MMIC (Mitigating Microcystis in the Chesapeake)

Treatment Options For A Cyanotoxin Impacted Lake in Denton, Maryland

Shannon Roche, Holly A. Bowers, Yonghui Gao, Ernest Williams, Kevin Sellner, and Allen R. Place
Algae bloom shuts down lake

By DANIEL DIVILIO Staff Writer | Posted Aug 3, 2011

DENTON An algae bloom has shut down Lake Williston a private lake off state Route 16 near Denton and owned by the Girl Scouts for two summers in a row and officials are trying to find a way to rid the water of the toxic organisms.

The Caroline County Health Department issued earlier this summer water contact advisories for Lake Williston, noting the presence of unhealthy levels of microcystis caused by the blue-green algae bloom. The lake, which covers about 60 acres and has an average depth of 8 feet, also closed late last summer due to the algae.

Health Department officials are warning people not to swim in or drink the lake water and to keep pets and livestock away from it as well. If contact is made with the water at Lake Williston, health department officials recommend cleaning off with fresh water and seeing a health care professional if any skin irritation occurs.

"It's a pretty serious problem," said Bob Foote, property manager for the Girl Scouts camp located on Lake Williston, on July 25.
Species Composition

Simpson’s Index of Diversity indicates infinite diversity of a value of 1.

Williston Lake is dominated by Anabaena species throughout June, while Microcystis species dominated August.
Species Distribution in Williston Lake Beach

Indicates high anatoxin-a levels
The Problem

Nutrients

![Graph showing nutrient levels over time for different locations.](image-url)
The Problem

Not New

FIGURE 7.8 (a) Effects of percent agriculture (cropland) on nitrate concentrations [NO₃⁻] in coastal plain watersheds. The exponential curve was forced through the extensive summary by Clark et al. (2000) on forested lands (= 0% agriculture). (b) Effects of animal feeding operations on average stream N in the St. Martin Basin in the Maryland coastal bays (Beckert 2008). The correlation with TN is significant, whereas the nitrate correlation is marginally significant ($p = 0.07$ and not significant for ammonium ($p > 0.10$).
The Problem
Algae and Cyanotoxins

![Graphs showing water cyanotoxin levels and Microcystis cell counts over time.](image)

- **SPATT Microcystin (ng/gram resin day)**
- **SPATT Anatoxin-a (ng/gram resin day)**

- Water Cyanotoxin Levels (ng/gram/day)
- Microcystis Cell Counts
- Microcystin (ppb)
Lake Williston
Girl Scout Camp
Operated Since 1935
The Solution Part 1
Hydraulic Flushing

Current Baltimore Harbor Values
Drain the Lake

September 12, 2011

February 28, 2012
Drain the Lake

Initial Volume
464,297 m³

Drained Volume
98,234 m³

79.8 % Volume Reduction
Cyanobacteria from Cores

• Cores from littoral zone of refilled lake, May 2012
• Water over core transferred to tubes and incubated L and D in windowsill
• Added 100 mL filtered lake water into each core and placed in windowsill
• Read IVF of overlying water and tubes after 19 d (20°C)
• Transferred to 25°C and read IVF after 8 d
• Increased to 28.5°C and after 7 d read IVF and removed samples for PP counts/IDs for samples with Chl/PC <10

RESULT: No Microcystis from cores or overlying water
Refill the Lake

April 24, 2012

May 8, 2012
Allow Grasses to Regrow

April 9, 2012

April 9, 2012
Repeat The Process
The Solution Part 2

Barley Straw
Varying concentrations of barley straw dosage were set up in the lab to replicate last experiment using filtered pond water and unfiltered lake water as inoculum.

