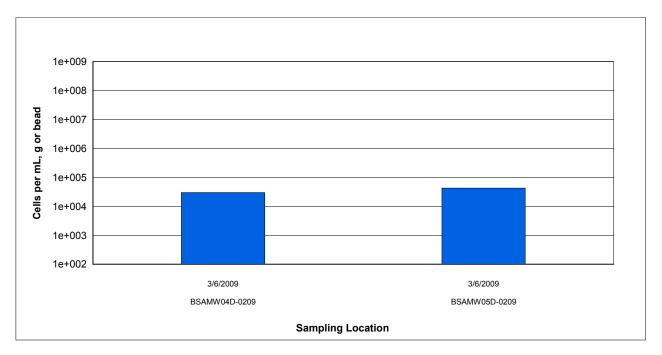
Total Biomass (cells/bead) 2.99E+04 4.26E+04

Community Structure (% total PLFA)

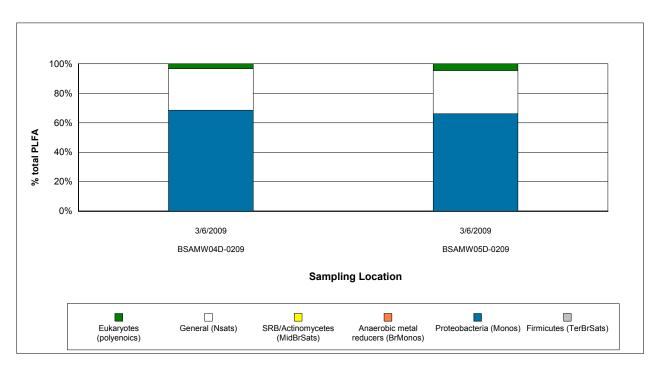
Firmicutes (TerBrSats) 0.00 0.00 Proteobacteria (Monos) 68.54 66.11 Anaerobic metal reducers (BrMonos) 0.00 0.00 SRB/Actinomycetes (MidBrSats) 0.00 0.00 General (Nsats) 28.24 29.37 Eukaryotes (polyenoics) 3.23 4.53

Physiological Status (Proteobacteria only)

Slowed Growth 0.20 0.09
Decreased Permeability 0.05 0.16


Legend:

NA = Not Analyzed NS = Not Sampled


PLFA

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel. (865) 573-8188 Fax. (865) 573-8133

Client:URS CorpMI Project Number:016GCProject:Solutia WG Krummrich Long Term MonitoringDate Received:03/07/2009

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

SITE LOGIC Report

Stable Isotope Probing (SIP) Study

Contact: Thomas Adams

Address: URS Corp – St. Louis MO

1001 Highlands Plaza Drive West

Suite 300

St. Louis, MO 63110

MI Identifier: 016GC Report Date: April 28, 2009

Phone:

Email:

314.429.0100

thomas adams@urscorp.com

Project: Solutia WG Krummrich Long Term Monitoring

Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Executive Summary

Bio-Trap® samplers baited with ¹³C chlorobenzene (CPAMW03D) or ¹³C labeled benzene (BSAMW02D) were deployed in monitoring wells for 30 days and then recovered for analysis. A complete summary of the results is provided in Table 1.

- A moderate level (~10⁵ cells/bead) of total biomass was detected in well CPAMW03 and a low level (~10⁴ cells/bead) in BSAMW02.
- Quantification of the ¹³C enriched biomass demonstrated a high level of utilization of benzene by the indigenous microbes in well BSAMW02.
- No incorporation of the ¹³C into the biomass was seen in the chlorobenzene baited Bio-Trap in well CPAMW03.
- Quantification of ¹³C dissolved inorganic carbon (DIC) demonstrated high levels of benzene mineralization in well BSAMW02. There was no mineralization of chlorobenzene in CPAMW03.
- Comparison of pre- and post-deployment ¹³C labeled benzene in well BSAMW02 showed an 11% loss of the ¹³C labeled benzene. There was a 62% loss of the ¹³C labeled chlorobenzene in CPAMW03.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

Overview of Approach

Stable Isotope Probing (SIP)

Stable isotope probing (SIP) is an innovative method to track the environmental fate of a "labeled" contaminant of concern to unambiguously demonstrate biodegradation. Two stable carbon isotopes exist in nature – carbon 12 (12C) which accounts for 99% of carbon and carbon 13 (13C) which is considerably less abundant (~1%). With the SIP method, the Bio-Trap® sampler is baited with a specially synthesized form of the contaminant containing ¹³C labeled carbon. Since ¹³C is rare, the labeled compound can be readily differentiated from the contaminants present at the site. Following deployment, the Bio-Trap® is recovered and three approaches are used to conclusively demonstrate biodegradation of the contaminant of concern.

