US ERA ARCHIVE DOCUMENT

Clean Diesel Emission Control Technologies

EPA Marine Emissions Seminar Mexico City September 26, 2012

Joe Kubsh

Manufacturers of Emission Controls Association

Who is MECA?

- Industry association founded in 1976 to be the technical spokesperson for the mobile source emission control industry
- Primary mission is to inform regulatory groups and other stakeholders about the available emission control options for reducing pollution from mobile sources (cars, trucks, off-road equipment, small engines, marine engines, locomotives)
- Currently, 47 member companies:
 - Catalytic Converters (All Fuels)
 - Diesel Particulate Filters
 - Sensor Technologies
 - Thermal Management Strategies
 - Engine/Fuel System Management Technologies
 - Enhanced Combustion Technologies

Clean Diesel Technology Driven By a Decade of U.S. EPA Mobile Source Emission Regulations

Average Benefit:Cost = 20:1

Tier 2 Light-Duty final rule 1999 fully phased in 2009

Diesels held to same standards as gasoline vehicles

Diesel Sulfur now 15 ppm

Heavy-Duty Highway
final rule 2000
Sulfur now 15 ppm
fully phased in 2007-2010

Nonroad Diesel Tier 4
final rule 2004
Sulfur now 15 ppm
fully phased in 2015

Ocean-going Vessels
final rule 2009; IMO ECA in 2010
ECA: 1000 ppm Sulfur by 2015;
80% lower NOx by 2016

Locomotive / Marine Tier 4
final rule 2008
15 ppm Sulfur starting mid-2012
fully phased in 2017

Wall-Flow Diesel Particulate Filters Offer the Highest PM Filtration Efficiency

- Large reduction in toxics from catalyzed DPFs
- Large reduction in black carbon (GHG)
- DPFs on U.S. MY 2007+ OE trucks; Euro VI trucks
- >250,000 retrofits worldwide; growing offroad experience

SCR Becoming a Dominant NOx Control **Technology for Mobile and Stationary Sources**

Tier 4 Off-Road **Engines**

Diesel Passenger Cars

Stationary Engines

Gas Turbines

Marine **Engines**

Tier 4 Locomotive **Engines**

Large Marine Emission Control Options

EGR for Large Marine Diesel Engines

U.S. Clean Diesel Marine Demonstrations

SCR Retrofits on 2 Staten Island Ferries

DPF+SCR Retrofit on LA Port Tug

DOC + Crankcase Filter Retrofits
On Mississippi Barge Tugs

Long Beach Hybrid Tug Retrofit

US 2010+ HD Engines Available with DPF+SCR Systems

2010 DPF+SCR HD System

- Zeolite-based SCR with low NH₃ slip
- Achieves 0.2 g NOx 2010 EPA standard
- DEF usage of 1.5-2% of diesel fuel usage (10 gal. of DEF for about 5,000 miles)
- Up to 5% lower diesel fuel consumption
- Lower PM load on DPF

List of Available EPA/CARB-Verified Level 3 Retrofit Technologies Continues to Expand (as of August 2012)

- U.S. EPA (epa.gov/cleandiesel/verification/verif-list.htm)
 - 5 on-road passive DPFs (includes 2 DPF+SCR)
 - 2 on-road active DPFs
 - 1 off-road passive DPF
 - 1 off-road SCR (NOx control only)
- California ARB (<u>www.arb.ca.gov/diesel/verdev/vt/cvt.htm</u>)
 - 12 on-road passive DPFs (includes 1 DPF+LNC and 1 DPF+EGR)
 - 8 on-road active DPFs
 - 6 off-road passive DPFs (includes 1 DPF+LNC)
 - 3 off-road active DPFs
 - 6 Level 3 devices for TRUs or APUs
 - 11 Level 3 devices for stationary engines

