

A Robust Design for Great River Ecosystem Monitoring And Assessment

EMAP-GRE

E. William Schweiger, Ted Angradi, David Bolgrien, Jack Kelly U.S. Environmental Protection Agency Office of Research and Development, Mid -Continent Ecology Division

> & Anthony R. Olsen

U.S. Environmental Protection Agency Office of Research and Development, Western Ecology Division

Natural Resource Management What's Missing?

- "Only a few studies of the Missouri River ecology view the river as a single system from headwater to mouth, or as a single system that considers biological and physical linkages... Without this fundamental information, cast within a system-wide perspective encompassing the entire Missouri River ecosystem, truly comprehensive assessments of the Missouri River are not possible."
 - National Academy of Sciences, 2002

Comprehensive, large-scale, consistent monitoring of Great River Ecosystems is the vital and too often missing link

What EMAP brings to the GRE monitoring table

KEY PRODUCTS:

- 1. Research on GRE sample Designs, indicators and analytical techniques
- 2. Assist in development of a consistent ecological condition baseline across broad spatial scale
 - 1. Pilot monitoring and assessment results
 - 2. Initial description of trends in resource condition
 - 3. Identification and ranking of important stressors on GREs
 - 4. Integrated within a physical, chemical and landscape context

The EMAP Design - Summary *Fundamental Attributes of EMAP Design*

- Emphasis on ecological condition
- Broad spatial scale
- Sample survey
 - "Probability sample"
 - Representative

 Analyses via design-based inference

 Unbiased...

EMAP Design Essentials *Inference; Design and Model-based*

- Design-based:
 - For each response measure (i.e., temperature) a FIXED value exists at each sampling location
 - NO uncertainty remains if a census of the population is done
 - The only variation that plays a role in estimating population statistics is the variability across probabilities of selecting sampling locations
 - Inference is independent from any assumptions about (statistical) population structure and distribution

EMAP Design Essentials *Inference; Design and Model-based*

- Model-based:
 - Values at a point are just one possible realization of an underlying RANDOM process
 - Assumptions are formalized in a model relating samples to parametric population (i.e., geostatistical or other familiar classic statistical methods)
 - If a census of the population is done, *one* realization of the random underlying process would be known, <u>but uncertainty in the parameters of</u> <u>the model remain</u>
 - The key variation that plays a role in estimating population statistics is the stochasticity in the assumed underlying process that controls the values at each point
 - Inference is NOT independent from any assumptions about (statistical) population structure and distribution

	Design	Model
	spatial autocorrelation may be ignoredif correctly applied with reasonable N,	 mechanistic models can be formulated for long-term prediction
	robustness of estimates is guaranteed	•can be used with non-probability sample
Benefits	 design-based inferences are more 	 may be advantageous for small N
	elementary from a statistical perspective	•may be useful when portions of
	•models or auxiliary data may be used to structure design details (i.e. stratification),	population are known to be unreachable for sampling
	improving efficiency	•may allow easier integration of existing
	•allows and strengthens use of model	data (but bias still an issue)
	based inference	 more familiar to most biologists
	 less familiar to most biologists and resource managers 	 quality of estimations depend on quality of model
	•must be based on probability sample	•models may need to be very complex with
Costs	•can not directly be used for prediction	multiple parameters to fit ecological systems
Co		•with selection bias there is less confidence
		that model will hold for all non-sampled units
		•no basis for bias correction
		•estimates of precision may be misleading

EMAP Design Essentials *Inference Methods - Comparison*

- Depends on question and goals
- Not Design-based versus Model-based
- Optimal monitoring approach includes both methods

"If results are to be used in resource management or statutory regulation, objective estimation procedure is paramount, independent of subjective decisions"

EMAP-GRE Straw Man Design

- Ongoing work on the Upper Missouri River serves as test-bed for many of these ideas
- Direct involvement of stakeholders in planning
- Probability survey
- Biological focus
- Multi-resource
 - riverine, riparian, reservoir & landscapes...
- Novel GRE indicators and protocols

EMAP-GRE Straw Man Design *Target Population; What and Where*

- That to which final statements of condition shall apply
 - Must be defined explicitly and (eventually) operationally
- "GRE of the Mississippi Basin"
 - Will require extensive clarification
 - Solution may be through consensual edict?

