US ERA ARCHIVE DOCUMENT

Assessing the Health of Coastal Ecosystem The Role of the U.S. Integrated Ocean Observing System

Tom Malone
Director, OceanUS Office &
Professor University of Maryland Center for Environmental Science
http://ocean.us

- Drivers of change in coastal marine & estuarine ecosystems & associated scales of variability
- Requirements for Ecosystem

 Based, Adaptive Management
- Development of the U.S. IOOS & EMAP

Human Alterations of Coastal Ecosystem Condition, Integrity & Sustainability

Condition of Coastal Marine & Estuarine Ecosystems Varies Over a Broad Spectrum of Time – Space Scales

Message 1

- Successful management & mitigation of the effects of human activities, natural hazards & climate change depend on
 - ➤ The capacity to detect changes rapidly on time scales of days – decades &
 - ➤ The capacity to "anticipate changes with sufficient lead time to make informed decisions with desired outcomes"

Clark et al. 2001. Ecological forecasts: an emerging imperative. *Science*, 293: 657 – 660

Message 2

Achieving these goals requires

- > A more comprehensive approach to
 - environmental protection,
 - management of living resources,
 - coastal zone management &
 - coastal engineering
- An integrated observing system that serves data & information
 - repeatedly
 - at rates on which management decision CAN & SHOULD be made

An Approach

Natural Variability & Change **Altered Coastal Marine & Estuarine Ecosystems** Human Expansions

- That considers the effects of human activities in terms of
 - Multi species interactions
 - Ecosystem dynamics &
 - The forces of nature

Ecosystem-Based, Adaptive Management

Rapid & Repeated Detection of changes

- over a broad spectrum of time-space scales
- Timely Predictions of such changes

WE DO NOT HAVE THIS CAPABILITY TODAY

WHY?

- Inefficient, ineffective data management
 - Data lost or not accessible
 - Time required to acquire, process & analyze diverse data from many sources (data fusion)
- Under sampling in time, space & ecological complexity
 - Inputs to coastal ecosystems poorly quantified
 - Lack of long term, high resolution time series
 - Lack of synoptic measurements of physical, chemical & biological properties & processes
- Research & Monitoring needs transcend traditional boundaries between
 - Government agencies
 - Private & public sectors
 - Research & Management

1998 Congress called for Integrated Ocean Observing System (IOOS)

Provide Data/Info Required for More Rapid <u>Detection</u> & Timely <u>Prediction</u> of State Changes

- Improve the safety & efficiency of marine operations
- Improve homeland <u>security</u>
- Mitigate effects of natural <u>hazards</u> more effectively
- Improve predictions of <u>climate</u> change & their effects
- Minimize <u>public health</u> risks
- Protect & restore healthy coastal marine <u>ecosystems</u> more effectively
- Sustain living marine <u>resources</u>

1 System, 7 Goals

Commission on Ocean Policy Governor's Draft 20 April, 2004

- Implement an Integrated Ocean Observing System
 - Makes more effective use of existing assets
 - Enhanced over time as new technologies, knowledge & user groups develop
- Authorize & appropriate
 - \$138 M for FY 2006
 - \$600 M by FY 2010
- Interagency program funded through NOAA as the lead agency
- Codify OceanUS as the Planning Office for the IOOS

What is an Integrated Ocean Observing System (IOOS)?

- A sustained system that repeatedly & routinely provides data & information required by groups & the public that
 - use, depend on, manage, or study marine systems from waves to whales
- > An "end-to-end" system
 - Multiple applications are efficiently linked to observations via integrated data management & analysis
- A data management & communications subsystem that provides rapid access to diverse data from many sources data fusion
- An interdisciplinary system that provides data required to rapidly detect & predict changes in the state of
 - Physical, Chemical, Biological & Ecological systems
- A system that makes more effective use of the collective assets of federal & state agencies, academia & private enterprise

User-Driven, End-to-End

Continuously, routinely & repeatedly **Provides Data & Information Specified by Multiple User Groups**

National Weather Service A Model for an Operational, End to End Observing System

Detecting & Predicting Change in Oceans & Coasts

IOOS: Hierarchy of Observations

U.S. Coastal Component

http://ocean.us

Regional COOS's

- Estuaries, Great Lakes, EEZ
- Regional Associations
 - > Coalitions of data providers & users
 - > Enhance backbone based on regional user needs

National Backbone

- EEZ & Great Lakes
- Federal Agencies
 - Design
 - > Operate
- Core variables
 - > Required by regions
- **Networks**

Developing Operational Ecology for Environmental Protection

- EMAP is a research program to
 - "develop the tools necessary to monitor & assess the status & trends of national ecological resources"
- A major objective of the STAR Program
 - develop indicators of ecological condition, integrity & sustainability
- If indicators are to be used for management purposes,
 - they must be determined routinely & repeatedly at rates specified by decision makers, e.g., daily, monthly, yearly.
- Requires a sustained & integrated observing system for coastal ecosystems
 - that EPA can benefit from & contribute to
 - as both a user & a provider of data & information generated by the IOOS

^{*}Guaranteed minimum geo- and time-referenced on-line browse and subsetting capability for all IOOS data

http://ocean.us

Northeast Atlantic Region

Observing Systems

Goal: Serve surface current velocity maps in real – time **Challenges**:

Establish coastal network of HF Radar systems &

Rapidly integrate data from HF Radars, Satellites, & In situ instruments

Surface Current Mapping: Multiple Applications

- Search & Rescue
 - More rapid recovery
- Ship Routing & Detection
 - Improved fuel efficiency, safety
- Mitigate effects of oil spills, point source plumes & HABs
 - More accurate forecasts of trajectories
- Sustainable Fisheries
 - More accurate estimates of recruitment
- Ocean Science
 - Improved understanding of marine & estuarine ecosystems

A Sampling of Federal Agencies & Programs Engaged in **Coastal Research & Monitoring** ~\$ 650 M year-1

Earth Science **Enterprise**

NOAA's National Estuarine Research Reserve System

National Coastal Assessment -Coastal 2000

CWAP: Coastal Research and Monitoring Strategy

NATIONAL MARINE SANCTUARIES

National Marine Sanctuary Program

Environmental Monitoring and Assessment Program

EPA's BEACH Watch Program

NOAA National Status and Trends

SEPA

U.S. Fish and Wildlife Service Coastal Program

Coastal Zone Management Act

National Streamgauging

Air Quality Planning and Standards

Pacific Decadal Oscillation