- The loss of the labeled compound provides an estimate of the degradation rate (% loss of ¹³C).
- Quantification of ¹³C enriched phospholipid fatty acids (PLFA) indicates incorporation into microbial biomass.
- Quantification of ¹³C enriched dissolved inorganic carbon (DIC) indicates contaminant mineralization.

Phospholipid Fatty Acids (PLFA): PLFA are a primary component of the membrane of all living cells including bacteria. PLFA decomposes rapidly upon cell death (1, 2), so the total amount of PLFA present in a sample is indicative of the viable biomass. When combined with stable isotope probing (SIP), incorporation of ¹³C into PLFA is a conclusive indicator of biodegradation.

Some organisms produce "signature" types of PLFA allowing quantification of important microbial functional groups (e.g. iron reducers, sulfate reducers, or fermenters). The relative proportions of the groups of PLFA provide a "fingerprint" of the microbial community. In addition, Proteobacteria modify specific PLFA during periods of slow growth or in response to environmental stress providing an index of their health and metabolic activity.

Results

Table 1. Summary of the results obtained from MICRO, GEO, and COC samplers within Bio-Trap® Units. Interpretation guidelines and definitions are found later in the document.

	CPAMW03D-0209-13C	BSAMW02D-0209-13C Benzene
Sample Name	Chlorobenzene	
¹³ C Contaminant Loss		
Chlorobenzene Pre-deployment (mg/bd)	0.34	
Chlorobenzene Post-deployment (mg/bd)	0.13	
Benzene Pre-deployment (mg/bd)		1.34
Benzene Post-deployment (mg/bd)		1.20
% Loss	62%	11%
First Order Rate Constant (1/days)	0.032	0.004
Half Life (days)	22	185
Biomass & ¹³ C Incorporation		
Total Biomass (Cells/bd)	3.73E+05	8.08E+04
¹³ C Enriched Biomass (Cells/bd)	1.57E+01	6.3E+02
% ¹³ C Incorporation	0.00%	0.78%
Average PLFA Del (‰)	47	2,330
Maximum PLFA Del (‰)	47	4,034
¹³ C Mineralization		
DIC Del (‰)	0	7,683
% 13C	1.10%	8.85%
Community Structure (% total PLFA)		
Firmicutes (TerBrSats)	7.3	8.5
Proteobacteria (Monos)	45.2	68.3
Anaerobic metal reducers (BrMonos)	0.0	0.7
Actinomycetes (MidBrSats)	0.5	2.2
General (Nsats)	11.3	18.7
Eukaryotes (Polyenoics)	35.7	1.6
Physiological Status (Proteobacteria only)		
Slowed Growth	0.14	0.02
Decreased Permeability	0.48	0.10

www.microbe.com

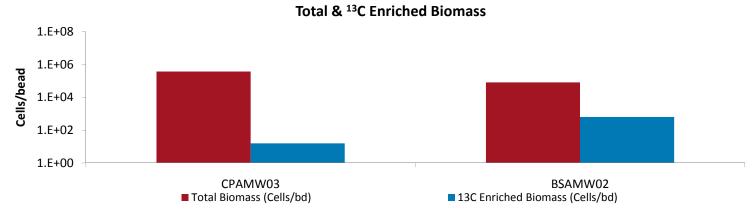
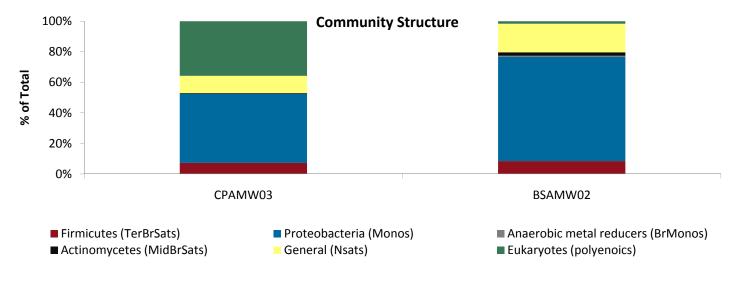



Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See the table in the interpretation section for detailed descriptions of the structural groups.