EMAP-GRE Straw Man Design *Target Population; Domains*

- Hierarchical sub-division of resource creation of "Domains" at the regional, within-region, and macrohabitat scales
 - Reduces, or aids in the understanding, of sources of variation in response measures
 - Allow statements about meaningful management units
- Strategy must compromise between ecologic and socioeconomic constraints
- Variety of design mechanisms to accomplish the subdivision

EMAP-GRE Straw Man Design Target Population Extent and Domains

Design Version	Regional sub- divisions II	Regional sub- divisions I	Regional Extent
Full Geomorphic	Mississippi Reaches (4?): R1(P1-13);R2(P14-26);R3(OR); Lower Navigation[?] Missouri Reaches (10?): Wild and Scenic; Ft.Peck; Garrison; Recreational; Upper Navigation?; Lower Navigation?; Main Stem Reservoirs(3+1)? Ohio Reaches (3): Upper-Greenup, Middle-Falls, Lower-Mouth Total: 17	CALE Upper Mississippi / Lower Mississippi; Upper Missouri / Lower Missouri; Ohio Total: 5	'Complete' Rivers in Greater Mississippi Basin Total: 3
Full Political	Mississippi States (7): MN+IA+MO(=WI&IL),KT,TN,AR+MS(=LA) Missouri States(6): MT,ND,SD,NE(=IA),KS,MO Ohio States(4): PA,IL+IN+OH(=KY&WV)	States with Significant River MN,IA,MO,MT,ND,SD,NE,MO, IL,IN,OH,KY,WV Total: 12	'Complete' River in EPA Regions: R8, R7, R5, R4, R6, R3 Total: 6 (some reaches are shared)
	Total: 17 (some reaches are shared)	(some reaches are shared)	

EMAP-GRE Straw Man Design Target Population Extent and Domains

Design	Regional sub-	Regional sub-	Regional Extent
Version	divisions II	divisions I	
Reduced Geomorphic	SCA Mississippi Reaches (4?): R1(P1-13);R2(P14-26);R3(OR); Lower Navigation[?] Missouri Reaches (10?): Wild and Scenic; Ft.Peck; Garrison; Recreational; Upper Navigation?; Lower Navigation?; Main Stem Reservoirs(3+1)? Total: 14	LE Upper Mississippi / Upper Missouri / Lower Missouri Total: 3	'Complete' Rivers in Upper Miss. and Missouri Basins Total: 2
Reduced Political	Mississippi States (5): MN+IA+MO(=WI&IL),KY,TN Missouri States(6): MT,ND,SD,NE(=IA),KS,MO Total: 11	States with Significant River MN,IA,MO,MT,ND,SD,NE,MO Total: 8 (some reaches are shared)	'Complete' River in EPA Regions: R8, R7, R5 Total: 4 (some reaches are shared)

EMAP-GRE Straw Man Design *Target Population – Macrohabitat Classes as Domains*

- Smallest scale of sub-division discussed here is the macrohabitat
- A Design that excludes a macrohabitat does not allow separate inferences to this habitat
 - No independent statement about such habitats is possible, must be subsumed within another macrohabitat (e.g., "backwaters of the Missouri" vs. "the Missouri River")
 - If habitats have distinct ecology (as many components of GRE may), then the ability to describe this is lost in a Design that does not include said macrohabitat
- Level of macrohabitat detail may have a direct impact on the response or plot design
 - A more fine sub-division may reduce complexity of response design

EMAP-GRE Straw Man Design *Target Population – Discrete or Continuous*

• Discrete vs. continuous

- Impact on nature of final statements
 - "% of habitat type X area" vs. "% of individual instances of habitat type X"??
- Different, but related, statistical theory and mechanisms for sample site selection and data analysis
- Working hypothesis: GRE and most constituent macrohabitats are best sampled as continuums
 - Typically simplifies the response design (measures representative of a point vs. whole unit)
 - Intuitive for most habitat types within GREs
 - Stratification in Design allows for both types

EMAP-GRE Straw Man Design *Target Population - Dimensionality*

- Areal vs. linear-
 - Impact on final statements:
 - "% of area" vs. "% of miles"??
 - What makes the most ecological sense?
- May vary with macrohabitat (i.e., shoreline vs. riparian)
 - Stratification in Design allows assessment to include resources of different dimension, however, there is no clear way to integrate across resources with different dimensions
 - i.e., a statement that statistically combines "% of linear shoreline in condition X" with "% of river area in condition X" - ?

