US ERA ARCHIVE DOCUMENT

Cyanotoxins in Freshwaters of the United States: Occurrence and Emerging Technologies

Jennifer L. Graham, Keith A. Loftin, and Guy M. Foster U.S. Geological Survey

EPA Region 10 HABs Workshop March 29, 2016

At Least 39 States in the Nation Have Had Anecdotal Reports of Cyanotoxin Poisoning

In August 2015, 24 States Had Toxic Algal and Health Advisories for Cyanobacteria

In the 2007 National Lake Assessment Microcystin Concentrations > 1 µg/L Were Most Common in the Upper Midwest

Cylindrospermopsins Were Detected by ELISA in About 4% (n=659) of Analyzed Lakes; Occurrence was Most Common in the South

Saxitoxins Were Detected by ELISA in About 8% (n=678) of Analyzed Lakes; Occurrence was Most Common in the Upper Midwest and the South

Microcystins are Widespread and Common in the Midwest

Maximum concentration: 52 μg/L

Multiple Toxins and Taste-and-Odor Compounds Frequently Co-Occur in Cyanobacterial Blooms

Cyanobacterial Toxins and Taste-and-Odor Compounds May Be Transported for Relatively Long Distances Downstream from Lakes and Reservoirs

11027H SIDE MILFORD LAKE DAMI 07/32/2011 13:32 M

Milford Lake release sends algae to Kansas River

MARIA SUDEKUM FISHER, Associated Press Published 09:10 p.m., Wednesday, September 21, 2011

Microcystins Also Occur in Smaller Streams

Vertical Migration or Wind Movement of Surface Accumulations May Rapidly Change the Areal Distribution of Cyanobacteria

Rock Creek Lake, Iowa 2006 Beach Closure Event

Photos Courtesy of IA DNR

Photo Courtesy of IA DNR

Boat Ramps Friday August 11

Beach Area

Thursday

August 3

Vertical Migration or Wind Movement of Surface Accumulations May Rapidly Change the Aerial Distribution of Cyanobacteria

Rock Creek Lake, Iowa 2006 Beach Closure Event

Beach Area

Beach Area Thursday

WHERE DID THE CYANOBACTERIA GO?

Most likely explanation is redistribution in the water column

Photos Courtesy of IA DNR

Boat Ramps Friday August 11

Sample Concentrations Can Vary Considerably Depending on When, Where, and How Samples Are Collected

Microcystis aeruginosa colonies

Sample Type and Microcystin Concentration (ng/L)

			<u> </u>	<u> </u>
Time	Surface	Integrated Photic Zone	Integrated Epilimnion	Integrated Water Column
0930	118	74	84	61
1330	88	64	70	58
1700	65	50	55	45

Genetic Data Help Identify Systems with the Potential for Cyanotoxin Production

Ohio Lakes, Summer 2013

Microcystis mcyE DNA

5 Microcystis mcyE DNA, in log copies per 100 milliliters 83% 100% 100% 67% 71% 100% 20% 86% 0% 0% 14% 0% 29% 33% 0% Estimated method detection limit. 3.4 log copies per milliliter **Buck Creek** Deer Creek MBSP Inland Port Clinton **Buckeye Crystal** Harsha MBSP Lake Erie Sandusky Bay

Planktothrix mcyE DNA

New Sensors are Promising, But We Are Still Learning Limitations and Best Practices for Optimal Use

Continuous Water-Quality Monitors Can Be Used to Develop Models to Compute Probability of Cyanotoxin Occurrence in Real Time

Emerging Technologies

New Sensor Technologies Allow New Applications, Such as High Resolution Spatial Data Collection

New Sensor Technologies Allow New Applications, Such as High Resolution Spatial Data Collection

Aerial- and Ground-Based Cameras Show Potential as Early Warning Indicators

Courtesy of C. Smith

Satellites are Essential Tools for HAB Monitoring in Coastal Areas and the Great Lakes

Tools to Utilize Satellites for Inland HAB Monitoring are Being Developed

Cyanobacteria Assessment Network (CyAN) Project

Unifying Themes in Harmful Algal Bloom Research

- Individual systems are unique.
- Spatial and temporal variability present challenges to data collection, analysis, and interpretation.
- Sensor technology and genetic approaches provide important information on spatiotemporal variability and environmental influences.
- A variety of tools for early warning and prediction are being developed and used.

Additional Information:

http://ks.water.usgs.gov/cyanobacteria/

jlgraham@usgs.gov 785-832-3511

