A Robust Design for Great River Ecosystem Monitoring And Assessment

EMAP-GRE

E. William Schweiger, Ted Angradi, David Bolgrien, Jack Kelly
U.S. Environmental Protection Agency Office of Research and Development,
Mid-Continent Ecology Division

&

Anthony R. Olsen
U.S. Environmental Protection Agency Office of Research and Development,
Western Ecology Division
“Only a few studies of the Missouri River ecology view the river as a single system from headwater to mouth, or as a single system that considers biological and physical linkages… Without this fundamental information, cast within a system-wide perspective encompassing the entire Missouri River ecosystem, truly comprehensive assessments of the Missouri River are not possible.”

– National Academy of Sciences, 2002

Comprehensive, large-scale, consistent monitoring of Great River Ecosystems is the vital and too often missing link
What EMAP brings to the GRE monitoring table

KEY PRODUCTS:

1. Research on GRE sample Designs, indicators and analytical techniques
2. Assist in development of a consistent ecological condition baseline across broad spatial scale
 1. Pilot monitoring and assessment results
 2. Initial description of trends in resource condition
 3. Identification and ranking of important stressors on GREs
 4. Integrated within a physical, chemical and landscape context
Ecological Condition of Great River Ecosystems

SPATIAL CONTEXT

Probability-Survey Approach; Inference and Assessment are Design-based (EMAP, LTRMP)

TEMPORAL CONTEXT?

Feedback and other relationships

Landscape Data and Assessment; Comprehensive or Model-based (EMAP, GAP, etc.)

Targeted or Fixed-Station Approach; Inference and Assessment are Model-based (NASQAN, NAWQA, MOREAP, etc.)

TEMPORAL CONTEXT

SPATIAL CONTEXT?

Ecological Condition of Great River Ecosystems

305b, 303d, TMDL

Other uses

Landscape Data and Assessment; Comprehensive or Model-based (EMAP, GAP, etc.)

COMPONENTS OF A ROBUST GRE ASSESSMENT

Feedback and other relationships

Landscape Data and Assessment; Comprehensive or Model-based (EMAP, GAP, etc.)
The EMAP Design - Summary

Fundamental Attributes of EMAP Design

- **Emphasis on ecological condition**
- **Broad spatial scale**
- **Sample survey**
 - “Probability sample”
 - Representative
- **Analyses via design-based inference**
 - Unbiased…
EMAP Design Essentials

Inference; Design and Model-based

- **Design-based:**
 - For each response measure (i.e., temperature) a FIXED value exists at each sampling location
 - NO uncertainty remains if a census of the population is done
 - The only variation that plays a role in estimating population statistics is the variability across probabilities of selecting sampling locations
 - Inference is independent from any assumptions about (statistical) population structure and distribution
• Model-based:
 – Values at a point are just one possible realization of an underlying RANDOM process
 – Assumptions are formalized in a model relating samples to parametric population (i.e., geostatistical or other familiar classic statistical methods)
 – If a census of the population is done, one realization of the random underlying process would be known, but uncertainty in the parameters of the model remain
 – The key variation that plays a role in estimating population statistics is the stochasticity in the assumed underlying process that controls the values at each point
 – Inference is NOT independent from any assumptions about (statistical) population structure and distribution
<table>
<thead>
<tr>
<th>Benefits</th>
<th>Design</th>
<th>Model</th>
</tr>
</thead>
</table>
| • spatial autocorrelation may be ignored
• if correctly applied with reasonable N, robustness of estimates is guaranteed
• design-based inferences are more elementary from a statistical perspective
• models or auxiliary data may be used to structure design details (i.e. stratification), improving efficiency
• allows and strengthens use of model based inference | • mechanistic models can be formulated for long-term prediction
• can be used with non-probability sample
• may be advantageous for small N
• may be useful when portions of population are known to be unreachable for sampling
• may allow easier integration of existing data (but bias still an issue)
• more familiar to most biologists | |

<table>
<thead>
<tr>
<th>Costs</th>
<th>Design</th>
<th>Model</th>
</tr>
</thead>
</table>
| • less familiar to most biologists and resource managers
• must be based on probability sample
• can not directly be used for prediction | • quality of estimations depend on quality of model
• models may need to be very complex with multiple parameters to fit ecological systems
• with selection bias there is less confidence that model will hold for all non-sampled units
• no basis for bias correction
• estimates of precision may be misleading | |
EMAP Design Essentials