Working hypothesis: GRE and most constituent macrohabitats are best sampled as areas (except linear shorelines)

EMAP-GRE Straw Man Design Dimensionality and Habitat Classes

Design Version	Dimension	Habitat Class
Full – All Habitats	Most are areal	Aquatic Riverine (3-15+)EXAMPLES: LTRMP classes (7+); L.Miss River (18+);UMR Classes (3:Open Water, Backwaters, Shoreline)Riparian/Wetland/Floodplain (2-12+)EXAMPLES: LTRMP classes (12+); L.Miss River (9+);UMR Classes (2:In channel, Terrace Forest)LenticLenticLTRMP classes (4+); L. Miss. River classes (9+);UMR-Reservoirs (2:Open Water, Bays)
Reduced – Some Habitats	Most are areal	Aquatic Riverine Avg. = 1 EXAMPLES: Open Water, Backwaters, Shoreline Avg. = 1 **other Macrohabitats subsumed in Response Design**
Simplest – One Habitat	Areal (linear perspective more tenable)	"The River" **all Macrohabitats subsumed in Response Design, EMAP- SW approach**

EMAP-GRE Straw Man Design Sample Size for Example Designs

Design Version	# of Geographic Sub-divisions (largest scale / smallest scale)	Number of Habitat Sub- Divisions	Domains to be reported on (largest scale / smallest scale)	Sample Size@ 35 per (largest scale / smallest scale)	QA and repeat visits (largest scale / smallest scale)
Full Geo. + All	3 Rivers	12	36	1260	126
Habitats	17 reaches	Avg. number across major reaches	204	7140	714
Full Geo. +	3 Rivers	3	9	315	32
Reduced Habitats	17 reaches	Avg. number across major reaches	51	1785	179
Full Pol. + All	6 Region-States	12	72	2520	252
Habitats	17 States	Avg. number across major reaches	204	7140	714
Full Pol. +	6 Region-States	6 Region-States 3		630	63
Reduced Habitats	17 States	Avg. number across major reaches	51	1785	179

EMAP-GRE Straw Man Design Sample Size for Example Designs

Design Version	# of Geographic Sub-divisions (largest scale / smallest scale)	Number of Habitat Sub- Divisions	Domains to be reported on (largest scale / smallest scale)	Sample Size@ 35 per (largest scale / smallest scale)	QA and repeat visits (largest scale / smallest scale)
Reduced Geo. + All Habitats			24 168	840 5880	84 588
Reduced. Geo. + Reduced Habitats	2 Rivers 14 Reaches	3 Avg. number across major reaches	6 42	210 1470	21 147
Reduced Pol. + All Habitats	4 Region-States 11 States	12 Avg. number across major reaches	48 132	1680 4620	168 546
Reduced Pol. + Reduced Habitats	4 Region-States 11 States	3 Avg. number across major reaches	12 33	420 1155	42 116

EMAP Design To-Dos

- Major decisions about target population
 - Which are the 'Great River Ecosystems of the Central Basin'
 - Why?
 - Domains: Geo-reach? State? Level of detail?
 - Macrohabitats: Which? Where? Why?
 - Ted's talk
 - Spatial nature of target resource: Discrete? Continuous? Linear? Areal?
- What level of precision do we need? (sample size)
 - Is around +/- 10% appropriate?

EMAP To-Dos: For Another Day

- What suite of indicators work best with the EMAP Design?
 - Biological; hydrologic; food web; nutrients...
 - What is the appropriate local (response) scale of variation?
- How should we integrate with existing monitoring?
 - NASQAN, LTRMP, EMAP-SW
 - Important issue of EMAP-SW approach that uses a linear criteria (% of river miles) vs. proposed EMAP-GRE areal criteria (% of river habitat X area)

EMAP To-Dos: For Another Day

- How can we efficiently deal with temporal variation?
 - Nothing of a statistical nature about EMAP Design disallows temporal perspective
 - Panels
 - Continuous data-loggers
 - Nested subset of sites used to track long-term trends
 - Random selection of these long-term sites assures that they are representative (at large scale)
 - Judicious use of and integration with existing targeted long-term data in an EMAP assessment (via joint modeling efforts?)