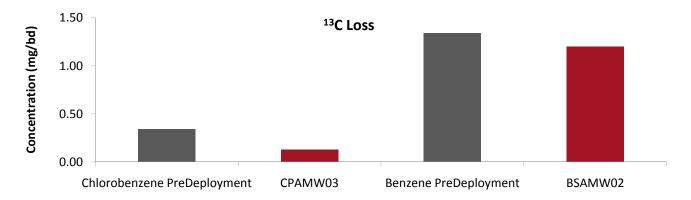
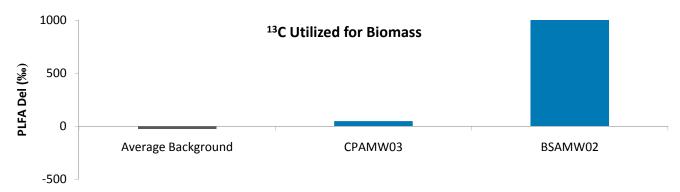
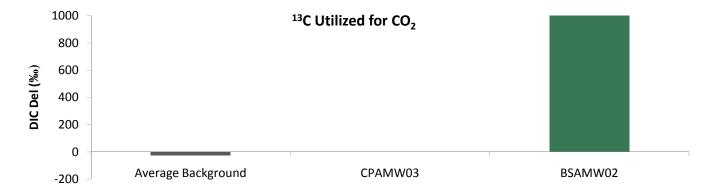




Figure 3. Comparison of Pre-deployment concentrations loaded on Bio-Sep beads to the concentrations detected after incubation.

Figure 4. Comparison of the average Del value obtained from PLFA biomarkers from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Figure 5. Comparison of the Del value obtained from DIC from each Bio-Trap® unit to the average background Del observed in samples not exposed to ¹³C enriched compounds.

Interpretation

Interpretation of the results of the SIP Bio-Trap® study must be performed with due consideration of site conditions, site activities, and the desired treatment mechanism. The following discussion describes interpretation of results in general terms and is meant to serve as a guide.

Contaminant Concentration: Bio-Traps® are baited with a ¹³C labeled contaminant of concern and a pre-deployment concentration is determined prior to shipping. Following deployment, Bio-Traps® are recovered for analysis including measurement of the concentration of the ¹³C labeled contaminant remaining. Pre- and post-deployment concentrations are used to calculate percent loss, to estimate the first order degradation rate constant (k), and to estimate the contaminant half life (Results Summary Table). For a description of how the first order rate constant is calculated, please see the glossary at the end of the report. The first order rate constant can be used to compare different wells or treatments depending on the design of the study. A higher value is indicative of a greater biodegradation rate.

Alternatively, the contaminant half life can be used to make the same types of comparisons between wells and treatments. By definition, half life is the amount of time required for the contaminant concentration to equal half of the initial concentration (see glossary for calculation).

Biomass Concentrations: PLFA analysis is one of the most reliable and accurate methods available for the determination of viable (live) biomass. Phospholipids break down rapidly upon cell death, so biomass calculations based on PLFA content do not include "fossil" lipids from dead cells. Total biomass (cells/bead) is calculated from total PLFA using a conversion factor of 20,000 cells/pmole of PLFA. When making comparisons between wells, treatments, or over time, differences of one order of magnitude or more are considered significant.

	Total Biomass	
Low	Moderate	High
10 ³ to 10 ⁴ cells	10 ⁵ to 10 ⁶ cells	10 ⁷ to 10 ⁸ cells

For SIP studies, the ¹³C enriched PLFA is also determined to conclusively demonstrate contaminant biodegradation and quantify incorporation into biomass as a result of the ¹³C being used for cellular growth. The % ¹³C incorporation (¹³C enriched biomass/total biomass) is also provided in the data summary table, but the value must be interpreted carefully especially when comparing wells or treatments. Typically, biodegradation of a contaminant of concern is performed by a small subset of the total microbial community. For Bio-Traps® with large total biomass, the % ¹³C incorporation value could be low despite significant ¹³C labeled biomass and loss of the compound. The % ¹³C incorporation should be viewed in light of total biomass, percent loss, and dissolved inorganic carbon (DIC) results.

 13 C enrichment data is often reported as a del value. The del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand, denoted ‰).

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

 R_{std} is the naturally occurring isotopic ratio and is approximately 0.011180 (roughly 1% of naturally occurring carbon is 13 C). The isotopic ratio, R_x , of PLFA is typically less than the R_{std} under natural conditions, resulting in a del value between -20 and -30‰. For a SIP Bio-Trap® study, biodegradation and incorporation of the 13 C labeled compound into PLFA results in a larger 13 C/ 12 C ratio (R_x) and thus del values greater than under natural conditions. Typical PLFA del values are provided below.