Inference Methods - Comparison

- Depends on question and goals
- Not Design-based versus Model-based
- Optimal monitoring approach includes both methods

“If results are to be used in resource management or statutory regulation, objective estimation procedure is paramount, independent of subjective decisions”
EMAP-UMR

- Ongoing work on the Upper Missouri River serves as test-bed for many of these ideas
- Direct involvement of stakeholders in planning
- Probability survey
- Biological focus
- Multi-resource
 - riverine, riparian, reservoir & landscapes…
- Novel GRE indicators and protocols
EMAP-GRE Straw Man Design

Target Population; What and Where

- That to which final statements of condition shall apply
 - Must be defined explicitly and (eventually) operationally

- “GRE of the Mississippi Basin”
 - Will require extensive clarification
 - Solution may be through consensual edict?
EMAP-GRE Straw Man Design

Target Population; Domains

- Hierarchical sub-division of resource - creation of “Domains” at the regional, within-region, and macrohabitat scales
 - Reduces, or aids in the understanding, of sources of variation in response measures
 - Allow statements about meaningful management units

- Strategy must compromise between ecologic and socioeconomic constraints

- Variety of design mechanisms to accomplish the subdivision
EMAP-GRE Straw Man Design

Target Population Extent and Domains

<table>
<thead>
<tr>
<th>Design Version</th>
<th>Regional sub-divisions II</th>
<th>Regional sub-divisions I</th>
<th>Regional Extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Geomorphic</td>
<td>Mississippi Reaches (4?): R1(P1-13); R2(P14-26); R3(OR); Lower Navigation?</td>
<td>Upper Mississippi / Lower Mississippi; Upper Missouri / Lower Missouri; Ohio</td>
<td>‘Complete’ Rivers in Greater Mississippi Basin</td>
</tr>
<tr>
<td></td>
<td>Missouri Reaches (10?): Wild and Scenic; Ft.Peck; Garrison; Recreational; Upper Navigation?; Lower Navigation?; Main Stem Reservoirs(3+1)?</td>
<td>Total: 5</td>
<td>Total: 3</td>
</tr>
<tr>
<td></td>
<td>Ohio Reaches (3): Upper-Greenup, Middle-Falls, Lower-Mouth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 17</td>
<td>Total: 17</td>
<td></td>
</tr>
<tr>
<td>Full Political</td>
<td>Mississippi States (7): MN+IA+MO(=WI&IL), KT, TN, AR+MS(=LA)</td>
<td>States with Significant River MN, IA, MO, MT, ND, SD, NE, MO, IL, IN, OH, KY, WV</td>
<td>‘Complete’ River in EPA Regions: R8, R7, R5, R4, R6, R3</td>
</tr>
<tr>
<td></td>
<td>Missouri States(6): MT, ND, SD, NE(=IA), KS, MO</td>
<td>Total: 12</td>
<td>Total: 6</td>
</tr>
<tr>
<td></td>
<td>Ohio States(4): PA, IL+IN+OH(=KY&WV)</td>
<td>(some reaches are shared)</td>
<td>(some reaches are shared)</td>
</tr>
</tbody>
</table>
EMAP-GRE Straw Man Design

Target Population Extent and Domains

<table>
<thead>
<tr>
<th>Design Version</th>
<th>Regional subdivisions II</th>
<th>Regional subdivisions I</th>
<th>Regional Extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Geomorphic</td>
<td>Mississippi Reaches (4?): R1(P1-13); R2(P14-26); R3(OR); Lower Navigation[?])</td>
<td>Upper Mississippi / Upper Missouri / Lower Missouri</td>
<td>‘Complete’ Rivers in Upper Miss. and Missouri Basins Total: 2</td>
</tr>
<tr>
<td></td>
<td>Missouri Reaches (10?): Wild and Scenic; Ft.Peck; Garrison; Recreational; Upper Navigation[?]; Lower Navigation[?]; Main Stem Reservoirs(3+1)?</td>
<td></td>
<td>Total: 3</td>
</tr>
<tr>
<td></td>
<td>Total: 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Political</td>
<td>Mississippi States (5): MN+IA+MO(=WI&IL), KY, TN</td>
<td>States with Significant River MN, IA, MO, MT, ND, SD, NE, MO</td>
<td>‘Complete’ River in EPA Regions: R8, R7, R5 Total: 4</td>
</tr>
<tr>
<td></td>
<td>Missouri States(6): MT, ND, SD, NE(=IA), KS, MO</td>
<td>Total: 8 (some reaches are shared)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMAP-GRE Straw Man Design