Extra Slides Follow:

• Statistics don't lie, but statisticians do.

 \mathbf{O}

- Statistician -- someone who insists on being certain about uncertainty.
- Forty-two percent of all statistics are made up on the spot.
- The 50-50-90 rule: Anytime you have a 50-50 chance of getting something right, there's a 90% probability you'll get it wrong.

- Q: Why do people decide to become statisticians? A: They find accounting too exciting.
- A statistician is a person whose lifetime ambition is to be wrong 5% of the time.
- Following a flaming snowmobile crash, one statistician asked the other if he was OK. The second said 'well, my hair's on fire and my toes are frostbitten, but overall I feel pretty good.''

 How do we know conclusions apply to systems other than that from which they were measured?

Natural Resource Management Meetings What's Missing?

- Can results functionally contribute to Adaptive Management?
- Are the data/conclusions the right 'kind' for pressing management issues:
 - "What is the extent and condition of our renewable natural resources?"
 - "Where and what parts of the environment are changing?"

Missouri River Natural Resources Conference, 2002

GRE Monitoring Programs *Design Challenges*

- Objectives for monitoring are not clearly, precisely stated and understood
- Monitoring measurement protocols, survey design, and statistical analysis become scientifically out-of-date
- Monitoring results are not directly tied to management decision making
- Results are not timely nor communicated to key audiences
- Results are not comparable across programs
 Or within programs across political boundaries

Great River Ecosystems

Sample of Existing GRE Monitoring – Central Basin of the US

Program	Agency	Relevant Resource	Focus	Sampling Frequency	Site selection	Inference
NASQAN	USGS	Mo., Miss. & Ohio Riv.	WQ – Flux & Loadings	~monthly	Site-criteria	Model
NAWQA	USGS	Upper Miss. Basin	WQ, Biological Condition	<1yr	Site-criteria	Model
LTRMP	USGS	Upper Miss. Riv.	WQ, Bio. Cond., Habitat Needs	vary	Site-criteria and P-sample (limited target pop.)	Model and Design(?)
BEST (fish)	USGS	Mo., Miss. & Ohio Riv.	Fish Tissue Toxicity	2 yrs	Site-criteria	Model
305(b)/303(d) and other State Monitoring	States	Mo., Miss. & Ohio Riv.	WQ, Bio. Cond., Phy-hab. Fish Tissue Toxicity, etc.	vary	Vary; Site-criteria	Vary; Model
Benthic Fish Study	State & USGS	Mo. Riv.	Fish Species & Habitat	once	Site-criteria	Model
ORSANCO	ORSANCO	Ohio Riv.	Bio Cond., Fish Tissue Toxicity, WQ	vary	?	?
ACOE monitoring	US ACOE	Mo., Miss. & Ohio Riv (?)	WQ, T&E Species	<daily to<br="">once</daily>	Site-criteria	Model
National Sediment Inv.	EPA?	Mo., Miss. & Ohio Riv (?)	Sediment Contamination	?	Site-criteria	Model

Incomplete and simplified!

The EMAP Design - Summary *Fundamental Attributes of EMAP Design*

<u>Probability sample</u>

- Site selection by process that includes explicit random element
- Every element in the population has the opportunity to be sampled
- Precision of results is known
- Explicit spatial balance in Design

EMAP-GRE Straw Man Design *Monitoring and Assessment Objectives*

- Assessment Questions may range from quantitative and specific to general
- Develop in consultation with stakeholders
- Optimal design for *all* stakeholders involved does not exist

EMAP-GRE Straw Man Design Sample size

Why an N of 35-50 per hopeful reporting unit?

Assumed	Precision with 90% Confidence					Precision with 95% Confidence				nce
Proportion	for alternative sample sizes					for alternative sample sizes				
(percent)										
	25	50	100	400	1000	25	50	100	400	1000
20%	±13	±9	±7	±3	±2	±16	±11	±8	±4	±3
50%	±17	±12	±8	±4	±3	±20	±13	±10	±5	±3

- Precision important in ability to detect changes
- Administrative and QA constraints define sample size limits
 - Size of sample, vs. size of target population, affects precision

