US EPA ARCHIVE DOCUMENT
Application of the Probability-based Maryland Biological Stream Survey to the State’s Water Quality Standards Program

Mark Southerland and Jon Vølstad – Versar, Inc.
Ron Klauda – Maryland Department of Natural Resources
Charlie Poukish and Matt Rowe – Maryland Department of the Environment

April 10, 2007
Outline

- Needs of WQS program
- Need to assess all streams
- Need for detailed information
- DNR and MDE partnership
- Evolving MBSS design
Needs of WQS Program

• Clean Water Act presents a daunting task for states
 – CWA 305b requires comprehensive inventory
 – CWA 303d requires listing of all impaired waters
 – TMDLs require identification of stressors for all impaired waters
 ➢ All streams must be assessed
 ➢ Assessment must fit the scale of restoration
Traditional Biomonitoring Programs

- Historically states have monitored stream sites that are selected on an “ad hoc” basis, i.e., where
 - Problems are expected
 - Ease of access
 - Belief that sampling more sites will meet CWA
- Intensive sampling effort is focused at the site level
 - To insure all taxa are captured
 - To increase precision
 - Belief that more sampling effort at site will meet CWA
Ad Hoc Sampling

• Long history of ad hoc sampling perpetuates the belief that the condition of streams in an area (e.g., watershed or state) can be assessed if enough sites are sampled

• How much stream length can really be assessed directly?

• Example: How much of Maryland can be assessed directly?
Ad Hoc Sampling

• Over five years, MBSS can directly sample 1,500 75-m sites or 112 km (70 miles) of streams statewide.

• If sampled ad hoc, only 0.76 % of Maryland’s 14,811 stream km (9,203 stream miles) would be assessed.
Ad Hoc Sampling

• Can we say anything about the other 99% of streams?

• Can we assume that sampling a 75-m segment is representative of a longer length of stream or even an entire watershed?

• *To answer:* How variable are IBI scores with scale?
Scale Variability

- Evaluated variability of MBSS IBIs at scales ranging from
 - same site on same day
 - within 0.5 km within same index period
 - within 1.0 km
 - within same reach (average of 2.2 km)
 - same 12-digit watershed (average of 14 km)
 - same 8-digit watershed (average of 111 km)
Benthic IBI Variability with Scale

Scale Variability
Fish IBI Variability with Scale

Scale Variability
IBI Variability with Scale

B-IBI

<table>
<thead>
<tr>
<th></th>
<th>Mean CV</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>0.039</td>
<td>66</td>
</tr>
<tr>
<td>0.5 km</td>
<td>0.115</td>
<td>51</td>
</tr>
<tr>
<td>1.0 km</td>
<td>0.094</td>
<td>80</td>
</tr>
<tr>
<td>Reach</td>
<td>0.110</td>
<td>118</td>
</tr>
<tr>
<td>12-digit</td>
<td>0.213</td>
<td>526</td>
</tr>
<tr>
<td>8-digit</td>
<td>0.282</td>
<td>133</td>
</tr>
</tbody>
</table>

F-IBI

<table>
<thead>
<tr>
<th></th>
<th>Mean CV</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>No data</td>
<td>0</td>
</tr>
<tr>
<td>0.5 km</td>
<td>0.149</td>
<td>45</td>
</tr>
<tr>
<td>1.0 km</td>
<td>0.097</td>
<td>72</td>
</tr>
<tr>
<td>Reach</td>
<td>0.188</td>
<td>109</td>
</tr>
<tr>
<td>12-digit</td>
<td>0.390</td>
<td>486</td>
</tr>
<tr>
<td>8-digit</td>
<td>0.417</td>
<td>128</td>
</tr>
</tbody>
</table>
Ad Hoc Sampling

• Assume that 75-m sites are representative of 2.2 km reaches (based on CV =10%)

• 1,500 MBSS sites can assess 3,300 km (2,050 miles) of streams statewide
 – i.e., 22% of Maryland’s 14,811 stream km (9,203 stream miles)
 ➢ Ad hoc sampling will still leave 78% of stream km unassessed
Ad Hoc Sampling

- Maryland is a small state with a robust program, but using ad hoc sampling
 - Only 1 to 22% of a state’s stream lengths can be assessed
- Condition of all streams in an area (e.g., watershed or state) cannot be assessed simply by sampling more ad hoc sites
 - This is Lesson #1
 - Need to implement a probability-based survey for to infer condition (e.g., means and confidence intervals) at “reaches” not sampled
Intensive Site Sampling