Target Population – Macrohabitat Classes as Domains

- Smallest scale of sub-division discussed here is the macrohabitat

- A Design that excludes a macrohabitat does not allow separate inferences to this habitat
 - No independent statement about such habitats is possible, must be subsumed within another macrohabitat (e.g., “backwaters of the Missouri” vs. “the Missouri River”)
 - If habitats have distinct ecology (as many components of GRE may), then the ability to describe this is lost in a Design that does not include said macrohabitat

- Level of macrohabitat detail may have a direct impact on the response or plot design
 - A more fine sub-division may reduce complexity of response design
EMAP-GRE Straw Man Design

Target Population – Discrete or Continuous

- **Discrete vs. continuous**
 - Impact on nature of final statements
 - “% of habitat type X area” vs. “% of individual instances of habitat type X”?
 - Different, but related, statistical theory and mechanisms for sample site selection and data analysis

- **Working hypothesis: GRE and most constituent macrohabitats are best sampled as continuums**
 - Typically simplifies the response design (measures representative of a point vs. whole unit)
 - Intuitive for most habitat types within GREs
 - Stratification in Design allows for both types
EMAP-GRE Straw Man Design

Target Population - Dimensionality

- Areal vs. linear
 - Impact on final statements:
 - “% of area” vs. “% of miles”??
 - What makes the most ecological sense?

- May vary with macrohabitat (i.e., shoreline vs. riparian)
 - Stratification in Design allows assessment to include resources of different dimension, however, there is no clear way to integrate across resources with different dimensions
 - i.e., a statement that statistically combines “% of linear shoreline in condition X” with “% of river area in condition X” - ?

Working hypothesis: GRE and most constituent macrohabitats are best sampled as areas (except linear shorelines)
EMAP-GRE Straw Man Design

Dimensionality and Habitat Classes

<table>
<thead>
<tr>
<th>Design Version</th>
<th>Dimension</th>
<th>Habitat Class</th>
</tr>
</thead>
</table>
| Full – All Habitats | Most are areal | **Aquatic Riverine** (3-15+)

EXAMPLES: LTRMP classes (7+); L.Miss River (18+); UMR Classes (3:Open Water, Backwaters, Shoreline)

Riparian/Wetland/Floodplain (2-12+)

EXAMPLES: LTRMP classes (12+); L.Miss River (9+); UMR Classes (2:In channel, Terrace Forest)

Lentic

LTRMP classes (4+); L. Miss. River classes (9+); UMR-Reservoirs (2:Open Water, Bays) |

Avg. = 12

| Reduced – Some Habitats | Most are areal | **Aquatic Riverine**

EXAMPLES: Open Water, Backwaters, Shoreline

other Macrohabitats subsumed in Response Design |

Avg. = 3

| Simplest – One Habitat | Areal (linear perspective more tenable) | “The River”

all Macrohabitats subsumed in Response Design, EMAP-SW approach |
EMAP-GRE Straw Man Design

Sample Size for Example Designs

<table>
<thead>
<tr>
<th>Design Version</th>
<th># of Geographic Sub-divisions (largest scale / smallest scale)</th>
<th>Number of Habitat Sub-Divisions</th>
<th>Domains to be reported on (largest scale / smallest scale)</th>
<th>Sample Size@35 per (largest scale / smallest scale)</th>
<th>QA and repeat visits (largest scale / smallest scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Geo. + All Habitats</td>
<td>3 Rivers</td>
<td>12 Avg. number across major reaches</td>
<td>36</td>
<td>1260</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>17 reaches</td>
<td></td>
<td>204</td>
<td>7140</td>
<td>714</td>
</tr>
<tr>
<td>Full Geo. + Reduced Habitats</td>
<td>3 Rivers</td>
<td>3 Avg. number across major reaches</td>
<td>9</td>
<td>315</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>17 reaches</td>
<td></td>
<td>51</td>
<td>1785</td>
<td>179</td>
</tr>
<tr>
<td>Full Pol. + All Habitats</td>
<td>6 Region-States</td>
<td>12 Avg. number across major reaches</td>
<td>72</td>
<td>2520</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>17 States</td>
<td></td>
<td>204</td>
<td>7140</td>
<td>714</td>
</tr>
<tr>
<td>Full Pol. + Reduced Habitats</td>
<td>6 Region-States</td>
<td>3 Avg. number across major reaches</td>
<td>18</td>
<td>630</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>17 States</td>
<td></td>
<td>51</td>
<td>1785</td>
<td>179</td>
</tr>
</tbody>
</table>
EMAP-GRE Straw Man Design

