US ERA ARCHIVE DOCUMENT

Climate Change and Marine HABs

...and new monitoring capabilities for the WA coast

STEPHANIE MOORE
UNIVERSITY CORPORATION FOR ATMOSPHERIC
RESEARCH & NOAA'S NORTHWEST FISHERIES
SCIENCE CENTER

STEPHANIE.MOORE@NOAA.GOV

Take home messages!

2

1. Make friends with a climate scientist!

"Collaboration is the cornerstone of climate services" [Climate Services Partnership Working Group on Climate Services Ethics, 2015]

2. One size does not fit all

- 3. Understand the limitations of your findings
- 4. Communicate findings in the context of the decision frameworks of users

Expected impacts of climate change on HABs

- o Geographic range changes in both warm- and cold-water species, with some expansions and some contractions
- Species-specific changes in abundance and toxicity
- o Changes in the timing of the seasonal window of growth, with earlier timing of peak production for some species

[Laws, 2007; Moore et al., 2008; Paerl and Huisman, 2008; Backer and Moore, 2010; Hallegraeff, 2010; Anderson et al., 2012; Paerl and Paul, 2012] DANGER &

Photo credits: Ecology, WDOH

The challenge...

4

Our limited understanding of (1) the **environmental conditions that favor HABs** and (2) **interactions among climate and non-climate drivers** hinders our ability to forecast the direction and magnitude of change

...especially for dynamic coastal environments

Where to start?

"As a beginning there is a strong need to cutline

env

CIIV

even

1. What are the drivers of HABs in your system?

ers

[weils et al, 2015]

Climate drivers and biological responses of HABs

Climate drivers

- Temperature
- Precipitation
- Light
- o CO₂
- Winds
- Upwelling
- Extreme weather
- o Etc.
 - Future climate projections

Biological responses

- Growth
- Photosynthesis
- Cyst germination
- Toxicity
- Grazing
- Competition
- o Etc.

Thoughtfully designed experiments to investigate decadal- or century-scale trends

[see Hallegraeff 2010; Fu et al., 2012; Wells et al., 2015]

Puget Sound Alexandrium spp.

REGIONAL CLIMATE

atmospheric warming

upwelling

[Moore et al, 2009]

Puget Sound Alexandrium spp.

GLOBAL CLIMATE CHANGE

REGIONAL CLIMATE atmospheric warming

Funded by NOAA's ECOHAB Program 2010-2013

watershed river flow

OCEAN upwelling

Alexandrium spp.

Puget Sound Alexandrium spp.

GLOBAL CLIMATE

CCSM3 model: ~150 km resolution SRES scenario A1B

REGIONAL CLIMATE

WRF model: 12-km resolution

WATERSHED

River flow composites from multiple GCMs using monthly means

- Puget Sound rivers
- Fraser River
- · Columbia River

Salathé et al. (2010): Climatic Change

The ROMS-based MosSea model

(Modeling the Salish Sea)

700-m resolution, stretching to 3-km at coast; T and S fields applied to empirical habitat model for Alexandrium growth

OCEAN

Open ocean boundary condition is year 2006 from NCOM Global (Navy Coastal Ocean Model)

General Circulation Models (GCMs)

• Can a GCM provide projections of the variable you need?

Is the scale appropriate?

How confident are you in those projections?

Downscaling

- $\rightarrow \text{ relates the }BIG\text{ to the small}$
- → "bridges the gap"

Alexandrium growth f (temperature, salinity)

Temperature Gradient Bar (Watras et al. 1982)

- Chilling/heating elements
- 12L:12D
- 6 salinities \times 19 temps \times 2 strains (n=2)

[Bill et al, 2016]

- Δs to *Alexandrium* habitat almost entirely driven by warmer SSTs
- Small ↑ growth rate, big ↑ duration of HAB season

Favorable conditions begin earlier in the year and persist for longer

[Moore et al, 2015]

Value system of end-users?

14

- Should I be testing shellfish for emerging biotoxins? What other biotoxins should I be concerned about?
- Should I start testing shellfish for biotoxins earlier in the season? <u>How much earlier?</u>
- Do I need to expand my monitoring sites into new geographic areas? Which areas are at risk?

Interpreting results and communicating risk

- What do I tell Jerry?
- Sensitivity experiments
 - Mechanistically understand the effects of upwelling, streamflow, and atmospheric warming on Puget Sound oceanography
- Puget Sound waters will become warmer
 - High confidence
- Warming SST will likely increase the risk of PSP
 - Blooms could begin up to a month earlier in the year and persist for longer in Puget Sound
 - Medium confidence
- Limitations
 - Temperature and salinity only
 - o Interactive effects with other climate and non-climate drivers are not considered

2014-2016 IOOS Ocean Technology Transfer PI: John Mickett, UW Applied Physics Lab

Environmental Sample Processor (ESP)

17

- Advanced, automated, quantitative, in situ, biological sensing system
- Near real-time data delivery
- Extended, high frequency, and responsive surveys
- Early warning of HABs and their toxins

NWFSC's ESPfriday

"The goal of this project is to place an ESP on a well-established, realtime, moored observatory in the PNW to obtain reliable information on PN and DA escaping from the Juan de Fuca eddy bloom initiation site."

Summer/fall good weather Summer/fall weak stormsWinter/early spring strong storms

- * NEMO
- OOI Endurance Array moorings
- NDBC wind buoy
- Razor clam beaches
- Fresher plume water
- Semi-retentive areas

Puget Sound trial underwater deployment

- New mooring design
- New pump system
- Dual HAB species and toxin detection
- August 6-19, 2015

Preparing ESPfriday

NWIC intern Jessica Williams with **NWFSC Nick Adams**

Building the mooring

NWIC intern Jessica Williams with UW/APL Nick Michele-Hart

Testing the pump

UW/APL Derek Martin tests the "transit time" of the pump system using fluorescein dye

ESPfriday's first underwater deployment!

2016 (almost) spring deployment

- Spring ESP deployment was requested by several stakeholders following congressional briefing in November 2015
- IOOS supported this request
- UW provided ship time
 - R/V Thompson transiting from Newport to Seattle
 - UW Oceanography provided 2 education days for research activities
 - o May 24-26, 2016
- Active deployment dates May 25 July 11, 2016
 - o habda; 3×week

Acknowledgments

PS-AHAB Team

- Eric Salathé Jr
- Jim Johnstone
- Neil Banas
- Nate Mantua
- Brian Bill
- Vera Trainer
- Cheryl Greengrove
- Julie Masura
- Don Anderson
- John Stein
- Jerry Borchert

ESP Team

- John Mickett
- Keith Magness
- Chris Siani
- Nick Michele-Hart
- Linda Rhodes
- Nick Adams
- Bill Nilsson
- Vera Trainer
- Greg Doucette
- Tina Mikulski
- Jim Birch
- Chris Scholin
- Roman Marin III
- Brent Roman
- Jan Newton
- o Emilio Mayorga
- Don Anderson
- Bruce Keafer

