US ERA ARCHIVE DOCUMENT

Quantifying the Effects of the *Mixing Process* in Fabricated *Dilution Systems* on *PM* Emission Measurements

K. Max Zhang
Sibley School of Mechanical and Aerospace
Engineering

Acknowledgment

- PhD students: Y. Jason Wang, Bo Yang, Zheming Tong
- Data Sharing
 - CMU: Allen Robinson and Eric Lipsky
 - Tampere U. of Tech, Finland: Jorma Keskinen and Topi Ronkko
 - Dekati: Engineering drawing for ejector dilutor
- Alan Leinbach at USEPA for critiquing the final report

A Tale of Two "Reactors"

- Atmosphere and laboratory dilution tunnels can be regarded as "turbulent reactors":
 - cooling the exhaust

Aerodynamic vs. Mixture Properties

Dilution air Exhaust	Group I. Aerodynamics	Fixed parameter: Tunnel configuration	Mixing type of the dilution tunnel: T-mixing dilution tunnel, 2 coaxial mixing dilution tunnel, 2 perforated tube diluter (Dekati Ltd.), ejector diluter (Dekati Ltd.), rotating disk diluter (Matter Engineering Inc.), etc. The mixing enhancer: fan shape plate, 2 orifice plate, baffle, etc.
		Variable parameter: Operating condition	Dilution ratio (DR) at the end of the dilution tunnel
			Residence time inside the dilution tunnel
	Group II: Mixture properties	Properties of engine exhaust: temperature, water content, sulfuric acid concentration, <i>OC</i> concentration and composition, size distribution of the primary soot-mode particles, etc.	
		Properties of dilution gas: temperature of dilution gas, relative humidity (<i>RH</i>), particle size distribution, <i>OC</i> concentration and composition, type of dilution gas (e.g., pure nitrogen or air), etc.	

Wang et al. (2013) ES&T, 47:889-898

Level of Scientific Understanding

Qualitative: Poor Quantitative: Very Poor	Group I. Aerodynamics	Fixed parameter: Tunnel configuration	Mixing type of the dilution tunnel: T-mixing dilution tunnel, 2 coaxial mixing dilution tunnel, 2 perforated tube diluter (Dekati Ltd.), ejector diluter (Dekati Ltd.), rotating disk diluter (Matter Engineering Inc.), etc. The mixing enhancer: fan shape plate, 2 orifice plate, baffle, etc.
		Variable parameter: Operating condition	Dilution ratio (DR) at the end of the dilution tunnel
			Residence time inside the dilution tunnel
Qualitative: Very Good Quantitative: Good and improving	Group II: Mixture properties	Properties of engine exhaust: temperature, water content, sulfuric acid concentration, <i>OC</i> concentration and composition, size distribution of the primary soot-mode particles, etc.	
		Properties of dilution gas: temperature of dilution gas, relative humidity (<i>RH</i>), particle size distribution, <i>OC</i> concentration and composition, type of dilution gas (e.g., pure nitrogen or air), etc.	

Wang et al. (2013) ES&T, 47:889-898

Dilution-corrected number size distributions measured during two diesel intercomparison experiments between the CMU dilutor (the dash line) and the Caltech dilutor (the solid line) (Lipsky and Robinson, 2005)

On-Road Chasing

- Capture the real world vehicle emissions
- Results depending on atmospheric conditions

In-Lab Dilution

- Operate under well-controlled conditions
- Widely used for regulatory purposes because tests are eatable.

