US ERA ARCHIVE DOCUMENT

New Monitoring and Assessment Approaches for HABs in California

Meredith D.A. Howard

Southern California Coastal Water Research Project Costa Mesa, California

Collaborators

University of California, Santa Cruz Raphael Kudela

Kendra Hayashi

Santa Ana Regional Waterboard

Heather Boyd

University of Southern California

David Caron

Avery Tatters

Jayme Smith

Alyssa Gellene

Los Angeles Regional Waterboard

Michael Lyons

German Federal Environmental Agency

Lilian Busse

San Diego Regional Waterboard

Carey Nagoda

Betty Fetscher

Chad Loflen

Orange County Sanitation District

George Robertson

Michael Mengel

Laura Terriquez

Pasadena City College

Erica Seubert

SCCWRP

Martha Sutula

Eric Stein

Jeff Brown

Historic Cyanotoxin Hotspots in California

Recurrent Blue Green Algae Blooms in California Waterbodies

OEHHA
Fact Sheet

San Francisco Bay area /Delta

Monterey Bay/Pinto Lake

San Francisco Bay Delta Crowley Lake

Pinto Lake | Lake | Isabella | Big Bear Lake

Canyon Lake

ake Elsinore

Salton Sea

Far-Reaching Effects of Freshwater Toxins to Marine Waters

Mortality of sea otters due to microcystin intoxication

Miller et al., 2010

Benthic Algae from Wadeable Streams a Potential Source of Toxin Loading to Downstream Waterbodies

Fetscher et al. 2015 Harmful Algae

Microcystins detected at 33% of sites in California

Microcystins detected in 30-40% of sites in southeastern US stream study (water samples, not benthic algae) (Loftin et al., 2016)

Monitoring Tool: SPATT

Passive sampler that is time-integrative

- Applicable in all waterbody types (marine, brackish, freshwater)
- Detects both freshwater and marine toxins
- Amenable to multiple toxin detection methods
- Low cost, simple and easy to deploy/recover
- Disadvantage: SPATT will not provide a concentration of toxin that is applicable to health advisory thresholds
 - ng/g units

Solid Phase Adsorption Toxin Tracking (SPATT)

- Has been used in many areas of the world for the monitoring of dissolved algal toxins
 - Anatoxins (Wood et al 2011)
 - Azaspiracids (Fu et al 2009)
 - Dinophysistoxins (Fu et al 2008, 2009, Pizarro et al 2013)
 - Domoic acid (Lane et al 2010)
 - Microcystins (Kudela 2011)
 - Okadaic acid (MacKenzie et al 2004, Fu et al 2008, 2009)
 - Pectenotoxins (MacKenzie et al 2004, Fu et al 2009)
 - Saxitoxin (Lane et al 2010)
 - Spirolide toxins (Fu et al 2009)
 - Yessotoxins (MacKenzie et al 2004, Fu et al 2009)

Why Use SPATT? Persistence of Cyanotoxins

Do microcystins persistently flow into Monterey Bay from surrounding watersheds?

Answer: YES! Microcystins were persistently present over several years.

Toxin peaks were in the spring and autumn seasons

Gibble and Kudela, 2014

Why Use SPATT? Determine Toxin *Prevalence*

- Condition assessments and screening studies
- Waterbodies with little to no HAB data
- Determine the prevalence of toxin across a region
 - Depressional wetlands assessment (probabilistic design)
 - Lakes, estuaries and reservoirs (targeted design)

Microcystin Prevalence Underestimated From Grab Samples By ~50%

Grab Sample

SPATT Sample

% of Toxic Sites: Depressional Wetlands

Grab Samples	29%
SPATT Samples	83%

Howard et al., in prep

Microcystins Detected at Every Site Sampled

San Diego County: Lakes, Reservoirs, Estuaries and Coastal Lagoons

Grab Sample Results

SPATT Sample Results: All sites toxic

Why Use SPATT? Deploy In Areas with Limited or No Sampling

1 meter depth

7 meter depth

Pier: DA below detection

Seubert et al., in prep

Many Ways To Deploy SPATT in Aquatic Environments

- Piers and floating docks
- Instruments deployed in the water
- PVC Tube in sediment
- Buoy and moorings
- Autonomous Underwater Vehicles
- Ship flow through system

SPATT Deployment: Pier, Dock, Instruments, PVC Tube

SPATT Deployment: Buoy and Mooring

Map: Lucas and Kudela 2015; Toxin data Seubert et al., in prep

SPATT Deployment: AUVs

- SPATT
- Grab 25 Oct.
- Grab 8 Nov.

Liquid Robotics G5 surface wave glider

SPATT and Grab samples showed similar results: a persistent increase in DA

SPATT Deployment: AUVs

Teledyne Webb Slocum Gliders

Ship Flow-Through System

Conclusions and Future Directions

SPATT Advantages:

- Low cost, easy to deploy tool
- Applicable to marine, brackish and freshwater environments
- Measures marine and freshwater toxins
- Can be deployed in many different ways and in areas where there is limited sampling
- More robust indicator of toxin prevalence compared to grab samples ('snapshots')
- Disadvantages:
 - Cannot be directly compared to health advisory thresholds
- MERHAB: Improve tools for monitoring multiple HAB toxins at the land-sea interface in CA
 - Develop SPATT for additional toxins and implement an integrated multi-toxin HAB strategy

Thank You!

NOAA (MERHAB NA05NO54781228 and ECOHAB NA11NOS4780053)

Orange County Sanitation District

