Treatment Techniques for Cyanobacteria and their Toxins and Public Water Systems

Judy Westrick, PhD
Wayne State University
EPA Region 10 HABs Workshop
March 30, 2016
Understanding microorganism and chemical removal/inactivation

• Living organisms
 – Nonviable/Removal

• Chemical Contaminants
 – Adsorption/nano-RO Filtration/oxidation/
 Biodegradation
Overview Drinking Water Treatment

- Treatment to remove intracellular algal toxins
 - Conventional treatment
 - Filtration
 - Membrane technologies
- Treatment to remove extracellular algal toxins
 - Oxidation
 - Physical removal
 - Biologically active filters
Source Water

- Intracellular Toxin
 - Flushing
 - Harvesting
 - Diversion
 - Flocculants
 - Algaecides (low levels)
 - Ultrasound

- Extracellular Toxin
 - Awareness and get ready to treat
Cloud cover often interferes with MODIS images.
Early Warning Systems

Buoys: Fluorescence Probes

Remote sensing: MODIS
Intake

- **Intracellular Toxin**
 - Adjustable Intake
 - Night vs Day

- **Extracellular Toxin**
 - Oxidants
 - Inline Powdered Activated Carbon (PAC)

- A conventional treatment plant will want to keep the cells intact.

![Intake Microcystin Concentrations](image)
Powdered Activated Carbon

• Wood-based PAC is more effective than coconut-based and bituminous PACs in the removal of microcystins

• Jar Test

• Pre-chlorination is not recommended before the use of PAC
Particulate Removal Treatment

A Summary of Cyanobacteria Intact Cell Efficiency

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Optimized Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation/sediment or dissolved air flotation/rapid sand filtration</td>
<td>>99.5%</td>
</tr>
<tr>
<td>Lime precipitation/sedimentation/rapid sand filtration</td>
<td>>99.5%</td>
</tr>
<tr>
<td>Ballasted Flocculation/filtration</td>
<td>>95%</td>
</tr>
<tr>
<td>Coagulation/sedimentation microfiltration</td>
<td>>90%</td>
</tr>
<tr>
<td>Coagulation/sedimentation ultrafiltration</td>
<td>>90%</td>
</tr>
</tbody>
</table>
Conventional Treatment

Table 3.1. Utility Information.

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>State</th>
<th>Source Water</th>
<th>PAC</th>
<th>Coagulation/ Flocculation</th>
<th>Clarification</th>
<th>Filtration</th>
<th>Disinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>VT</td>
<td>Lake</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sand/Anthracite</td>
<td>Chlorine</td>
</tr>
<tr>
<td>485</td>
<td>FL</td>
<td>River/Reservoir</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Chloramines</td>
</tr>
<tr>
<td>619</td>
<td>OK</td>
<td>Reservoir</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sand/Anthracite</td>
<td>Chlorine</td>
</tr>
<tr>
<td>762</td>
<td>CA</td>
<td>Reservoir</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sand/Anthracite</td>
<td>Ozone/Chloramines</td>
</tr>
<tr>
<td>929</td>
<td>TX</td>
<td>Reservoir</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sand/Anthracite</td>
<td>Chloramines</td>
</tr>
</tbody>
</table>

Table 2.2.1. Range of cell removal by water treatment for total cyanobacteria and toxin-producers.

* log removal cannot be determined. Toxin producer numbers were very low in the raw water, and not detected in the finished water.

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Cyanobacteria (Range of cell removal (log<sub>10</sub>))</th>
<th>Toxin Producers (Range of cell removal (log<sub>10</sub>))</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>1.5 to >5.5</td>
<td>1.5 to >5.5</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1.6 to >3.4</td>
<td>0.2 to >3.2</td>
</tr>
<tr>
<td>Vermont</td>
<td>>2.5 to 3.1</td>
<td>* to >2.2</td>
</tr>
<tr>
<td>Texas</td>
<td>>2.8 to >4.0</td>
<td>>1.6 to >4.0</td>
</tr>
<tr>
<td>Florida (both sources)</td>
<td>1.6 to 3.8</td>
<td>1.6 to 3.3</td>
</tr>
</tbody>
</table>

Szlag, et. al, Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants. Toxins 2015, 7, 2198-2220
Coagulation/Sedimentation

- **Intracellular Toxin**
 - Oxidants (not often used, afraid of lysing cell)
 - Flocculent aides
 - Settled water with less than 100 units algae/mL

- **Extracellular Toxin**
 - Activated Carbon
 - Powder (PAC)
 - Granular (GAC)
 - Filtration
 - Conventional
 - Biologically Active

- **Monitoring Techniques to determine treatment**
 - Turbidimeter
 - Streaming current detector
 - Particle Counter
 - Chlorophyll-a
 - Cell counts
 - ELISA
 - Saxitoxin, Anatoxin-a, Cylindrospermopsin, Microcystin
 - Plate, Test tube kit, Dip Stick

