US ERA ARCHIVE DOCUMENT

Chemical Safety for Sustainability Research Program: Overview and Perspectives on 21st Century Science

Tina Bahadori, Sc.D. National Program Director

CSS Vision and Goals

 CSS will lead development of innovative science to support safe, sustainable use of chemicals/materials required to promote ecological wellbeing, including human and environmental health, as well as to protect vulnerable species and populations.

- Address impact of existing chemicals,
 materials/products across the lifecycle.
- Anticipate impacts of new chemicals, materials/products across the lifecycle.
- Enable consideration and evaluation of complex interactions of chemical and biological systems to support Agency decisions.

Aligning EPA's Chemicals Research Activities

Integrated National Programs

Environmental Complexity

- A host of emerging drivers from climate change, to children's health, to green chemistry, to urbanization demand better information for better environmental and public health decisions.
- (Applied) environmental science needs to be agile, adaptive, responsive, and anticipatory/predictive, delivering knowledge that is impactful, timely, and relevant to current and future environmental health challenges.

National Academy Report (2007)

Design a 'modern' toxicity testing program to assess potential human risks posed by exposures to environmental agents over a broad range of doses and compounds and to be in a position to use this information in quantitative human health risk assessment.

Predicting Human Toxicity: A Grand Challenge

The Pieces of the Puzzle

- Chemical Space
- Biological Space
- •"Validation"
- Prioritization Tools
- Predictive Signatures
- Reverse Toxicokinetics
- High Throughput Risk Assessment
- Exposure Assessment
- Systems Models

CSS CompTox Research

Predictive toxicology and exposure science

Toxicological Priority Profile

Features:

- -Less expensive
- -More chemicals
- -Fewer animals
- -Solution Oriented

- -Innovative
- -Multi-disciplinary
- -Collaborative
- -Transparent

Office of Research and Development

Fast Forward

- Significant progress has been made in high throughput screening thousands of chemicals for potential endocrine hazard
- Predictive toxicology and systems models using a combination of biology, chemistry and statistics are required for risk characterization
- Initial models point the way to real-world applications
 - example EDSP21
- Further research needed:
 - -More chemicals, assays, pathways
 - -Systems-level models for hazard and exposure
 - -Targeted testing approaches to follow up on prioritizations
 - High Throughput Risk Assessment

CSS Integration Scheme: Research Themes

Safe and Sustainable Chemical Use

CSS Integrated Research Themes

- Inherency: Understand relationships between chemical characteristics and human health & environment impacts
- Chemical Evaluation: Improve chemical prioritization, screening & testing
- Sustainability Analytics: Develop models & tools to support more sustainable chemical design, manufacture, use & disposal
- Complex Systems Science: Predict adverse outcomes resulting from exposures to chemicals
- Integrated Applications: Provide accessible chemical information to support chemical safety decisions
- Partner Driven Research: Evaluate impacts of high priority chemicals
- Stakeholder Engagement & Outreach

CSS Research Theme Connections

Agency **Complex Systems Science** Biomarkers/ AOP **Integrated** bioindicators development Virtual **Inherency Applications Tissues Chemical det** of reactivity Data and tox **Rapid Tox** PK, Demonstrate for ADME Chemical **Risk Assessment Methods** etc. Rapid Chemical determinants of **Exposure** F & T **Evaluation Analytical** Chem Tools determinants of use **Life Cycle Evaluation** (LCA and Human **Exposure Modeling) Dashboard Sustainability Ecological Analytics Impacts** Material Nano determinants **Evaluation** search and Development

SEPA Critical Tox21 Issues Environmental Protection Agency

- Cells don't get disease
- Not all compounds can be screened in HTS
- Need for xenobiotic metabolism
- Need to consider interactions between different cell types
- Need to extrapolate from acute to chronic exposure conditions
- How to measure human variability in sensitivity
- Need to be extrapolate from in vitro concentration to in vivo dose
- Need to identify human disease-associated pathways and useful assays for those pathways
- Need to integrate multiple data sources (e.g., in vitro, animal, human) and endpoints (e.g., HTS, 'omics, disease) into publicly accessible databases with appropriate tools for mining

Success Depends On

- Well-characterized chemical libraries (identity, purity, concentration, stability)
- Well-characterized assays in terms of reliability and relevance
- Ability to incorporate xenobiotic metabolism
- Informatic tools to integrate and mine robust data from multiple sources
- Understanding the relationships between pathways and disease in animal models and humans
- Making the data freely accessible as quickly as possible
- Scientific outreach and training the next generation

Validation?

- •Performance-based analysis of weight-of-evidence and probabilistic Adverse Outcome Pathways (AOP) models identifying chemical hazard and risk for relevant pathways.
- •Identify and incorporate other scientifically relevant information that confirms and improves Adverse Outcome Pathways (AOP) models identifying chemical hazard and risk for those pathways.

United States Environmental Protection

CSS Outreach and Engagement Goals

- Effectively translate new chemical data and models so they are more understandable and usable to stakeholders.
- Increase stakeholder support for the usage of this new approach to prioritize chemicals for risk and to inform policy decisions made about the safety of chemicals.
- Increase stakeholder usage of the new data and models to prioritize chemicals for risk and to inform policy decisions.
- Work with each stakeholder group to determine how to qualify data for use and solicit input on data application.

United States Environmental Protection

Outreach Strategies

- Offering incentives for innovation -- to develop ideas for using new data to inform decisions (TopCoder & Innocentive)
- Working with interested federal partners & external stakeholders to host workshops & trainings
- Promoting through online media, printed materials, news releases, CompTox communities of Practice etc
- EPA hosted trainings (workshops, summits, symposium, etc)
- Stakeholder Feedback & Evaluation-Focus Groups, surveys tracking usage of data, interviews

- September 2013 :Publicly release data through online Chemical Safety for Sustainability Dashboards and solicit feedback about Dashboard usability
- October 2013-February 2014: Workshops hosted by interested external stakeholders how to access data through Dashboards
- September 2013-April 2014: Request stakeholders develop applications for using data to inform chemical risk assessments
- May 2014: EPA Data Summit-Present Computational Toxicology data applications to inform chemical safety risk assessments

Pictured: 2009 ToxCast Data Summit

Chemical Safety for Sustainability: Additional Information and Products

- External web page: http://epa.gov/research/chemicalscience/
- Intranet: http://intranet.ord.epa.gov/nrp/css
- Chemical safety product database:
 http://intranet.ord.epa.gov/nrp/css/epa-chemical-safety-research-products
- Fact sheets: http://epa.gov/research/priorities/research-factsheets
- Publicly available databases:
 http://www.epa.gov/research/mmtd/chemsafe.htm
- Chemical safety E-newsletter: http://epa.gov/research/chemicalscience/news.htm