EMAP-GRE Straw Man Design *Target Population; Domains*

- Stratification
 - Results in operationally distinct Designs
 - Operational/administrative efficiency (e.g., giving States independent samples)
 - Improve precision of results, BUT a >20% misclassification rate results in worse precision than no strata
- Unequal selection probabilities (across subpopulations of interest)
 - Samples are all part of the same Design
 - Improve precision of results
 - N is approximate, not *a priori*
 - Size classes of backwaters
 - Secondary channel habitat in delta zone
 - Integrity of Design still maintained

EMAP-GRE Straw Man Design

Affect of Habitat classes, Response Designs and Dimensionality

Arsenic (ug/L)

EMAP-GRE Straw Man Design *Response Design - Timing*

Index period

- Period of sample collection keyed to important biological events such as maximum stress of biota or key points within the hydrocycle
- Measurements may be taken more than once during index period with response design giving protocol for obtaining single value for indicator
- Indicator variability within index period contributes to non-survey sampling error
- Can this deal with the important temporal variability in some GRE indicators?

EMAP-GRE Straw Man Design *Panels - Timing*

- Design may be structured such that only a portion (a Panel) is done in a single sampling period
 - Panels are representative samples in and of themselves
- Trends can be quantified via a Panel Design where it is possible to balance priority of status estimation versus trend estimation
 - Basic design is single panel
 - 5-year rotating panel: panel 1 visited in year 1, 6, 11,etc; panel 2 visited in year 2, 7, 12, etc; ...

EMAP-Design

Implementing the Generalized Random Tessellation Stratified Design

- Steps in EMAP Design Algorithms:
 - Randomly locate a grid over extent of resource population
 - Calculate the expected number of samples in each grid
 - Randomly order cells using a hierarchical randomization of recursive-partition addresses, cell weight equal to its expected number of samples
 - Select systematic sample of grid cells
 - Select a sample point at random from the population elements contained within each chosen grid cell

EMAP-GRE Straw Man Design Sample Frame

- Explicit unambiguous representation of population
 - Provides basis for sample selection
 - Typically as a GIS Map with the spatial locations and extent of elements of population
- Status for GRE of the Central Basin
 - Good. Should be feasible to create adequate frame. Not a simple or trivial GIS task, but doable.

EMAP-GRE Straw Man Design *Dot-\$-Math*

Design Version	Sample Size@ 35 per + QA (largest scale / smallest scale)	Total Cost \$\$\$\$\$ @ 5k per site	Design Version	Sample Size@ 35 per + QA (largest scale / smallest scale)	Total Cost \$\$\$\$ @ 5k per site
Full Geo. + All Habitats	1386	6,930,000	Reduced Geo. + All Habitats	924	4,620,000
	7854	39,270,000		6468	32,340,000
Full Geo. + Reduced Habitats	347	1,735,000	Reduced Geo. + Reduced Habitats	231	1,155,000
	1964	9,820,000		1617	8,085,000
Full Pol. + All Habitats	2772	13,860,000	Reduced Pol. + All Habitats	1848	9,240,000
	7854	39,270,000		6006	30,030,000
Full Pol. + Reduced Habitats	693	3,465,000	Reduced Pol. + Reduced Habitats	462	2,310,000
	1964	9,820,000		1502	7,510,000

Frame

- Frame: explicit unambiguous representation of population
 - Typically as a GIS Map with the spatial locations and extent of elements of population
 - Provides basis for sample selection
 - Status for GRE of the Central Basin is good. Should be feasible to create adequate frame. Not a simple or trivial GIS task, but doable.
 - IDEAL more real-time Frame, such that lags less of an issue?
 - Integrate hydrogeo

Indicators & EMAP-GRE

TALK ABOUT IN THE DISCUSSION SESSION

EMAP-Analysis Overview *Example from UMR*

- Populations typically described through use of cumulative distribution functions (CDFs) with associated confidence intervals
 - Conveys more information than simple means, etc.
 - May be expressed as 'executive summary pie charts', means, dispersion, etc.
- Algorithms include integration of probability Design elements (weights) in every analysis
 - May summarize data with out these steps (as in a Model-based approach) but power of Design is lost and (in the simplest case) results only apply to sampled sites

Lake Oahe 2001 Example WQ Results

Discussion and Conclusions

- Beyond EMAP how does an EMAP-GRE interface with existing monitoring or other designs
 - Integration with EMAP-SW
- Gulf hypoxia
- 305b/303d
- Dealing with temporal variation
- Long-term fixed station monitoring
- The landscape component