

Energy Efficiency for Water Utilities: A Key to Sustainability **The Path Forward** Jim Horne, U.S. EPA **Office of Wastewater Management**

• Electric use for moving and treating water and wastewater in the US

Significance

- 25-30% of total plant O&M Cost
- Consumption and costs expected to continue to rise
- Usually the biggest consumers of energy in communities
- Current use of energy for wastewater treatment results in significant GHG emissions.
- Basic improvements in energy efficiency can show significant results (equipment, lighting, pumps)
- Several plants are becoming/approaching energy self sufficiency (net zero energy use)
 - Many plants in the US (Sheboygan, WI; East Bay MUD, CA, several others)
 - Internationally (Many plants WERF Study: Strass WWTP, Austria)

Elements of Energy Self-Sufficiency

- Management motivation to implement energy efficiency initiatives—efficiency first!
- Integrated into utility's overall vision and plan
- Empowerment of staff
- Buy in from local officials (Communicate!)
- Tolerance for risk
- Audit & energy management plan
- Process optimization & operator education
- Measurable goals (linked to vision and plan)
- High level of automation and process analysis tools
- Flexible and efficient designs
- ECMs

- Anaerobic digestion &:
 - Combined Heat & Power
 - pre-treatment
 - Co-digestion
- Enhanced primary sedimentation
- Nutrient recovery and side stream flow equalization or treatment
- Thermal biosolids processes
- Solar
- Wind

Where to Start

1. Create energy team and assess energy consumption

- Examine and analyze bills
- Plot energy consumption and demand for each process (recommend meters for each unit process)
- Develop consumption baselines and compare to similar facilities, <u>where</u> <u>feasible</u>
- 2. Assess energy savings opportunities (DO AN AUDIT!)
 - Evaluate process energy consumption and operational procedures
 - Evaluate operation of each significant piece of equipment
 - Can it be turned off or run efficiently at lower capacity?
 - Are new pieces of equipment much more efficient?
- 3. Develop and implement energy conservation plan starting with "low hanging fruit" projects
- 4. Contract specifications for energy efficient equipment
- 5. Measure progress, get some success under your belt, and keep moving!

Managing to Maximize Energy Efficiency

Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities

Designed to help utilities:

- Systematically assess current energy costs and practices
- Set measurable performance improvement goals
- Monitor and measure progress over time

Uses a management system approach for energy conservation, based on the successful Plan-Do-Check- Act process [based on Environmental Management Systems (EMS)

The Plan-Do-Check-Act Approach

- Allows utilities to systematically assess energy usage and opportunities for efficiency
- Doesn't give you the answer—helps you get to the right answer!
- Used extensively by EPA Regions and others through workshops and training

Energy Use Assessment Tool

What is the Energy Use Assessment Tool?

- Free of charge, downloadable tool based in Excel that can be used by small and medium water and wastewater systems
- Allows a utility to conduct a utility bill and equipment analysis to assess

