

Ecological Analysis of Hydrologic Disturbance Regimes in Streams of North and South Dakota

Valerie Kelly Oregon State University

Overview of presentation

- <u>Why</u> hydrologic disturbance?
 - Definitions and theory
- How can EMAP deal with it?
 - Regional streamflow analysis
- <u>What</u> are preliminary results for Dakota streams?

What is disturbance?

- "any relatively discrete event in time that disrupts ecosystem structure and changes resources, substrate, or the physical environment"
- Characterized by frequency, intensity, duration, and predictability of events

Hydrologic Disturbance

- Streamflow: fundamental component of physical template in streams
 - Linked to functional organization of stream communities
- Variability: measure of habitat disturbance
 - Intensity, frequency, and predictability of floods and prolonged low-flow periods

Stream Types

- Intermittent versus perennial
- Flood frequency and predictability
 - Snowmelt versus rainstorm
- Seasonal patterns
 - Summer versus winter

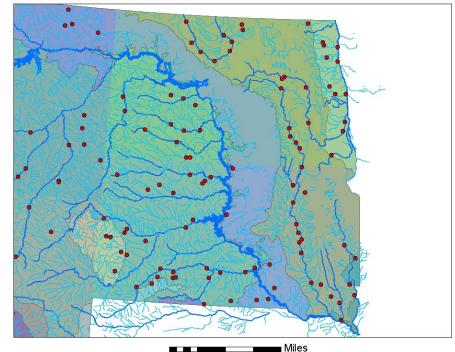
Predicted Fish Response

- Intermittent streams
 - Small body size, generalist, highly mobile
 - Simple communities, abiotic control
- Frequent floods
 - Similar to intermittent streams
- Predictable floods
 - Larger body size, specialist
 - Complex communities, seasonal biotic control

Issue for EMAP

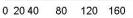
- EMAP-West: hydrologic context is important
- Potential for regional insight
- Problem: need to estimate flow metrics

Regionalization of Flow Regimes


- Pool data from sites with gages (USGS) to provide inference for sites without gages (EMAP)
- Define regions where individual flood and low-flow frequency curves are similar
- Combine individual curves to form single dimensionless frequency curve, scaled by site-specific factor (index flow)

Preliminary streamflow metrics

• Flood regime

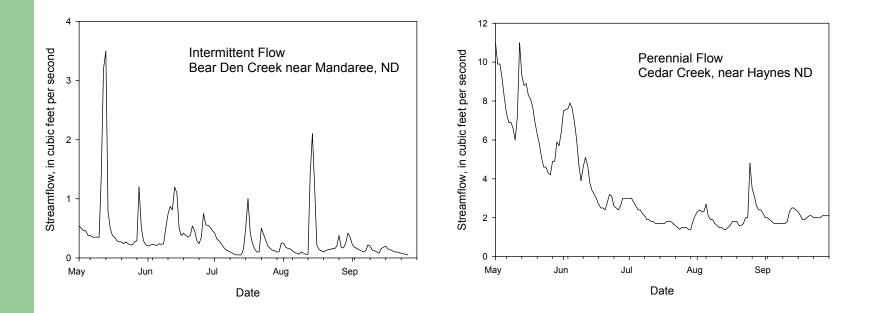

- Skewness and variability of annual peak flow
- Index of bankfull flow
- Mean timing of annual flood
- Low-flow regime
 - Index of baseflow stability
 - Important low-flow event
 - Mean timing of annual low flow

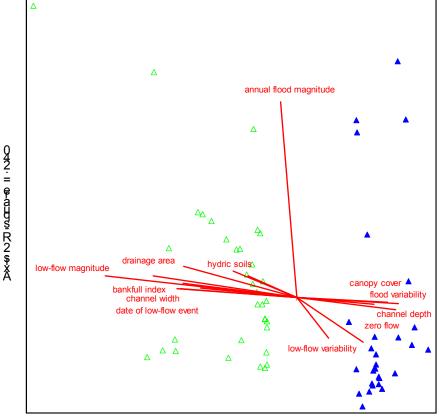
Dakota Streams

Great Plains

Variable climate
Thunderstorms
Variable runoff

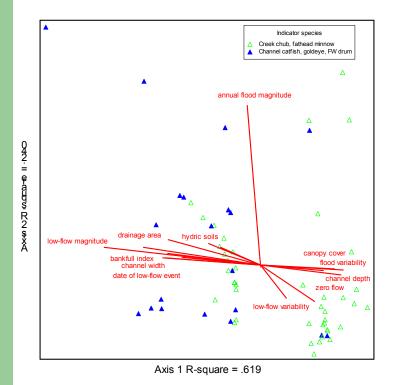
Watershed characteristics


- Lowland streams
 - Flat
 - Thick soils
 - Agriculture
- Upland streams
 - More steep
 - Forest and Range



Summer flow patterns

Preliminary streamflow metrics


• Axis 1: low-flow gradient


- Intermittent to perennial
- Small to large
- Variability
- Axis 2: flood gradient
 - Flood magnitude

Flow and fish

Conclusions

- Streamflow variability: important component of disturbance regime for streams
- EMAP: potential to evaluate disturbance ecology theory on regional scale
- Preliminary results: streamflow metrics provide meaningful context for fish distributions