Diagram:

- Raw Water → Rapid-Mix Basin → Flocculation Basin → Sedimentation Basin → Filters → Clearwell Backwash Pumps → To Distribution
- Disinfection Chemicals
- Coagulants and Coagulant Aids
- Sludge → Wash Water
Harboring/Culturing within the Treatment Process

<table>
<thead>
<tr>
<th>Location</th>
<th>Source Water</th>
<th>Plant Interior</th>
<th>After Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cyr</td>
<td>sext</td>
<td>mcy</td>
</tr>
<tr>
<td>OHIO 1</td>
<td>BLD</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>OREGON 1</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>OHIO 2</td>
<td>BLD</td>
<td>BLD</td>
<td>YES</td>
</tr>
<tr>
<td>COLORADO 1</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>COLORADO PLANT 2</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>OREGON</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>BLD</td>
<td>BLD</td>
<td>YES</td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>BLD</td>
<td>BLD</td>
<td>YES</td>
</tr>
</tbody>
</table>

Ultrasonic Technology Treatment

Low power ultrasound
Tunable (79 frequencies)
Critical resonance (gas vesicles)
Cyanobacteria – Microcystis, Anabaena, Lyngba (Sonic Solutions)

George Hutchinson, Opflow April 2008
Breakthrough of cyanobacteria into the clarified water

WARNING: 9180 µg/L MC-LR

References:
1) Zamyadi et al. (2012) Water Research 46, 1511-1523
2) Zamyadi et al. (2013) Water Research 47, 1080-1090
Filtration

- Conventional
- Biologically Active
- GAC
- Low Pressure Membrane
Biologically active filters

- INTRACELLULAR TOXIN
- MCY-LR, MCY-LA, cylindrospermopsin, and anatoxin-a can be removed by biologically active sand and GAC filters
- Empty bed contact times--5 to 15 minutes.
 - Slow filtration
 - Rapid filtration
- Saxitoxin - not removed
GAC filtration

- Effectiveness of GAC filtration against cyanotoxins is source water dependent
- Significant differences in adsorption between LA and LR
- Saxitoxins and anatoxin-a are more readily adsorbed than microcystins
Pore Size

- **Equilibrium**
 - **Micropore**
 - Taste and odor
 - Industry spills, solvents
 - Anatoxin-a
 - **Mesopore**
 - Microcystins
 - RR > YR > LR > LA
 - Cylindrospermopsin
 - Saxitoxin

- **Kinetic <1 hour contact time**
- **Large pore volume seems to be more effective**
Summary of Oxidation Treatment Processes Extracellular Toxins

<table>
<thead>
<tr>
<th></th>
<th>Microcystin</th>
<th>Saxitoxin</th>
<th>Chloramine</th>
<th>Chlorine dioxide</th>
<th>Hydroxyl radical</th>
<th>KMnO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ozone</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chloramine</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hydroxyl radical</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>KMnO4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Clearwell: Chlorination of Microcystin (1 log removal)

Acero et. al 2005

Extrapolation for pH above 9.0
Chloramination

Goal – To achieve additional removal of MC if pre-oxidation is not adequate

Summary
LW, LY, YR >> LR, RR> LA, LF, dmLR

Temperature Dependence
the warmer the better

pH Dependence
7 is better than 9
UV Treatment

- UV inactivation dose is about 40 mJ/cm2 – inactivation of *Cryptosporidium parvum*.

- Photolytic destruction dose for microcystin, cylindrospermospin, anatoxin-a and saxitoxin is 1530 to 20,000 mJ/cm2.
- Intake
- Inline Chemical
- Coagulation/Flocculation/Sedimentation
- Storage Reservoir
- Filtration
- Carbon Adsorber
- Chlorine
Zamyadi et al. “Management of toxic cyanobacteria in full scale treatment plants. 4th National Cyanobacteria Workshop Adelaide, SA(9/23/114)

Harboring/Seeding/Growing Cyanobacteria

<table>
<thead>
<tr>
<th>Location</th>
<th>Source Water</th>
<th>Interior Plant</th>
<th>After Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYL</td>
<td>SAX</td>
<td>MCY</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>BLD</td>
<td>BLD</td>
<td>YES</td>
</tr>
<tr>
<td>OHIO 1</td>
<td>BLD</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>OHIO 2</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>BLD</td>
<td>BLD</td>
<td>YES</td>
</tr>
<tr>
<td>COLORADO 1</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>COLORADO PLANT 2</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>OREGON 1</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
<tr>
<td>OREGON</td>
<td>BLD</td>
<td>BLD</td>
<td>BLD</td>
</tr>
</tbody>
</table>

Source Water
Interior Plant
After Filtration
Questions?