Objectives

- Characterize the aerodynamic properties of lab dilution sampling systems
- Compare different lab dilution sampling systems
- Compare lab systems with atmospheric sampling systems
- Improve scientific understanding and assist lab sampling systems designs

Approach

- Modeling analysis of experimental data
 - CMU: Different lab systems
 - Finland: Lab and atmospheric systems
- The modeling tool has to be capable of resolving the complex interactions of turbulent mixing and aerosol dynamics

Comprehensive Turbulent Aerosol dynamics and Gas chemistry (CTAG) model

Aerosol dynamics in individual diluting diesel plumes

Wang and Zhang (2012) Atmospheric Environment 59: 284-293

Dilutor Geometry

Wang et al. (2013) ES&T, 47:889-898

Predicted vs. Measured Particle Size Distributions

Wang et al. (2013) Environmental Science and Technology

Wang et al. (2013) ES&T, 47:889-898

PNC at high Mach Number (particle cm⁻³)

PNC distribution inside the diluter under high Mach Number (>1.0)

Manuscript in progress

Rotating Disk Dilutor

http://www.youtube.com/watch?v=-B1Nu2CUb14

On-road Chasing

Wind inlet

Particle nucleation rate (# cm⁻³ s⁻¹)

7.5e3

1.5e6

2.9e8

5.6e10

3.8e1

1.0e-3

2.0e-1

Dilution Ratio vs Dilution Rate

- Dilution ratio is typically used to characterize dilution system, but it is inadequate to characterize the mixing process.
- We introduce another metric, dilution rate, at which the exhaust and dilution air are brought together at the molecular level
 - Represented by the scalar dissipation rate of exhaust

$$arepsilon_{\xi} = C_{\phi} < {\xi'}^2 > rac{arepsilon}{k}$$
 Turbulent dissipation rate

Mixture variance

Time-averaged Dilution Rate

Wang et al. (2013) ES&T, 47:889-898

Remarks

- This study marked the first quantitative investigation of aerodynamics properties of dilution sampling system.
- In general, both dilution rates and dilution ratios need to be quantified to characterize the aerodynamic properties in lab and atmospheric dilution sampling systems.
- Dilution rate profiles of any dilution sampling systems can be *reliably* predicted by CTAG using sampling system geometric configurations, exhaust and dilution temperature and air flow rates.
 - Turbulent flow modeling (computationally heavy but relatively mature) WITHOUT aerosol dynamics

Implications

- CTAG can be used to simulate the entire sampling train for the laboratory system
 - Different components
 - Particle losses
 - PM formation
 - **—** ...
- Bridge between lab system and atmospheric system
- Potentially valuable in
 - Quantify the uncertainties in current sampling systems
 - Design new sampling systems

— ...

CTAG-related publications

Wang, Y; Yang, B; Lipsky, E; Robinson, A; Zhang, K. M. (2013) Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model. *Environmental Science & Technology*. 47(2): 889-898

Jonathan T. Steffens, David K. Heist, Steven G. Perry and K. Max Zhang. (2013) Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions. *Atmospheric Environment* 69: 76-85

Wang, Y., Nguyen, M., Jonathan, S., Tong, Z., Zhang, K., et al. (2013) Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model. *Science of the Total Environment* 443: 375-386,

Wang, Y. and Zhang, K.M Coupled and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model. (2012) *Atmospheric Environment* 59: 284-293

Steffens, J. T., Wang, Y. and Zhang, K. M., (2012) Exploration of effects of a vegetation barrier on the dispersion of pollutants in a near road environment. *Atmospheric Environment*, 50: 120-128

Tong, Z., Wang, Y., Patel, M., Kinney, P., Chillrud, S. and Zhang, K. M. (2012) Modeling spatial variations of black carbon particles in an urban highway-buildings environment, *Environmental Science & Technology* 46 (1): 312-319

Wang, Y. McDonald-Buller, E., Denbleyker, A., Allen, D. and Zhang, K.M. (2011) Modeling chemical transformation of nitrogen oxides near roadways, *Atmospheric Environment* 45(1): 43-52

Wang, Y. and Zhang, K.M. (2009) Modeling near-road air quality using a computational fluid dynamics (CFD) model, CFD-VIT-RIT. *Environmental Science & Technology*, 43: 7778-7783