Impact of Oil Spill Removal on a Freshwater Wetland

Michael F. Solecki, OSC
USEPA Region II Removal Program
Edison, New Jersey

and

Royal J. Nadeau, PhD
The Eco-Strategies Group
Allamuchy, New Jersey

Fifth Biennial Freshwater Spills Symposium 2004
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

The wilderness core of the NJ Highlands, and its largest unprotected forest tract, holds enormous biological value and is home to hundreds of bear, native trout, bobcat and rare interior forest bird species.

Much of the watershed has been held by the City of Newark since the early 20th century to safeguard its water supply.

Highlands forests supply and protect clean drinking water for over 15 million people, including over half of New Jersey’s population, and protect major water supply watersheds for New York City.
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

Relict Pumping Station at Unionville, New York similar to Newfoundland Pumping Station

+ Eleven stations, 28 miles apart, over a 315 mile distance with 4 six inch diameter pipelines
+ Maximum capacity of 50K barrels a day (2.1 million gallons).
+ Operation period: 1881-1920.
Impact of Oil Spill Removal on a Freshwater Wetland

February 1996 Initial Response
Interceptor Trench installed before soil removal
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

Impact of Oil Spill Removal on a Freshwater Wetland

July 1998
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

\[PSS1 = \text{Palustrine Scrub Shrub Broad leaved Deciduous e.g. Red Maple swamp} \]
Impact of Oil Spill Removal on a Freshwater Wetland

April 1999 Earth Day at Green Pond Oil Spill Site
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

<table>
<thead>
<tr>
<th>Species</th>
<th>Number Live</th>
<th>1999</th>
<th>2002</th>
<th>Differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. dentatum</td>
<td></td>
<td>21</td>
<td>12</td>
<td>-9</td>
</tr>
<tr>
<td>Aronia</td>
<td></td>
<td>55</td>
<td>21</td>
<td>-34</td>
</tr>
<tr>
<td>Alnus</td>
<td></td>
<td>59</td>
<td>52</td>
<td>-7</td>
</tr>
<tr>
<td>Cornus sericea</td>
<td></td>
<td>15</td>
<td>46</td>
<td>+31</td>
</tr>
<tr>
<td>Cornus amomum</td>
<td></td>
<td>69</td>
<td>93</td>
<td>+24</td>
</tr>
<tr>
<td>Sambucus</td>
<td></td>
<td>26</td>
<td>18</td>
<td>-8</td>
</tr>
<tr>
<td>Ilex</td>
<td></td>
<td>18</td>
<td>21</td>
<td>-3</td>
</tr>
<tr>
<td>Salix discolor</td>
<td></td>
<td>52</td>
<td>37</td>
<td>-15</td>
</tr>
<tr>
<td>Salix nigra</td>
<td></td>
<td>19</td>
<td>17</td>
<td>-2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>334</td>
<td>311</td>
<td>Net -23</td>
</tr>
</tbody>
</table>
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland

TABLE 1. Total Petroleum Hydrocarbon (TPH) levels in Wetland Soils at Green Pond Oil Spill Site

<table>
<thead>
<tr>
<th>Location</th>
<th>Apr-99</th>
<th>Location</th>
<th>May-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW1-A</td>
<td>630</td>
<td>RW1-C</td>
<td>40</td>
</tr>
<tr>
<td>RW1-C</td>
<td>ND</td>
<td>Close to RW1-C</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Near "Spooge"</td>
<td>1800</td>
</tr>
<tr>
<td>RW2-B</td>
<td>83J</td>
<td>Close to RW2-B</td>
<td>2100</td>
</tr>
<tr>
<td>RW3-B</td>
<td>1500</td>
<td>Close to Above</td>
<td>1300</td>
</tr>
<tr>
<td>RW5-A</td>
<td>870</td>
<td>Close to RW5-A</td>
<td>200</td>
</tr>
<tr>
<td>RW6-C</td>
<td>210J</td>
<td>Close to RW6-C</td>
<td>230</td>
</tr>
<tr>
<td>RW7-B</td>
<td>300J</td>
<td>Close to RW7-B</td>
<td>300</td>
</tr>
<tr>
<td>Across River -A</td>
<td>440</td>
<td>Across River -B</td>
<td>260J</td>
</tr>
<tr>
<td>Across River -C</td>
<td>180J</td>
<td>Across River -C</td>
<td>180J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Jun-01</th>
<th>Location</th>
<th>Jun-02</th>
<th>Location</th>
<th>May-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW1-A</td>
<td>220</td>
<td>RW1-C</td>
<td>110</td>
<td>RW1-C</td>
<td>120</td>
</tr>
<tr>
<td>RW2-B</td>
<td>2300</td>
<td>RW2-B</td>
<td>560</td>
<td>RW2-B</td>
<td>520</td>
</tr>
<tr>
<td>RW3-B</td>
<td>1300</td>
<td>RW3-B</td>
<td>1500</td>
<td>RW3-B</td>
<td>110</td>
</tr>
<tr>
<td>RW5-A</td>
<td>960</td>
<td>RW5-A</td>
<td>200</td>
<td>RW5-A</td>
<td>4400</td>
</tr>
<tr>
<td>RW6-C</td>
<td>1300</td>
<td>RW6-C</td>
<td>230</td>
<td>RW6-C</td>
<td>550</td>
</tr>
<tr>
<td>RW7-B</td>
<td>300</td>
<td>RW7-B</td>
<td>300</td>
<td>RW7-B</td>
<td>550</td>
</tr>
<tr>
<td>Across River -A</td>
<td>440</td>
<td>Across River -B</td>
<td>260J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Across River -C</td>
<td>180J</td>
<td>Across River -C</td>
<td>180J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J = estimated value below the detection limit
MDL = Method Detection Limit
Wetland Plant Species Indicator Categories

OBL = Obligate Wetland

Occur almost always (>99% Probability) under natural conditions in wetlands.

