US ERA ARCHIVE DOCUMENT

New England Sparrow Model

Potentially useful information for designing a stream water-quality network

Richard Moore and Keith Robinson USGS, NH/VT District, Pembroke, NH

Today's Presentation

- What is SPARROW
- SPARROW model results for New England
 - Introduce potential uses of SPARROW data
- designing a stream water-quality network

SPARROW (Spatially Referenced Regressions On Watershed Attributes)

- Described in Smith and others, *Water Resources Research*, 33(12): 2781-2798
- An empirical approach relating observed waterquality data (TN and TP loads) to upstream watershed characteristics in a GIS framework

SPARROW (Spatially Referenced Regressions On Watershed Attributes)

- Incorporates variables to simulate in-stream processes
- Incorporates only statistically significant variables.

SPARROW Estimated Equation

Hydrologic Network – the Back-bone of SPARROW Schematic of a Nested Basin

Purpose of the New England Model is to support major water-quality management activities

- Nutrient criteria development Ranges in nutrient levels in rivers and streams throughout the region
- TMDL program Identification of factors (sources and watershed characteristics) affecting nutrient levels
- Coastal Water Assessments Transport of nutrients by rivers (especially interstate) to coastal waters

Design of the New England SPARROW Model

- Focus on Total Nitrogen and Total Phosphorus loads
- Model for the mid-1990s time period
- Improve on national model for more spatial detail and using local data sets
- Collaboration with EPA and NEIWPCC

Status of the New England SPARROW Modeling Effort

- Models are calibrated and predictions applied to the entire region
 - Report is published and available as a pdf file at web site http://nh.water.usgs.gov/
 - USGS/NEIWPCC proposal to make the datasets readily available
 - documenting SPARROW input and output datasets, making them available, and conducting state workshops for resource managers

U.S. Department of the Interior

New England Model Watersheds and Streams Reaches

- Based on the National Hydrography Data Set (NHD)
- Approx 42,000 in model
- Average 1.7 mi² in size
- Corrected to NRCS 12-digit watersheds
- Hydrologically connected

Generation of NHD Reach Catchments Using a Hydrologically-Conditioned DEM Incorporating:

Nutrient (Dependent) Data to be Used in the Model

- Collected data from USGS, STORET, States, research studies during the 1980-2000 time period.
- Calculated discharge/nutrient relation to predict nutrient loads during all conditions of a hydrograph using the USGS Estimator Program.

67 TP and 65 TN sites

Mean annual loads for years of water-quality and streamflow data

Nutrient Sources

Point Source

Atmospheric deposition of nitrogen (Ollinger 1992)

National Land Cover Dataset 1992

- Agriculture
- Developed
- Forest

Processes

Land to water delivery

Soil permeability – STATSGO

In-stream loss

Mean annual stream-flow Reservoir detention

Model Calibration Results for the

New England SPARROW Nitrogen Model

R-squared = .95, MSE = 0.16

Variable SOURCES	Bootstrap model coefficient	Standard error of coefficient	p-value
Municipal wastewater- treatment facilities	1.13	0.36	<.005
Atmospheric deposition	n .36	.07	<.005
Cultivated agricultural land (kg/km²/y)	910	362	.005
Developed urban land (kg/km²/y)	988	385	.010

Model Calibration Results for the

New England SPARROW Nitrogen Model (cont.)

R-squared = .95, MSE = 0.16

Variable Bootstrap Standard

model error of

coefficient coefficient

p-value

Delivery variable:

Natural Log of

Soil Permeability 0.36 0.14 <.005

Decay Variable:

Stream decay .71 .52 .065

for streams <= 100 cfs

(per day)

Model Calibration Results for the

New England SPARROW Phosphorus Model

R-squared = .94, MSE = 0.23

Variable SOURCES	Bootstrap model coefficient	Standard error of coefficient	p-value
Municipal wastewater treatment facilities and pulp and paper	·_ 1.28	0.22	<.005
Forested Land (kg/km²/y)	12.7	4.1	<.005
Cultivated agricultura land (kg/km²/y) Developed urban	110	27.5	<.005
land (kg/km²/y)	37.8	14.3	.005

Model Calibration Results for the New England SPARROW Phosphorus Model (cont.)

R-squared = .94, MSE = 0.23

Variable Bootstrap Standard model error of p-value coefficient coefficient

Decay variables:

Reservoir decay for small lakes and reservoirs 105 59.7 .04 (<= 10 km²) (m/y)

Decay Variable:
Stream decay .42 .41 .125
for streams <= 100 cfs
(per day)

SPARROW Model Results:

SPARROW Model Results:

Estimated Mean Annual concentration of (A) Nitrogen and (B) phosphorus.

Model Strengths (cont.)

• SPARROW has been recognized by the National Academy of Sciences and National Research Council as a suggested regional assessment tool, specifically for TMDLs

Potential use of SPARROW data in designing a stream water-quality monitoring network

SPARROW identifies sources

SPARROW Model Results: Identifying Primary Sources of Nutrients

Potential use of SPARROW data in designing a stream water-quality monitoring network (cont.)

- Nutrient attenuation was identified as an important issue
 - Data defining nitrogen loss from reservoirs is sparse (variable was not included in the model)

England
SPARROW
Model Results
for Nitrogen
Loading
Assessments

An Example from the Connecticut River Basin

Potential use of SPARROW data in designing a stream water-quality monitoring network (cont.)

- SPARROW quantified estimates of uncertainty
- Results can be expressed in terms of probability of exceeding a specific mean-annual concentration

SPARROW phosphorus load percent error

SPARROW

Probability of exceeding a specific mean-annual concentration