a		EnergyUseAssi	essmentTool	V1.0_Examp	leads [Com	patibility Mod	e] - Microsof	ft Excel				
Home Insert Page Lay	out Formula:	Data Revi	iew View	Acrobat								0 - 1
Arial - 10 -	(A* A*) (=	= - (2-)	P Winp Tert			-	10 11 11 10 10 10 10 10 10 10 10 10 10 1		Talias Tribe	2000	- A.W.	a
120	134 4						(31) . Lain	1 120		1	g- Z/ 1	
aste B / U		登 温 读 读 [al Merge & Co	enter - \$	- % - + 1		itional Forma itting - as Tatil		Insert Delete		2* Filter - S	
pboard - Font		Alignmer	1		Hamber		Styles		Cells	-	Editing	toru :
GIDefault + (*	f.	10000		1.11			60.05				teroity.	
Giberault		c	p			9				к	1	M
The second second second second second	COLUMN TRACT	State of the second second		and the second second	Section sector	100	VERSION	and the second second				
EPA Energy Use A	Assessme	ent Tool fo	r Wast	ewater	Systen	15	SelectSw8	ch Tempiste				
General Informatio	m			kult ding Ovfa	Pantin	rgy Usage	Reset Data	Save	1			
	pecify Other Utili		Propene						_			
Specify Units for Oth			GAL	r								
specity units for our	er chergy contro	unboon (n and)										
2011												
Electric (\$4.Wh)	\$0.1018	Natural	Gas (\$/CCF)	\$1.1504	No 2 Fu	el Oil (SICCF)	\$1,0618	Water	(Sewer (SIGAL)	\$0.0056	Alt. Ene	engy: (\$
2011 *	gamman	February	Mareh	April	Mag	Jane	July	August	September	Outober	November	Deces
Destricity Cost (8) 2011	810,04.32	\$12,432,45	\$19,247.78	\$19,704.M	\$20,930.40	\$15,397.44						
Consumption (kVh) 2011	196,000	105.000	87,600	192,000	204,000	103,000						
Natural Gas Cost (8) 2011	\$5.146.54	\$1,556.60	\$5,015.30	03,292,82	81525.44	81425.90						
Consumption (CCF) 2011	6,276	4,702	4.331	2,994	1362	1299						
No 2 Feel Oil Cost (\$) 2011	\$16,231.00	810,956,71	\$0,507.05	\$5,877.59	\$534.92	\$43.09						
Consumption (CCF) 2011	14,260	\$0,279	8,478	6,237	642	400						
Water & Sewer Cost (8) 2011	812,320.06	\$12,325.06	\$1,741.82	811,741.02	810,241,62	\$16,734.47						
Consumption (GAL) 2011	2,210,996	2,210,906	2,107,267	2,807,257	2,007,287	3,013,644						
Alternative Energy Cost (8) 2011	\$1,994.90	\$2,035.90	\$2,571.40	\$2,394.60	82,812.40	\$25,07120						
Consumption (CCF) 2011	1472,000	1566.000	1970.000	1.642,000	1548.000	229,400						
Other - Propane Cost (\$) 2911	\$1,870.00	\$1505.60	\$2,024.00	\$3,500.50	\$2,817.40	81.923.90						
Consumption (GAL) 2011	973,000	1,096,000	2,93,000	2,091,000	1034,000	1748,000						
Total Utility Cost 2011	\$55,867.85	\$52,907.38	\$43,407.62	\$45,395.09	\$38,762.38	\$65,259.00						
Treatment Volume (MGAL) 2011	92.243	\$07.500	TH: 700	198.400	11200	94.700						
Utility Cost/Treatment Volume (\$/ME	\$497.75	8464.72	\$424.06	\$383.37	\$348.58	\$693 T						
Electric Utilization (LVM/MGAL) 2011	1753.39	1765.50	1607.54	0.020.00	1004.50	1940.07						
Castor of the second frequencies of the	0777	(test	1007.04	Call 14		Arton						_
2010			_		-	_		_		_	-	_
Electric (\$9kWh)	50,1020	- Harrison	Gas (\$/CCF)	\$1.0894	80.25	el Oil (\$/CCF)	\$1.0610	Mater	Sewer (S/GAL)	\$0.0058	AN 7-1	ergy: (5/
Esectric (\$9000)	30.1020	Hatural	cons (s/CCF)	\$1.0894	40 2 Pu	er un (SCCF)	21.0610	water	sewer (SIGAL)	30.0006	AR. Dre	1201 62
2010 .	January	February	March	April	Mag	dano	July	August	September	October	November	Decea
Electricity Cost (\$) 2010	\$N,71168	\$17,054.54	\$15,45156	\$15,069.68	416.374.96	\$10,396.40	\$10,939.92	\$10,04158	\$17,603.04	\$10,357.60	\$17,075.28	\$10,32
Consumption (kVh) 2010	\$63,200	172,200	150,600	145,400	159,600	174,600	112,600	177,400	173,600	82,400	106.600	190.6
Natural Gas Cost (\$) 2010	\$5,571.01	\$5,053.70	\$6,072,54	\$3,619.31	\$1,307.83	#1,207.72	\$1,108.00	\$999.13	\$1098.25	\$1,324,23	\$2,209.15	\$6,53
			5.769	3,600	1276	1.800	1080	875	830	1.003	1955	5.68
Consumption (CCF) 2010	4.938	4.659										

ENERGY USE & COST BY MAJOR PROCESS FOR 7/2010 - 6/2011 What does the tool provide?

- Drills down to equipment level
- Printable summary report
 - Presentation of energy consumption & costs (broad to detail)
 - Graphs energy use over time
 - Highlights areas of energy efficiency

http://water.epa.gov/infrastructure/sustain/energy_use.cfm 7

Energy Conservation Measures at Wastewater Facilities

- Main audience: Utility managers and POTW owners and operators.
- Targeted performance, cost, and savings/benefits information .
- Focus on innovative energy efficient equipment replacements and operational modification projects that result in energy savings with reasonable ay back periods.
- Nine detailed case studies.
- References info.

ECM Category	ECM Description					
Mechanical	Adjustable submergence impeller mechanical aerator					
Aeration	Dual impeller mechanical aerator					
Aeration Control Systems	Integrated DO and air flow aeration control					
	Automated SRT/DO Control					
Blower and Diffuser Technology	High speed turbo blowers					
	Single-stage centrifugal blowers with inlet guide vanes and variable diffuser vanes					
	Ultra-fine bubble diffusers					
Solids Processing	Vertical linear motion mixer					
	Multiple hearth furnace upgrade incorporating combustion air pre-heating and waste heat recovery					
	Solar drying					
ECMs for Selected Treatment Processes	Low-pressure, high intensity lamps for UV disinfection					
	Automated channel routing for UV disinfection					
	Membrane air scour for MBRs					
	Hyperbolic mixers					
	Pulsed air mixing of anoxic and anaerobic zones					
	BNR process automation					

Industry Leadership on Energy Efficiency

Take Away Messages for

Communities

- Energy efficient water utilities are critical to a community's long-term sustainability
- Probably your biggest opportunity to save energy
- A great way for you to have a major impact on GHGs/Climate
- Lots of tools to help you take on this challenge
- Do it <u>systematically</u>—don't jump on the next "neat project"
- DO AN AUDIT AND MOVE FORWARD FROM THERE!

THANKS!

Jim Horne U.S. EPA Office of Wastewater Management (202) 564-0571 <u>horne.james@epa.gov</u>

MATERIALS AVAILABLE AT:

http://water.epa.gov/infrastructure/sustain/energy efficiency.cfm