FACW = Facultative Wetland

Usually occur in wetlands (67–99% Probability), but occasionally found in non-wetlands.

FAC = Facultative

Equally likely to occur in wetlands or non-wetlands (34-66% Probability).

FACU = Facultative Upland

Usually occurs in non-wetland (67-99% Probability). But occasionally found in wetlands (1-33% Probability).

National list of Plant Species that occur in Wetlands: Northeast Region (Region 1)

USF&W Biological Report 88(26.1) MAY 1988
Impact of Oil Spill Removal on a Freshwater Wetland

CHANGE IN GREEN POND WETLAND CHARACTER

- **FACUpland**
- **FACultative**
- **FACWetland**
- **OBLigate Wetland**
- **Not Listed**

YEAR
- 1999
- 2000
- 2001
- 2002
- 2003

NUMBER OF SPECIES
- 0
- 5
- 10
- 15
- 20
- 25
- 30

YEAR
- 1999
- 2000
- 2001
- 2002
- 2003

NUMBER OF SPECIES
- 0
- 5
- 10
- 15
- 20
- 25
- 30
Explanation of Habitat Symbols

- **P**=perennial (comes back every year)
- **I**=introduced (not native, would include invasives)
- **N**=native (indiginous to Northeast US)
- **G**=grass(like those found along roads and lawns)
- **Gl**=grasslike(rushes, sedges)
- **F**=forb(flowering non-woody like goldenrods,etc)
- **B**=biennial(two year growing cycle)
- **S**=shrub(woody plants usually < 20 ft in height)
- **A**=annual(one growing season, that’s it)
- **E**=emergent (grows out of water e.g. cattails)
Impact of Oil Spill Removal on a Freshwater Wetland

Change in Wetland Plant Community

- Perennial Native Forb
- Perennial Native Grass/Grasslike
- Perennial Native Emergent Forb
- Perennial Introduced Forb
- Annuals

Year

Number of Species

1999 2000 2001 2002 2003
Impact of Oil Spill Removal on a Freshwater Wetland

Notice Invasive Purple Loosestrife in left center of picture
Impact of Oil Spill Removal on a Freshwater Wetland

Invasive Species Management for Purple Loosestrife 2000
Impact of Oil Spill Removal on a Freshwater Wetland

Invasive Species Management for Purple Loosestrife 2001, 2002 & 2003

Biological Control with Galerucella beetles
Invasive Species Management for Purple Loosestrife 2001, 2002 & 2003 Galerucella spp. (calmariensis and pusilla)

Life Stages: Eggs laid in May, June, August and hatch in ten days. Larvae feed on young buds, leaves and stems up to 14 days. Pupation occurs in soil lasting about seven days.

Adults over winter and emerge in May and June. First generation adults emerge in July and August and relocate to new areas (hopefully).
Invasive Species Management for Purple Loosestrife 2002 & 2003 also included:

- End of season whole Plant extrication
- Seed head clipping in Spring.
- Clipping Flowering structures in late summer before seed maturation

A single Loosestrife seed head with tiny seeds in lower left hand corner. One plant can produce 2 million or more seeds.
Impact of Oil Spill Removal on a Freshwater Wetland

Cropped vs Uncropped Stem Count Means

Mean

Uncropped-S. discolor
Cropped-S. discolor
Uncropped-Salix nigra
Cropped-Salix nigra
Uncropped-Alnus serrulata
Cropped-Alnus serrulata

± Standard error
Impact of Oil Spill Removal on a Freshwater Wetland

Spring 2002

Fall 2002
Impact of Oil Spill Removal on a Freshwater Wetland

Shrub Height (cms) Means for 1999, 2000 & 2002
Impact of Oil Spill Removal on a Freshwater Wetland

Herbivory Issues Winter 2002
• What have we learned so far..
 • The herbaceous plant community in a wet meadow stripped of surface soil (4-6 inches) will recover providing root systems remain intact.
 • Low level soil TPH levels do not adversely affect potted shrub survival.
 • Occasional oil “spooges” do not affect the plant community as a whole.
 • Although the number of plant species has decreased the plant community has maintained its wet meadow characteristics with sedges, rushes and forbs.
 • Invasive species management is a “must do” activity in a revegetation/restoration project.

• WATCH OUT FOR THE BEAVERS AND BEARS, OH MY!
Impact of Oil Spill Removal on a Freshwater Wetland
Impact of Oil Spill Removal on a Freshwater Wetland