

Decision Process for Identification of Estuarine Benthic Impairments in Chesapeake Bay, USA

> R. J. Llansó*, J. H. Vølstad Versar, Inc., Columbia, Maryland and D. M. Dauer Old Dominion University, Norfolk, Virginia

> > *llansorob@versar.com

- States of Maryland and Virginia share the Chesapeake Bay and its tributaries
- Need to integrate monitoring and assessment efforts for reporting 303(d) impairment decisions under Clean Water Act

- States of Maryland and Virginia share the Chesapeake Bay and its tributaries
- Need to integrate monitoring and assessment efforts for reporting 303(d) impairment decisions under Clean Water Act
- Integration underway for both
 - Freshwater streams
 - Chesapeake Bay estuarine waters

- Integration issues include
 - Comparability of sampling methods
 - Comparability of indicators of condition
 (e.g., indices of biotic integrity)
 - Consistency in overall assessments and designation of impaired waters on 303(d) list

Freshwater streams

- Maryland has biocriteria (based on Maryland Biological Stream Survey) supporting 303d listings
- Maryland and Virginia have different indicators, but comparability study is underway

Freshwater streams

- Maryland has biocriteria (based on Maryland Biological Stream Survey) supporting 303d listings
- Maryland and Virginia have different indicators, but comparability study is underway

Chesapeake Bay

- Same sampling methods and indicator used by both states
- Need consistent method for impairment decisions
 Today's presentation

Benthic Index of Biotic Integrity¹

- Multi-metric, habitat-specific index of benthic community condition
- Selection of metrics and the values for scoring metrics developed separately for each of seven benthic habitat types in Chesapeake Bay

¹Weisberg et al. 1997, *Estuaries* 20:149-158 ¹Alden et al. 2002, *Environmetrics* 13:473-498

Objectives

- Develop a procedure for 303(d) impairment decisions based on the B-IBI
- Produce an assessment of Chesapeake Bay segments

Alternative approaches for 303(d) impairment decisions*

- Weighted mean approach
- Comparisons of cumulative frequency distributions and proportions

*using B-IBI scores

Weighted mean approach

		Reference		Segment		
		Mean	SE	Mean	SE	Weight
	Hab1	4.1	0.69	2.7	0.69	3/10
	Hab2	3.1	0.58	2.1	0.58	3/10
	Hab3	3.5	0.55	1.8	0.35	4/10
Weighted Estimates	Hab 1-3	3.56	0.35*	2.16	0.30*	

*SE of the weighted mean

Example provided by Florence Faulk, US EPA ORD

Weighted mean approach

• One-sided t-test, the difference in weighted means divided by the pooled standard error

$$t = \frac{\overline{X}_r - \overline{X}_s}{SE_p} = \frac{3.56 - 2.16}{0.461} = 3.04 > t_{0.05,18}$$

Example provided by Florence Faulk, US EPA ORD

Cumulative frequency distribution approach

Cumulative frequency distribution approach

Reference frequency distribution comparison among habitats

Habitat Class

		TF	OL	LM	HS	HM	PS	PM
Habitat Class	TF			X	X	X	X	X
	OL						X	
	LM	X						
	HS	X						
	HM	X						
	PS	X	X					
	PM	X						

Kolmogorov-Smirnov 2-sided test, $\mathbf{X} = p < 0.05$

Cumulative frequency distributions

• Not appropriate to pool reference distributions across habitats if the distributions differ

Cumulative frequency distributions

- Not appropriate to pool reference distributions across habitats if the distributions differ
- Tests based on exact binomial distributions such as Fisher's exact test not valid for stratified data

Cumulative frequency distributions

- Not appropriate to pool reference distributions across habitats if the distributions differ
- Tests based on exact binomial distributions such as Fisher's exact test not valid for stratified data

Weighted means

• Parametric test problematic for small sample size

Cumulative frequency distributions

- Not appropriate to pool reference distributions across habitats if the distributions differ
- Tests based on exact binomial distributions such as Fisher's exact test not valid for stratified data

Weighted means

- Parametric test problematic for small sample size
- Weights based on estimated proportion of each habitat

Cumulative frequency distributions

- Not appropriate to pool reference distributions across habitats if the distributions differ
- Tests based on exact binomial distributions such as Fisher's exact test not valid for stratified data

Weighted means

- Parametric test problematic for small sample size
- Weights based on estimated proportion of each habitat
- Does not measure areal extent of degradation

Frequency distribution approach using a stratified Wilcoxon rank sum test

- Test is robust even when small and unbalanced stratified data sets are used
- Can control for Type I and Type II errors
- Implemented with StatXact

Reference data set

• 243 Chesapeake Bay B-IBI development samples¹

¹Weisberg et al. 1997, *Estuaries* 20:149-158 ¹Alden et al. 2002, *Environmetrics* 13:473-498

Assessment data set

- Chesapeake Bay long-term benthic monitoring program 1998-2002 random samples:
 - Maryland, 750
 - Virginia, 500
 - Elizabeth River, 275
- 90 segments (including Virginia sub-segmentation)

Segmentation

• Assessments produced for each of 90 Chesapeake Bay Program segments and sub-segments containing benthic data

Segmentation

- Assessments produced for each of 90 Chesapeake Bay Program segments and sub-segments containing benthic data
- Segments are Chesapeake Bay regions having similar salinity and hydrographic characteristics

Segmentation

- Assessments produced for each of 90 Chesapeake Bay Program segments and sub-segments containing benthic data
- Segments are Chesapeake Bay regions having similar salinity and hydrographic characteristics
- In Virginia, segments were sub-divided into smaller units (sub-segments) to separate tributaries with no observed violations of water quality standards

