US ERA ARCHIVE DOCUMENT

Improvements in Prevention and Control Techniques

Using Heat for Best Effect

Dr. Stephen A. Kells

Presented at the Second National Bed Bug Summit February 1, 2011

Presentation Outline

1. Temperature Extremes and Insects

2. Use of Dry Heat

3. Use of Steam

Temperature Extremes and Insects

Above 120 °F

Death in minutes

Cell walls and genetic materials melt Proteins denature (cooked eggs) Desiccation from water loss

Challenges

Unit 4

- Obtaining acceptable temperatures
- Efficient delivery of temperatures

Mak

• Wha

S

nt?

Dry Heat: Chamber Treatments

Whole Room Heat Treatments

Critical Temperature? Behavioral Responses?

Critical Temperatures

Immediately lethal: Adults 118 °F
 Eggs 122 °F

 Below IL temperatures, time becomes important

Temperature	Adults	Eggs
113 °F	90 mins	7 hours!
118 °F	20 mins	90 mins

Behavioral Response to Bed Bugs

Convection

Conduction

Convection

80 °F Movement Threshold n/d

95 °F Feeding Threshold n/d

105 °F Escape Temperature 118 °F

Assuming Conduction ONLY

Room

(120 °F)

Inside Wall

Assuming Convection

Room

(120 °F)

Add Insecticides

Room

Steam Treatments

- A problem of bed bug resistance!
 Effective in eliminating call backs
- But what are its limitations?

Other considerations?

Reaching Target Temperatures

160 – 180 °F immediately after steam unit has treated area.

Steamers and penetration of heat

Steam penetration depends on Fabric, fill density, Stitch holes

Reasonable penetration is up to

3/4" for fabric 2-3/8" for gaps

Towels over nozzle reduces penetration

Nozzle Shapes

Triangle

2"

No difference in penetration

Difference with nozzle velocity and area covered!!!

The Work Continues.....

Improving critical temperature estimates

Insecticide efficacy, substrates and heat

Low critical temperatures for effective control

Thank you!

www.bedbugs.umn.edu

Collaborators and Co-workers

Joelle Olson
Corey McQueen
Marc Eaton
Dr. Kurt Saltzmann, Purdue
Dr. Roger Moon, U.Mn
NC Temp 500 Collaborators

Research and Extension Support

MnPMA

BASF

MGK

EcoLab