U.S. EPA/Semarnat Mexico City Bus Retrofit Demonstration Program

Emissions, % reduction from baseline

Test Route	PM		NOx		СО	
	4,000 km*	55,000 km*	4,000 km*	55,000 km*	4,000 km*	55,000 km*
	DOCs					
Modulo 23	12.8	44.5	14.0	5.0	42.7	43.0
Insurgentes Norte	22.4		9.8		72.4	
Montevideo		29.2		11.8		77.0
DPFs						
Modulo 23	79.2	91.7	+9.5	+1.1	100	100
Insurgentes Norte	92.6		5.1		97.9	
Montevideo		90.5		+3.0		100

^{1.} The baseline emissions measurements were taken with no retrofit devices, using 350 ppm sulfur fuel; * using 15 ppm sulfur fuel

Twelve 2001 Buses Fitted with Passive DPFs; Eight Older Buses Fitted with DOCs; all fueled with 15 ppm S diesel

Level 3 DPF Retrofit Demonstration at Port of LA

- Tier 2 and 3 Cummins QSM, 375hp
- Electrical regeneration with catalyzed filter element
- Tier 2: Plug-in at every preventative maintenance
- Tier 3: Bi-weekly plug-in

Clean Diesel Vehicles Include Sophisticated Sensors and Diagnostics

Combined O₂/NOx Sensor

Urea Quality Sensor

Ammonia Sensor

Soot Sensors targeted for 2013 LD/ 2016 HD OBD

Diagnostic Systems

Heated Urea Tanks

www.meca.org & www.dieselretrofit.org – Your emission control technology resources on the web

Copyright © 2002-2005 MECA

- Emission control technology white papers and fact sheets
- Public testimony
- Regulatory information

Case study reports

DOCs and DPFs Form the Technology Base for Reducing PM Emissions from US 2007 Diesel Engines

Diesel Particulate Filters

 Significant experience base with LDD in Europe (> 6 M) & HDD retrofits (> 250 K)

Crankcase Filters Provide Additional PM Control

Types of Diesel Retrofit Technologies

PM Reduction

- Diesel Particulate Filter
 - Wall-flow device that physically traps PM in exhaust stream on surface of substrate; PM burned off through regeneration (passive or active)
 - >85% PM reduction
- Flow-Through Filter
 - Wire-mesh substrate or metal foil-based substrate with sintered metal sheets that traps a portion of the PM; passive regeneration with catalyst
 - 50-75% PM reduction
- Diesel Oxidation Catalyst
 - Flow-through device with catalytic coating on substrate that oxidizes soluble organic fraction of PM
 - 25-50% PM reduction
- Closed Crankcase Ventilation System
 - Replaceable filter that reduces engine blow-by emissions
 - >90% PM reduction (crankcase emissions)

Wider Range of Active DPFs Available for Low Exhaust Temperature Applications

- Suited for on- and off-road applications with low exhaust temperatures.
- Uncatalyzed or catalyzed wall-flow filter with electrical regeneration.
 - Catalyzed filter + electrical element combines passive and active functions
- Wall-flow filter with a fuel burner for regeneration.

Types of Diesel Retrofit Technologies

NOx Reduction

- Selective Catalytic Reduction
 - Flow-through device that reduces NOx with injection of a reductant (urea) over the catalyst
 - 60-90% NOx reduction
- Lean NOx Catalyst
 - Flow-through device that reduces NOx with injection of a reductant (diesel fuel) over the catalyst
 - 25-40% NOx reduction

MECA Diesel Retrofit Sales Survey Results (U.S.)

Technical Considerations for Successful Retrofit Projects

- Vehicle should be properly maintained before considering retrofit
- Application engineering Matching the right technology to the specific piece of equipment and application
- Proper professional installation Retrofits can be installed safely (visibility concerns addressed)
- On-vehicle monitors Provide important user feedback on performance (don't ignore warning lights)
- Maintenance Vehicle/equipment and retrofit device require inspection and maintenance

Successful Retrofits Require a Cooperative Effort Between Fleet Owners, Operators, and Technology Providers

Experience with Diesel Retrofits Spans a Variety of On-Road Vehicle Applications

Clean Diesel Technology Expanding into U.S. Off-road Applications

Tier 4 Interim Tractors

Tier 4 Interim Machines with DPFS

Locomotives Repowered with DPFs