Sample Size for Example Designs

<table>
<thead>
<tr>
<th>Design Version</th>
<th># of Geographic Sub-divisions (largest scale / smallest scale)</th>
<th>Number of Habitat Sub-Divisions</th>
<th>Domains to be reported on (largest scale / smallest scale)</th>
<th>Sample Size@ 35 per (largest scale / smallest scale)</th>
<th>QA and repeat visits (largest scale / smallest scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Geo. + All Habitats</td>
<td>2 Rivers</td>
<td>12 Avg. number across major reaches</td>
<td>24</td>
<td>840</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>14 Reaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced. Geo. + Reduced Habitats</td>
<td>2 Rivers</td>
<td>3 Avg. number across major reaches</td>
<td>6</td>
<td>210</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>14 Reaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Pol. + All Habitats</td>
<td>4 Region-States</td>
<td>12 Avg. number across major reaches</td>
<td>48</td>
<td>1680</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>11 States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Pol. + Reduced Habitats</td>
<td>4 Region-States</td>
<td>3 Avg. number across major reaches</td>
<td>12</td>
<td>420</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>11 States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMAP Design To-Dos

• **Major decisions about target population**
 – Which are the ‘Great River Ecosystems of the Central Basin’
 • Why?
 – **Domains:** Geo-reach? State? Level of detail?
 – **Macrohabitats:** Which? Where? Why?
 • Ted’s talk
 – **Spatial nature of target resource:** Discrete? Continuous? Linear? Areal?

• **What level of precision do we need?** (sample size)
 – Is around +/- 10% appropriate?
EMAP To-Dos: For Another Day

- What suite of indicators work best with the EMAP Design?
 - Biological; hydrologic; food web; nutrients…
 - What is the appropriate local (response) scale of variation?

- How should we integrate with existing monitoring?
 - NASQAN, LTRMP, EMAP-SW
 - Important issue of EMAP-SW approach that uses a linear criteria (% of river miles) vs. proposed EMAP-GRE areal criteria (% of river habitat X area)
EMAP To-Dos: For Another Day

- How can we efficiently deal with temporal variation?
 - Nothing of a statistical nature about EMAP Design disallows temporal perspective
 - Panels
 - Continuous data-loggers
 - Nested subset of sites used to track long-term trends
 - Random selection of these long-term sites assures that they are representative (at large scale)
 - Judicious use of and integration with existing targeted long-term data in an EMAP assessment (via joint modeling efforts?)
Extra Slides
Follow:
Q: Why do people decide to become statisticians?
A: They find accounting too exciting.

A statistician is a person whose lifetime ambition is to be wrong 5% of the time.

Following a flaming snowmobile crash, one statistician asked the other if he was OK. The second said "well, my hair's on fire and my toes are frostbitten, but overall I feel pretty good."

- Statistics don't lie, but statisticians do.

- Statistician -- someone who insists on being certain about uncertainty.

- Forty-two percent of all statistics are made up on the spot.

- The 50-50-90 rule: Anytime you have a 50-50 chance of getting something right, there's a 90% probability you'll get it wrong.
• **How do we know conclusions apply to systems other than that from which they were measured?**

• **Can results functionally contribute to *Adaptive Management***?

• **Are the data/conclusions the right ‘kind’ for pressing management issues:**
 - “What is the extent and condition of our renewable natural resources?”
 - “Where and what parts of the environment are changing?”
GRE Monitoring Programs

Design Challenges

- Objectives for monitoring are not clearly, precisely stated and understood
- Monitoring measurement protocols, survey design, and statistical analysis become scientifically out-of-date
- Monitoring results are not directly tied to management decision making
- Results are not timely nor communicated to key audiences
- Results are not comparable across programs
 - Or within programs across political boundaries
Great River Ecosystems

