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A Tale of Two “Reactors”

Atmosphere and laboratory dilution tunnels can be regarded
as “turbulent reactors”:

— cooling the exhaust
— generating new p

— changing the pro

Same nature!
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Aerodynamic vs. Mixture Properties
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Group I.
Aerodynamics

Fixed parameter:
Tunnel configuration

Mixing type of the dilution tunnel: T-mixing
dilution tunnel,” * coaxial mixing dilution
tunnel,” perforated tube diluter (Dekati Ltd.),
ejector diluter (Dekati Ltd.), rotating disk
diluter (Matter Engineering Inc.), etc.

The mixing enhancer: fan shape plate,” orifice
plate, baffle, etc.

Variable parameter:
Operating condition

Dilution ratio (DR) at the end of the dilution
tunnel

Residence time inside the dilution tunnel

Group II:
Mixture
properties

Properties of engine exhaust: temperature, water content, sulfuric acid
concentration, OC concentration and composition, size distribution of
the primary soot-mode particles, etc.

Properties of dilution gas: temperature of dilution gas, relative
humidity (RH), particle size distribution, OC concentration and
composition, type of dilution gas (e.g., pure nitrogen or air), etc.

Wang et al. (2013) ES&T, 47:889-898



Level of Scientific Understanding
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On-Road Chasing

* Capture the real world vehicle
emissions

* Results depending on

atmospheric conditions
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Operate under well-controlled
conditions

Widely used for regulatory
urposes because tests are
eatable.

pheric Environment 40 (16), 2893-2901.
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Objectives

Characterize the aerodynamic properties of lab
dilution sampling systems

Compare different lab dilution sampling systems

Compare lab systems with atmospheric sampling
systems

Improve scientific understanding and assist lab
sampling systems designs



Approach

* Modeling analysis of experimental data
— CMU: Different lab systems
— Finland: Lab and atmospheric systems

* The modeling tool has to be capable of resolving the
complex interactions of turbulent mixing and aerosol

dynamics



Comprehensive Turbulent Aerosol dynamics and Gas
chemistry (CTAG) model
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Wang and Zhang (2012) Atmospheric Environment 59: 284-293



Aerosol dynamics in individual diluting diesel plumes

Top
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Wang and Zhang (2012) Atmospheric Environment 59: 284-293
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Dilutor Geometry

Caltech Dilutor

“T-Mixing”

Exhaus

Dilution

Dilution Air

CMU Dilutor Mixing Enhancer

Wang et al. (2013) ES&T, 47:889-898



Predicted vs. Measured Particle Size Distributions
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Ejector diluter

| ] Geometry of the ejector diluter

|
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under low Mach Number (<1.0)
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PNC at high Mach Number (particle cm?)

L PNC distribution inside the diluter under high Mach Number (>1.0)
Manuscript in progress



Rotating Disk Dilutor

http://www.youtube.com/watch?v=-B1Nu2CUb14




Sampling train for
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On-road Chasing

=>

Wind inlet

(a) Heavy-duty diesel bus Chasing van
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Manuscript in progress



Dilution Ratio vs Dilution Rate

* Dilution ratio is typically used to characterize dilution
system, but it is inadequate to characterize the mixing
process.

 We introduce another metric, dilution rate, at which the
exhaust and dilution air are brought together at the
molecular level

— Represented by the scalar dissipation rate of exhaust

&< Turbulent dissipation rate
_ 12 - P
Ef - Cd) < 5 >

k Turbulent kinetic energy

Mixture variance
Wang et al. (2013) ES&T, 47:889-898



Time-averaged Dilution Rate

*
Case1™ Lab tunnel DR20 Case 10 Lab tunnel DR20 with half residence time
4 .
Case 6 Field tunnel DR20 Case 11 Lab tunnel DR20 with double residence time
|
'r

Case 7 Lab tunnel DR20 with mixing enhancer Case 12 Field tunnel DR20 with half residence time

Case 8 Field tunnel DR20 without mixing enhancer Case 13 Field tunnel DR20 with double residence time
1.0E-4 7.7E-4 5.9E-3 4.6E-2 3.5E-1 2.7E0 2.1E1 1.6E2

second™

Wang et al. (2013) ES&T, 47:889-898



Remarks

* This study marked the first quantitative investigation of
aerodynamics properties of dilution sampling system.

* In general, both dilution rates and dilution ratios need to
be quantified to characterize the aerodynamic properties
in lab and atmospheric dilution sampling systems.

* Dilution rate profiles of any dilution sampling systems can
be reliably predicted by CTAG using sampling system
geometric configurations, exhaust and dilution
temperature and air flow rates.

— Turbulent flow modeling (computationally heavy but
relatively mature) WITHOUT aerosol dynamics



Implications

* CTAG can be used to simulate the entire sampling train
for the laboratory system

— Different components

— Particle losses

— PM formation
* Bridge between lab system and atmospheric system
* Potentially valuable in

— Quantify the uncertainties in current sampling
systems

— Design new sampling systems
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