• Recent research has focused on improving assessment of streams at the site level
 – Replicate samples at each site
 – Fixed-count sampling, minimum subsample sizes, and levels of taxonomic identification

• Will increased effort at individual sites provide better assessments of all streams?
Sampling Effort

• We evaluated 73 MBSS sites where two benthic samples of 100 organisms were collected as replicates to provide a surrogate 200-organism subsample
 – How many additional taxa were collected in the second sample?
 – What increase in precision of IBI was obtained with a replicate sample?
Overlap of Taxa By Replicate

Proportion of Total Organisms Observed

Frequency

0.4 0.5 0.6 0.7 0.8 0.9

0 5 10 15

Overlaying Bar Chart and Circles

Intensive Site Sampling
Subsample Effort

• What are the gains from 200-organism subsample at all sites
 – in IBI precision
 – proportion of taxa captured?

• Assuming 25% greater laboratory effort for 200- vs. 100-organism subsample, what is the cost benefit?
Subsample Effort for Fixed Number of Sites (73)

IBI

Number of Organisms Sorted

Number of Taxa

Field and Lab Cost

RSE (%)

Subsample Size

Number of Organisms

Number of Taxa

Cost (dollars)

Subsample Size

Subsample Size

Subsample Size

Subsample Size
Subsample Effort at Fixed Cost

IBI

Number of Organisms Sorted

RSE (%)

Number of Taxa

Field and Lab Cost

Subsample Size

Number of Organisms

Subsample Size

Cost (dollars)

Subsample Size

Intensive Site Sampling
Subsample Effort

• For fixed number of sites, using 200 organisms rather than 100 results in
 – 3% increase in IBI precision
 – 16% more taxa

• For fixed field and lab cost, using 200 organisms requires that 15% fewer sites be sampled, resulting in
 – 3% decrease in IBI precision
 – 1% more taxa

Intensive Site Sampling
Subsample Effort

- Additional sampling effort at individual sites provides
 - No improvement in IBI precision
 - Some more taxa (but not per cost)

- Increased effort at individual sites does **not** provide better assessments of all streams
 - This is Lesson #2
 - Sampling effort should be allocated to meet assessment objectives at desired scale
Lessons

• Ad hoc sampling cannot assess all streams
 • “The Elephant in the Room”
 ➢ Probability-based sampling is needed to infer condition

• Intensive site sampling does not increase the assessment of all streams
 • “Gilding the Lilly”
 ➢ Sampling effort should be allocated according to desired scale
DNR and MDE Partnership

- Used MBSS data to develop biocriteria to support WQS
- Applied the lessons of probability-based sampling to assess all waters for 305b and 303d
- Used MBSS data to develop a method for identifying watersheds impaired by
 - Flow or sediment
 - Energy sources
 - Inorganic pollutants
- Augmenting core MBSS with sampling to get more detail for TALUs and TMDLs
MBSS Design

- Maryland can sample about 200 core monitoring sites per year
- Random sampling can give robust estimate with 10 sites in a watershed
- MD 8-digit watersheds (with smaller watersheds combined) equals 84 PSUs
- 84 PSUs x 10+ sites = about 1,000 sites
- Maryland can sample statewide at 8-digit scale (average of 111 km) every 5 years
Biocriteria Status by Watershed

- Pass
- Inconclusive
- Fail

DNR and MDE
Likely Stressors in Failing Watersheds

- Watersheds with failing biocriteria score
- High inorganic pollutants
- High energy source
- High flow or sediment
- Watersheds with passing or inconclusive scores
MBSS Design

- MBSS will conduct “biocriteria” round every 10 years, i.e., 2000-2004 and then 2010-2014
- All streams will be included in probability design with some partial replacement to improve trends detection
- Intervening MBSS rounds will address WQS needs for
 - 303d listings on finer scale
 - TALU designations for high-quality waters (Tier II)
 - Additional identification of stressors
MBSS Design

• In 2007, MBSS is sampling
 – Additional random sites in watersheds with less than 10 sites or indeterminate condition
 – Sites in adjacent reaches to known high-quality waters using adaptive approach

• As needed, MDE will sample watersheds to identify stressors not found with method employing MBSS data
Conclusion

• DNR and MDE partnership is using probability-based MBSS as an effective tool to meet the needs of Maryland water quality standards program