Sample of Existing GRE Monitoring – Central Basin of the US

<table>
<thead>
<tr>
<th>Program</th>
<th>Agency</th>
<th>Relevant Resource</th>
<th>Focus</th>
<th>Sampling Frequency</th>
<th>Site selection</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASQAN</td>
<td>USGS</td>
<td>Mo., Miss. & Ohio Riv.</td>
<td>WQ – Flux & Loadings</td>
<td>~monthly</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
<tr>
<td>NAWQA</td>
<td>USGS</td>
<td>Upper Miss. Basin</td>
<td>WQ, Biological Condition</td>
<td><1yr</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
<tr>
<td>LTRMP</td>
<td>USGS</td>
<td>Upper Miss. Riv.</td>
<td>WQ, Bio. Cond., Habitat Needs</td>
<td>vary</td>
<td>Site-criteria and P-sample (limited target pop.)</td>
<td>Model and Design(?)</td>
</tr>
<tr>
<td>BEST (fish)</td>
<td>USGS</td>
<td>Mo., Miss. & Ohio Riv.</td>
<td>Fish Tissue Toxicity</td>
<td>2 yrs</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
<tr>
<td>305(b)/303(d) and other State Monitoring</td>
<td>States</td>
<td>Mo., Miss. & Ohio Riv.</td>
<td>WQ, Bio. Cond., Phy-hab. Fish Tissue Toxicity, etc.</td>
<td>vary</td>
<td>Vary; Site-criteria</td>
<td>Vary; Model</td>
</tr>
<tr>
<td>Benthic Fish Study</td>
<td>State & USGS</td>
<td>Mo. Riv.</td>
<td>Fish Species & Habitat</td>
<td>once</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
<tr>
<td>ORSANCO</td>
<td>ORSANCO</td>
<td>Ohio Riv.</td>
<td>Bio Cond., Fish Tissue Toxicity, WQ</td>
<td>vary</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ACOE monitoring</td>
<td>US ACOE</td>
<td>Mo., Miss. & Ohio Riv (?)</td>
<td>WQ, T&E Species</td>
<td><daily to once</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
<tr>
<td>National Sediment Inv.</td>
<td>EPA?</td>
<td>Mo., Miss. & Ohio Riv (?)</td>
<td>Sediment Contamination</td>
<td>?</td>
<td>Site-criteria</td>
<td>Model</td>
</tr>
</tbody>
</table>

Incomplete and simplified!
The EMAP Design - Summary

Fundamental Attributes of EMAP Design

Probability sample

- Site selection by process that includes explicit random element
- Every element in the population has the opportunity to be sampled
- Precision of results is known
- Explicit spatial balance in Design
EMAP-GRE Straw Man Design

Monitoring and Assessment Objectives

- Assessment Questions may range from quantitative and specific to general
- Develop in consultation with stakeholders
- Optimal design for all stakeholders involved does not exist
EMAP-GRE Straw Man Design

Sample size

- **Why an N of 35-50 per hopeful reporting unit?**

<table>
<thead>
<tr>
<th>Assumed Proportion (percent)</th>
<th>Precision with 90% Confidence</th>
<th>Precision with 95% Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>for alternative sample sizes</td>
<td>for alternative sample sizes</td>
</tr>
<tr>
<td>20%</td>
<td>±13 ±9 ±7 ±3 ±2</td>
<td>±16 ±11 ±8 ±4 ±3</td>
</tr>
<tr>
<td>50%</td>
<td>±17 ±12 ±8 ±4 ±3</td>
<td>±20 ±13 ±10 ±5 ±3</td>
</tr>
</tbody>
</table>

- **Precision important in ability to detect changes**

- **Administrative and QA constraints define sample size limits**
 - Size of sample, vs. size of target population, affects precision
EMAP-GRE Straw Man Design

Target Population; Domains

- **Stratification**
 - Results in operationally distinct Designs
 - Operational/administrative efficiency (e.g., giving States independent samples)
 - Improve precision of results, BUT a >20% misclassification rate results in worse precision than no strata

- **Unequal selection probabilities (across subpopulations of interest)**
 - Samples are all part of the same Design
 - Improve precision of results
 - N is approximate, not *a priori*
 - Size classes of backwaters
 - Secondary channel habitat in delta zone
 - Integrity of Design still maintained
In combined assessment, virtually no area has high arsenic values.
EMAP-GRE Straw Man Design

Response Design - Timing

• **Index period**
 – Period of sample collection keyed to important biological events such as maximum stress of biota or key points within the hydrocycle
 – Measurements may be taken more than once during index period with response design giving protocol for obtaining single value for indicator
 – Indicator variability within index period contributes to non-survey sampling error

• **Can this deal with the important temporal variability in some GRE indicators?**
EMAP-GRE Straw Man Design

