US ERA ARCHIVE DOCUMENT

Upper Mississippi River Water Quality Monitoring Network

Joel Allen¹, William Franz¹, David Hokanson², Sri Panguluri³, John Carson³

1. USEPA

2. Upper Mississippi River Basin Association

3. Shaw E&I

Freshwater Spills Symposium

St. Louis, MO

2009-04-29

On-Line Toxicity Monitors and Watershed Early Warning Systems

- EWS conceptual framework
- Water Quality Monitoring Tools
- Implementation
- Questions

Brown's Island, Wierton, WV

Why Early Warning Systems?

- Source Waters and Distribution Systems are vulnerable to unreported contamination events
 - River Meuse Hydraulic fluid leak 2004 (de Hoogh et al., 2006. Environ. Sci. Technol., 40 (8), 2678 -2685)
 - Utility closed intake
 - Lake Constance, Germany intentional Atrazine contamination, 2005
 - Utility added a biomonitoring system
 - Ohio River Methylene Chloride contamination, July 2007
 - Utility added activated carbon filtration
- Early detection of episodic contamination
 - early responses by water utilities and regulatory/response agencies
 - minimize potential impacts and associated costs to the water supply, citizens, and industry that utilize the river

Early Warning System Paradigm

- This EWS paradigm serves as a model for the site specific implementation of EWSs in source waters and distribution systems
 - Water quality monitoring tools
 - Data telemetry
 - Data analysis
 - Information distribution to decision makers
 - Response framework

- Multiple Benefits
 - Source Water
 - Quality
 - Ecological Status
 - TMDL
 - Drinking Water Process
 Control
 - Distribution System
 - Water Quality Monitoring
 - Water Security

Upper Mississippi River Early Warning Network

Implementation Collaboration!!!

- Upper Mississippi River Early Warning Network
 - Federal
 - U.S. EPA ORD & Region 5
 - State
 - MN Pollution Control Agency
 - MN Dept. of Nat. Res.
 - Iowa Dept. of Nat. Res.
 - Regional
 - Upper Miss. River Basin Assoc
 - Utilities
 - Minneapolis Water Works
 - St. Cloud, MN Water Works
 - Moline, Il Water Works
 - American Water
 - Xcel Energy
 - Universities
 - St. Cloud State University
 - University of MN
 - University of Iowa

- East Fork of the Little Miami River
 - Federal
 - U.S. EPA ORD
 - Local
 - Clermont County
 - Utilities
 - Morehead, KY Water Utility
 - Universities
 - Thomas More College
 - Morehead University

Water Quality Monitoring Tools

- On-line Toxicity Monitors
 - Bivalve Gape
 - Bacteria Luminescence
 - Fish Behavior/Mortality
- Physical/Chemical Sensors
 - Multiparameter Sonde
 - UV/Vis Spectrometer

Water Quality Monitoring Tools

Online Toxicity Monitoring Station Schematic

Field Sites

RESEARCH & DEVELOPMENT

S-CAN Spectrolyzer

On-line Toxicity Monitor (OTM) Research

- "Canary in the Coal mine"
- There is no machine or analytical approach to measure toxicity
- Only an organism in its own environment can integrate all factors that contribute to stress
- Continuous, Time-Relevant monitoring

Bivalve On-line Toxicity Monitor

- Based on bivalve gape behavior
- Continuous flow-through design
- Long-Term deployments of up to 1 year or longer
- Minimal maintenance requirements
- Not species specific

Data Telemetry

- Data communication must be time-relevant
- Bidirectional
 - Data from remote system to server
 - Trigger from server to remote system
- Internet, SCADA, or satellite

Minneapolis Water Works Installation

Data Analysis

- Analysis of trends must be appropriate to the nature of the data.
 - Time Series Analysis accounts for temporal dependence
 - Each site should act as its own control using a time-series approach to examine changes in the observed data
- The spatial component of data collected throughout a network is critical
- Seasonal trends can present difficulties in data interpretation
- Alarm criteria should include changes in individual water quality parameters as well as more complex correlated changes in multiple parameters

Information Distribution

- System managers and decision makers need quality information as it is collected to make informed decisions
- Information must be packaged in a manner to concisely convey observed conditions requiring minimal interpretation
 - Web based data exploration tools
 - Email alerts

Example Data Overview

- Raw clam gape data is read and stored
- Seven day rolling min and max are used to normalize raw data to the interval [0,1]
- EWMA/EWMV are calculated to detect gape closing events (GCE)
- Large fraction of clams simultaneously in GCE state and length of time in state indicate possible ongoing toxic exposure

Example: MWW Clam 6

mww Clam 6 -- 2008-12-27 CST

EWMA of Normalized Gape

Example: MWW Clam 6

EWMV of Normalized Gape

State Space Plot of Normalized Gape

EWMV vs. EWMA for MWW Data

EWMA of normalized gape Upper bound for variance is a function of mean.

ESF-6 Clam1 EWMA/EWMV Plot by Exposure Status

Histograms of Run Lengths for Values of Fraction in GCC Event

Histograms Conditioned on Fraction of Active Clams in GCC Event

Tiered Response Model

Observed Water Quality Change Automated Sample Collection Negative **Confirmation Bioassay WQMS** Reset Positive **Biologically Directed** Chemical Analysis Public Health, Regulatory, or Remedial Action

Increasing Certainty/Response/Cost

Future Work

- Deployment of Algorithm
- Data sharing agreement
- Database replication
- Site upstream of Quad Cities at Mid American Energy Plant
- Site at National Great Rivers Research and Education Center, Alton IL
- Rapid TIE Methodology

Contact Information

Joel Allen
USEPA/ORD/NRMRL
26 W. MLK Drive
Cincinnati, OH 45268
allen.joel@epa.gov
513-487-2806