	PLFA Del (‰)	
Low	Moderate	High
0 to 100	100 to 1,000	>1,000

Dissolved Inorganic Carbon (DIC): Often, bacteria can utilize the ¹³C labeled compound as both a carbon and energy source. The ¹³C portion used as a carbon source for growth can be incorporated into PLFA as discussed above, while the ¹³C used for energy is oxidized to ¹³CO₂ (mineralized).

 13 C enriched CO₂ data is often reported as a del value as described above for PLFA. Under natural conditions, the R_x of CO₂ is approximately the same as R_{std} (0.01118 or about 1.1% 13 C). For an SIP Bio-Trap® study, mineralization of the 13 C labeled contaminant of concern would lead to a greater value of R_x (increased 13 CO₂ production) and thus a positive del value. As with PLFA, del values between 0 and 100% are considered low, values between 100 and 1,000% are considered moderate, and values greater than 1,000% are considered high. Thus DIC 13 C are considered low if the value is less than 1.23%, moderate if between 1.23 and 2.24%, and high if greater than 2.24%.

Dissolved Inorganic Carbon (DIC) Del and % 13C										
Low	High									
0 to 100	100 to 1,000	>1,000								
1.11 to 1.23%	1.23 to 2.24 %	>2.24 %								

Community Structure (% total PLFA): Community structure data is presented as a percentage of PLFA structural groups normalized to the total PLFA biomass. The relative proportions of the PLFA structural groups provide a "fingerprint" of the types of microbial groups (e.g. anaerobes, sulfate reducers, etc.) present and therefore offer insight into the dominant metabolic processes occurring at the sample location. Thorough interpretation of the PLFA structural groups depends in part on an understanding of site conditions and the desired microbial biodegradation pathways. For example, an increase in mid chain branched saturated PLFA (MidBrSats), indicative of sulfate reducing bacteria (SRB) and *Actinomycetes*, may be desirable at a site where anaerobic BTEX biodegradation is the treatment mechanism, but would not be desirable for a corrective action promoting aerobic BTEX or MTBE biodegradation. The following table provides a brief summary of each PLFA structural group and its potential relevance to bioremediation.

Table 2. Description of PLFA structural groups.

PLFA Structural Group	General classification	Potential Relevance to Bioremediation Studies
Monoenoic (Monos)	Abundant in Proteobacteria (Gram negative bacteria), typically fast growing, utilize many carbon sources, and adapt quickly to a variety of environments.	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of Hydrocarbon utilizing bacteria fall within the Proteobacteria
Terminally Branched Saturated (TerBrSats)	Characteristic of Firmicutes (Low G+C Gram-positive bacteria), and also found in Bacteriodes, and some Gramnegative bacteria (especially anaerobes).	Firmicutes are indicative of presence of anaerobic fermenting bacteria (mainly <i>Clostridia/Bacteriodes</i> -like), which produce the H ₂ necessary for reductive dechlorination
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.
Polyenoic	Found in eukaryotes such as fungi, protozoa, algae, higher plants, and animals.	Eukaryotic scavengers will often rise up and prey on contaminant utilizing bacteria

Physiological Status (*Proteobacteria*): Some *Proteobacteria* modify specific PLFA as a strategy to adapt to stressful environmental conditions (3, 4). For example, *cis* monounsaturated fatty acids may be modified to cyclopropyl fatty acids during periods of slowed growth or modified to *trans* monounsaturated fatty acids to decrease membrane permeability in response to environmental stress. The ratio of product to substrate fatty acid thus provides an index of their health and metabolic activity. In general, status ratios greater than 0.25 indicate a response to unfavorable environmental conditions.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

Glossary

Del: A Del value is the difference between the isotopic ratio (13 C/ 12 C) of the sample (R_x) and a standard (R_{std}) normalized to the isotopic ratio of the standard (R_{std}) and multiplied by 1,000 (units are parts per thousand denoted ‰).

$$Del = (R_x - R_{std}) / R_{std} \times 1000$$

First Order Rate Constant: The first order rate is expression is C=C_oe^{-kt} where C is the post-deployment concentration (mg/bead), Co is the pre-deployment concentration (mg/bead), k is the first order rate constant (1/days), and t is the deployment time (days). Upon rearrangement and using pre-and post-deployment concentrations, k=-ln(C/C_0)/t.