Panels - Timing

- Design may be structured such that only a portion (a Panel) is done in a single sampling period
 - Panels are representative samples in and of themselves
- Trends can be quantified via a Panel Design where it is possible to balance priority of status estimation versus trend estimation
 - Basic design is single panel
 - 5-year rotating panel: panel 1 visited in year 1, 6, 11, etc; panel 2 visited in year 2, 7, 12, etc; ...
EMAP-Design

Implementing the Generalized Random Tessellation
Stratified Design

- Steps in EMAP Design Algorithms:
 - Randomly locate a grid over extent of resource population
 - Calculate the expected number of samples in each grid
 - Randomly order cells using a hierarchical randomization of recursive-partition addresses, cell weight equal to its expected number of samples
 - Select systematic sample of grid cells
 - Select a sample point at random from the population elements contained within each chosen grid cell
EMAP-GRE Straw Man Design

Sample Frame

- **Explicit unambiguous representation of population**
 - Provides basis for sample selection
 - Typically as a GIS Map with the spatial locations and extent of elements of population

- **Status for GRE of the Central Basin**
 - Good. Should be feasible to create adequate frame. Not a simple or trivial GIS task, but doable.
EMAP-GRE Straw Man Design

Dot-$\$-$Math

<table>
<thead>
<tr>
<th>Design Version</th>
<th>Sample Size@ 35 per + QA (largest scale / smallest scale)</th>
<th>Total Cost $$$$$$ @ 5k per site</th>
<th>Design Version</th>
<th>Sample Size@ 35 per + QA (largest scale / smallest scale)</th>
<th>Total Cost $$$$$$ @ 5k per site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Geo. + All Habitats</td>
<td>1386</td>
<td>6,930,000</td>
<td>Reduced Geo. + All Habitats</td>
<td>924</td>
<td>4,620,000</td>
</tr>
<tr>
<td></td>
<td>7854</td>
<td>39,270,000</td>
<td></td>
<td>6468</td>
<td>32,340,000</td>
</tr>
<tr>
<td>Full Geo. + Reduced Habitats</td>
<td>347</td>
<td>1,735,000</td>
<td>Reduced Geo. + Reduced Habitats</td>
<td>231</td>
<td>1,155,000</td>
</tr>
<tr>
<td></td>
<td>1964</td>
<td>9,820,000</td>
<td></td>
<td>1617</td>
<td>8,085,000</td>
</tr>
<tr>
<td>Full Pol. + All Habitats</td>
<td>2772</td>
<td>13,860,000</td>
<td>Reduced Pol. + All Habitats</td>
<td>1848</td>
<td>9,240,000</td>
</tr>
<tr>
<td></td>
<td>7854</td>
<td>39,270,000</td>
<td></td>
<td>6006</td>
<td>30,030,000</td>
</tr>
<tr>
<td>Full Pol. + Reduced Habitats</td>
<td>693</td>
<td>3,465,000</td>
<td>Reduced Pol. + Reduced Habitats</td>
<td>462</td>
<td>2,310,000</td>
</tr>
<tr>
<td></td>
<td>1964</td>
<td>9,820,000</td>
<td></td>
<td>1502</td>
<td>7,510,000</td>
</tr>
</tbody>
</table>
Frame

- **Frame**: explicit unambiguous representation of population
 - Typically as a GIS Map with the spatial locations and extent of elements of population
 - Provides basis for sample selection
 - Status for GRE of the Central Basin is good. Should be feasible to create adequate frame. Not a simple or trivial GIS task, but doable.
 - **IDEAL** – more real-time Frame, such that lags less of an issue?
 - Integrate hydrogeo
TALK ABOUT IN THE DISCUSSION SESSION
EMAP-Analysis Overview

Example from UMR

- Populations typically described through use of cumulative distribution functions (CDFs) with associated confidence intervals
 - Conveys more information than simple means, etc.
 - May be expressed as ‘executive summary pie charts’, means, dispersion, etc.

- Algorithms include integration of probability Design elements (weights) in every analysis
 - May summarize data without these steps (as in a Model-based approach) but power of Design is lost and (in the simplest case) results only apply to sampled sites
Discussion and Conclusions

- **Beyond EMAP** – how does an EMAP-GRE interface with existing monitoring or other designs
 - Integration with EMAP-SW
- **Gulf hypoxia**
- **305b/303d**
- **Dealing with temporal variation**
- **Long-term fixed station monitoring**
- **The landscape component**