US ERA ARCHIVE DOCUMENT

USING COMPLEMENTARY TOOLS FROM THE ECOLOGICAL TOOLBOX TO ESTABLISH AND APPLY NUTRIENT CRITERIA

R. Jan Stevenson, Steve Rier, & Rich Schultz University of Louisville/Michigan State University

Mike Wiley & Catherine Riseng
University of Michigan

Joe Holomuzki
Ohio State University at Mansfield

Brian Hill, Alan Herlihy, Sue Norton, Lester Yuan: U. S. Environmental Protection Agency

Objectives

- To develop nutrient criteria to support Clean Water Act goals
 - To Evaluate Rationale for Tiered Aquatic Life
 Use Criteria & Corresponding Tiered Nutrient
 Criteria
 - 1. Interim Goal of CWA Fish Shellfish & Wildlife
 - 2. Ultimate Goal of CWA Biological and Ecological Integrity
- To determine effects of nutrients on algal communities in streams
 - To relate effects of nutrients on algae in streams to CWA goals (Aquatic Life Uses)

Complementary Tools

- 1. Aquatic Life Use Criteria and Stressor Criteria
- 2. Tiered Uses
 - 1. e.g., 1) Support natural structure and function vs.
 - 2. e.g., 3-4) Constrain nuisance algal growths (*Cladophora*))
- 3. Frequency Distributions & Stressor-Response Models
 - 1. Characterizing Natural Condition
 - 2. Valued Attribute Response to Stressor
- 4. Lowess Regression and Regression Tree for Threshold Analysis
- 5. Stressor Measurement and Biological Inference Models (e.g., Diatom Indicator of TP)
- 6. Standard Deviation vs Standard Error of the Mean
- 7. Guidelines for Use (to minimize misuse and abuse)

Developing Environmental Criteria: Restoration Goals and TMDL Targets

Two Basic Questions:

- 1. What is natural or expected condition?
- 2. How do human activities affect natural or expected condition?

Developing Environmental Criteria: Methods

Two Basic Questions:

1. What is natural or expected condition?

"Frequency-Distribution Approaches"

"Modeling Approach"

2. How do human activities affect natural or expected condition?

"Stressor-Response Approach"

3. What level of contaminants sustainably support uses?

"Stressor-Response Approach"

Modeling: Determine Predicted Level of Stressor with 0 Human Disturbance

Human Disturbance (Agriculture and Urban Development)

Integration of Frequency Distribution and Stressor-Response Approaches for Establishing Criteria

Integration of Frequency Distribution and Stressor-Response Approaches for Establishing Criteria

(Productivity Gradient, NP Conc)

Integration of Frequency Distribution and Stressor-Response Approaches for Establishing Criteria

(Productivity Gradient, NP Conc)

LOW

USEPA Tiered Aquatic Life Use Conceptual Model

(10/22 draft)

MAHA EMAP Study ('93-'96)

- Classified Streams by Expected Condition
- Diatoms Respond
 Greatly to
 Conductivity/pH
 Gradient in Reference
 Streams
- Selected 291 Well-Buffered Streams

9.6 µg TP/L is natural

Frequency Distributions Approaches For Developing Criteria May Be Misleading

25th percentile of all well-buffered streams in the MAHA.

75th percentile of all well-buffered streams in the MAHA with 0% human disturbance.

Low Sample Sizes May Constrain Precise Characterization of Reference Condition

Periphyton Biomass is Poorly Related to Nutrients When Sampled at Small Scale

Total Algal Diversity Increases With TP, But Not Sensitive Native Taxa

Total Phosphorus (µg/L)

Enzyme Activity Indicates Release from P Limitation in Low P Range

Take Home Messages from MAIA

- Natural TP concentrations are about 10 μg/L
- That just happens to match 25th percentile of TP of all sites
- That is slightly less than 75th percentile of reference sites, after accounting for sample size
- Diatoms diversity responds TP increases in low range of TP concentrations
- Many threshold responses around 10 μg/L in diatom assemblages

SAIN Sampling Sites

Parameters Assessed

- Discharge
- Temperature
- Canopy Cover
- Conductivity
- pH, alkalinity
- NO_3+NO_2 , NH_4 , TN
- PO₄ (SRP), TP
- Silica
- Chloride
- Total Suspended Solids

- Water Column Chl a
- Periphyton Cover and Thickness
- 9-rock composite samples for algal biomass & species composition **
- Inverts on 10 rocks5
- 5-rock clusters for invertebrate biomass & species composition **
- ** Only sampled 1/8 wk.

Similarity of Diatom Composition Between Test and Reference Assemblages

Rapid Periphyton Survey (in RBP Manual)

- View Bottom at Sites along Transects
- Characterize % Cover of Different Algal Types
- Characterize
 Thickness of Each
 Algal Type

Rapid Periphyton Survey

- Assess % suitable substratum
- Assess % green filament cover
- Assess % microalgal cover by division
- Assess thickness of microalgae
- See RBP manual for details

Chl a = f (Diatom Rank)

Peak Cladophora Biomass & Sources of Error

Probabilities of High Peak Cladophora Biomass in Specific P Ranges

Diatoms

Distinguishing Differences Among Assemblages

Sensitive Taxa

Tolerant Taxa

Determine Species Environmental Optimum

Species Abundances Along Environmental Gradient

Cladophora/Nutrient Model Improves with Diatom Inferred TSI

Chl a/Nutrient Model Improves with Diatom Inferred TSI

Translating TSI to Nutrient Criterion

Policy Implications

USEPA Tiered Aquatic Life Use Conceptual Model

to **Ecotype**

Complementary Tools

- 1. Aquatic Life Use Criteria and Stressor Criteria
- 2. Tiered Uses
 - 1. e.g., 1) Support natural structure and function vs.
 - 2. e.g., 3-4) Constrain nuisance algal growths (*Cladophora*))
- 3. Frequency Distributions & Stressor-Response Models
 - 1. Characterizing Natural Condition
 - 2. Valued Attribute Response to Stressor
- 4. Lowess Regression and Regression Tree for Threshold Analysis
- 5. Stressor Measurement and Biological Inference Models (e.g., Diatom Indicator of TP)
- 6. Standard Deviation vs Standard Error of the Mean
- 7. Guidelines for Use (to minimize misuse and abuse)