Half Life: Half life is the amount of time required for the contaminant concentration to equal half of the initial concentration and is expressed as $C=C_0/2$. Substituting into the rate expression and solving for half life $(t_{1/2})$, $t_{1/2} = \ln(0.5)/-k$. As opposed to the rate constant, a higher half life $(t_{1/2})$ indicates a lower degradation rate.

References

- 1. White, D.C., W.M. Davis, J.S. Nickels, J.D. King, and R.J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-62.
- White, D.C. and D.B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass. In P.S. Amy and D.L. Halderman (eds.) The microbiology of the terrestrial surface. CRC Press, Boca Raton.
- Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio chloerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology. 52:794-801.
- Tsitko, I.V., G. M. Zaitsev, A. G. Lobanok, and M.S. Salkinoja-Salonen. 1999. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Applied and Environmental Microbiology. 65:853-855.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Phone: 865.573.8188

Reports will be provided to the contact(s) listed below. Parties other than the contact(s) listed below will require prior approval.						INVOICE TO: For Invoices paid by a third party it is imperative that contact information & corresponding reference No. be provided.										microbialinsights																	
Company: URS Corporation C						Name (Same) Company: Address									2340 Stock Creek Blvd. Rockford, TN 37853-3044 phone (865) 573-8188 fax: (865) 573-8133																		
email:	Manager: No.: 21563154, 00001 Sample Information MI ID MI ID MI ID MI ID Sample Name						email	l:																email info@microbe.com									
Phone:	1314) 429-0100		,,,,		'	1	Phon	e:			()								_					mrcro	_						
Fax.						1	Fax:				()																				
Project Manager Project Name	Thomas Adams Solution WG Krum	rich-L	ony Term	Monit	onin	5		hase (ontra			_	_										_					san	nples	s to f I San				
Project No.:	71563154,00001					f)																											
Report Type:	Slandard (default)	☐ Compr	ehensive (1	5% surc	harg	e)		o H	listo	rical	(30%	6 su	rchar	ge)																			
Please contact us pno	or to submillting samples regarding qu	estions about	the analyses y	ou are re	questi	ing al	(865)	573-8	8188	(8:00	am to	040	🛚 pm I	Л-F)	After	these	hour	s plea	se c	all (86	5) 3(08-00	53.										
	Sample Information	n					CENSUS: Please select the target organism/gene																										
MI ID: {Laboratory Use Only}	Sample Name	Date		Майк	PLFA	VſA	WEE	0000-10	0008+300		qühü i Vehalococcoidesi	DHC Functional genes	4DHB (Dehasiptecter)	PDSB Characteran	nFRAT, /Totall	absR (SRBs only)	QSHB!RB	qMGN (melnanogens)	qMOB (methanotrophs)	ADNE Destroying)	gADB (ammonia prodizing)	gPM1 (MTBE aeropic)	9100 ilintal PAHs agrootel	qual Internegiate PAHs aerodroj	gBSS (Tousn/Xylene Anserobil)	фИАН (Масланте авторіс)	add qPCR	ady sPCR	assi gPCR.		Benzene SiP	Other Chlerobenzene 317	Olfreit
0169C 7	BSAMWOIS-0209	3/6/09	1320	water	X					\perp	-																					\perp	
		1'	1235		X				\perp	\perp	\perp	\perp		1															\perp	_	X	\perp	
to	BSAMW03D-0209		1220		X																									\perp		\perp	
13	BSAMW04D-6209		1120		X				1																- 1							\perp	
12	BSAMW05D-0309	115	1124×		X				T																								
	The second secon				X			П		Т	Т	Т	Т	Т										- {				П	П	Т	П	Т	
			1330		X			П	П	Т	Т	Т	Т	Т													П	П	П	П		\Box	
			1245		X	П		\neg	\neg	Т		T		T	T											\Box	\neg	П	П	Т	\Box	R	
	CPAMWOYD-0209		1145		X	П		\top	\top	Т	\top	T	\top	Т	T	Γ	I^{-}						\sqcap				\neg	\neg	\top	\top	\neg	T	
6	CFAMW05D-0209	V	1205	1	X															}							\Box	\neg		\exists			
Relinquished by:	nh Cifet	Dale:	16/09	•				Recer	ved b)y: •	K		Li	é		Dal	· 3	• ;	7-/	o 9	>												

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable.

**additional cost and sample preservation are associated with RNA samples.