<table>
<thead>
<tr>
<th>Concentration as fraction of barley straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>NH₄⁺ (μM)</th>
<th>NO₂⁻ (μM)</th>
<th>PO₄ (μM)</th>
<th>NO₃ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.02</td>
<td>0.449</td>
<td>0.587</td>
<td>1.864</td>
<td>417.870</td>
</tr>
<tr>
<td>0.1</td>
<td>7.04</td>
<td>0.959</td>
<td>0.824</td>
<td>1.763</td>
<td>380.131</td>
</tr>
<tr>
<td>0.2</td>
<td>7.07</td>
<td>1.468</td>
<td>1.061</td>
<td>1.661</td>
<td>342.392</td>
</tr>
<tr>
<td>0.5</td>
<td>7.14</td>
<td>2.996</td>
<td>1.772</td>
<td>1.358</td>
<td>229.175</td>
</tr>
<tr>
<td>0.7</td>
<td>7.19</td>
<td>4.015</td>
<td>2.245</td>
<td>1.156</td>
<td>153.697</td>
</tr>
<tr>
<td>0.8</td>
<td>7.21</td>
<td>4.525</td>
<td>2.482</td>
<td>1.055</td>
<td>115.958</td>
</tr>
<tr>
<td>1</td>
<td>7.26</td>
<td>5.544</td>
<td>2.956</td>
<td>0.853</td>
<td>40.481</td>
</tr>
</tbody>
</table>
Algal growth control by a barley straw extract

Andrew S. Ball *, Matthew Williams, David Vincent, James Robinson

Department of Biological Sciences, John Tabor Laboratories, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
Received 2 August 2000; received in revised form 4 September 2000; accepted 14 September 2000

Journal of Fisheries and Aquatic Science 5 (5): 394-401, 2010
ISSN 1816-4927
© 2010 Academic Journals Inc.

The Use of Barley Straw for Controlling of Cyanobacteria
Under Field Application

1H. Rajabi, 2Y. Filizadeh, 3M. Soltani and 3M.H. Fotokian
1Department of Fisheries, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, P.O. Box 14515/755, Tehran, Iran
2Department of Agronomy, Shahed University, Tehran, Iran
3Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Chemical characterization of the aqueous algistic
fraction of barley straw (Hordeum vulgare)
inhibiting Microcystis aeruginosa

Timothy J. Waybright · Daniel E. Terlizzi ·
M. Drew Ferrier
Deploy Barley Straw Bales
Sampling Locations

- Within 20 centimeters of the barley bales deployed in the South stream of the Williston Lake footbridge
Williston footbridge late season

8/15/12

Activity of the footbridge barley water was evident through August and decreased in September.

8/29/12

9/6/12
Pyrogallol - a potential barley straw breakdown product for direct treatment

- Has been shown to up-regulate expression of several antioxidant and stress genes.
- The most linear correlation was observed with the peroxiredoxin gene.
Treatment of *M. aeruginosa* with pyrogallol

- Cultures of *M. aeruginosa* Le3 were treated with 0, 1, and 4 mg/L pyrogallol overnight.
- RNA was extracted and reverse transcribed.
- qPCR was used to determine relative expression of the peroxiredoxin gene normalized to 16s.
They were telling the truth

The results of Shao et al. 2009 were confirmed. However, the treated cultures were maintained for 8 days and no decrease in cell count was observed at these concentrations. Thus, the results of Nakai et al. 2000 were not confirmed.
Expression of peroxiredoxin following treatment with barley straw water

Treatment using barley straw water collected on 8/15 from the Williston Lake footbridge showed a slight increase in prx expression. Similar to the 1mg/L exposure of pyrogallol
Microcystis' Response to Light

Figure A – Microcystis is damaged on calm, sunny days when they float on the surface of the water.

Figure B – Sediment protects Microcystis when the lake is mixing.

Bright, direct sunlight in calm water can actually damage Microcystis, even if the water is muddy, because of its tendency to float on the water’s surface (Figure A). However, when the water is filled with sediment and breezes mix the water column, muddiness acts as a protective shield, helping the Microcystis to thrive (Figure B).
Can we enhance the Activity?

- Performed controlled extracts of Barley straw at defined temperatures and light incidents.
- Compared nutrient content to the inhibitory effects of barley straw in stagnant conditions long term.
- Test the white rot fungus on it’s ability to enhance the release of inhibitory compounds from barley straw.
- Test combinations of barley breakdown products to maximize inhibition.
White Rot Fungus

Trametes versicolor and *C. subvermispora*

Optimum Temperature 20-28°C
Inoculation of Barley Bales
Results from White Rot Inoculation

• 10 fold higher production of inhibitory activity with inoculation

• Bales need to be in open sunny areas to keep the bale temperature above 25°C

• Will the same effect be evident upon purification of the polyolignols?
Lessons of Williston Lake

Lucy Morris, left, and Madison Jones swim in Williston Lake on a summer day at Camp Todd.

Girl Scouts swim again in clean lake water

Future winter lake drains possible to prevent blue-green algae’s return

Photo and Story by DUSTIN HOG
Caroline Editor