Standardized classifications of B-IBI scores across habitats

- Maximum possible number of B-IBI scores differ by habitat
- B-IBI scores were classified into ordered response categories ('condition categories')

Condition categories

Condition Category	B-IBI Score	Benthic Community Condition
1	1.0-2.0	Severely degraded
2	2.1-2.9	Degraded
3	3.0-5.0	Meets goal

Comparing B-IBI scores from segments and reference distributions

- Segment and reference scores represent two independent ordered multinomial distributions
- Test if the two populations have the same underlying multinomial distribution of B-IBI scores by condition category

Hypothesis test

- Stratified Wilcoxon rank sum test
- Question: Does segment have lower B-IBI scores than reference?
- One-sided Test:

H₀: Equal multinomial distributions
H₁: Shift in location toward lower B-IBI responses in segment than in reference

Type I and Type II errors

- Critical alpha level of 1% will be applied to test for impairment
- Only segments where power is >= 90% and p<0.01 will be listed
- Minimum sample size for assessment of segment is n >= 10 (same as for freshwater streams)

Results of assessment

 26 of 90 Chesapeake Bay segments were considered degraded based on the B-IBI and identified as impaired under Section 303(d) of the Clean Water Act

List of impaired segments

			Weighte				
Segment	Name	Sample size	Seg	Ref	Deg	Seg-Ref	
SBEMHa	Southern Branch Elizabeth River	116	0.93	0.04	0.99	0.89	
EBEMHa	Eastern Branch Elizabeth River	32	0.88	0.08	0.98	0.79	
WBEMHa	Western Branch Elizabeth River	39	0.82	0.04	0.99	0.78	
POTMH	Potomac mesohaline	98	0.81	0.09	0.94	0.72	
LAFMHa	Lafayette River	35	0.77	0.06	0.99	0.71	
CB4MH	Maryland mainstem	30	0.73	0.09	0.98	0.65	
PATMH	Patapsco River	45	0.69	0.07	0.89	0.62	
YRKMHa	York River mesohaline	66	0.64	0.07	0.98	0.57	
POCMH	Pocomoke River	11	0.64	0.07	0.99	0.56	
RPPMHa	Rappahannock River mesohaline	96	0.60	0.08	0.95	0.53	
ELIMHa	Elizabeth River mesohaline	36	0.56	0.03	0.99	0.52	
CB5MH	Maryland mainstem	46	0.57	0.06	0.99	0.50	
JMSMHa	James River mesohaline	40	0.55	0.05	0.93	0.50	
YRKPHa	York River polyhaline	27	0.52	0.03	0.99	0.48	
POTOH	Potomac River oligohaline	15	0.60	0.12	0.72	0.48	
PAXMH	Patuxent River mesohaline	108	0.57	0.10	0.95	0.47	
MAGMH	Magothy River	20	0.55	0.08	0.91	0.47	
JMSOHa	James River oligohaline	29	0.55	0.13	0.75	0.42	
GUNOH	Gunpowder River	10	0.50	0.09	0.75	0.41	
TANMH	Tangier Sound	38	0.45	0.06	1.00	0.39	
CB3MH	Maryland mainstem	55	0.48	0.10	0.89	0.38	
CHOMH2	Choptank River	14	0.43	0.07	0.88	0.36	
NANMH	Nanticoke River	11	0.45	0.09	0.87	0.36	
CHSMH	Chester River	35	0.43	0.08	0.92	0.35	
ELIPHa	Elizabeth River polyhaline	25	0.36	0.04	0.99	0.32	
CB7PHa	Virginia mainstem	41	0.20	0.03	1.00	0.17	

Segment CBP7PHa (Virginia mainstem)

- Listing of this segment as impaired is problematic, 80% of all B-IBI scores in the segment >= 3.0
- Shift in distribution for pooled (un-stratified) data was 0.33 B-IBI units

• Stratified Wilcoxon rank sum test may be too sensitive (detects significant differences for small shifts)

- Stratified Wilcoxon rank sum test may be too sensitive (detects significant differences for small shifts)
- It is not possible to estimate the magnitude of the shift in location (e.g., with a Hodges-Lehman confidence interval) for stratified data

- Stratified Wilcoxon rank sum test may be too sensitive (detects significant differences for small shifts)
- It is not possible to estimate the magnitude of the shift in location (e.g., with a Hodges-Lehman confidence interval) for stratified data
- For stratified data, it is not possible to evaluate power for a range of sample sizes

- Stratified Wilcoxon rank sum test may be too sensitive (detects significant differences for small shifts)
- It is not possible to estimate the magnitude of the shift in location (e.g., with a Hodges-Lehman confidence interval) for stratified data
- For stratified data, it is not possible to evaluate power for a range of sample sizes
- Reference sites are "best of the best", and may not be representative of typical distribution of scores for good condition

How is this approach used by the States to evaluate aquatic life use support?

- Research into alternative methods
 - Ray Alden et al. confidence limit approach¹

- Research into alternative methods
 - Ray Alden et al. confidence limit approach¹
- Develop methods that take into account magnitude of difference between segment and reference distribution

- Research into alternative methods
 - Ray Alden et al. confidence limit approach¹
- Develop methods that take into account magnitude of difference between segment and reference distribution
- Diagnose causes of benthic community degradation (See Dauer's presentation, Thursday 4:30-5:00)

- Research into alternative methods
 - Ray Alden et al. confidence limit approach¹
- Develop methods that take into account magnitude of difference between segment and reference distribution
- Diagnose causes of benthic community degradation (See Dauer's presentation, Thursday 4:30-5:00)
- Determine what an ecological meaningful difference should be

Acknowledgments

