US ERA ARCHIVE DOCUMENT

THE IMPORTANCE OF MATCHING THE SPATIAL SCALES OF PROBABILISTIC MONITORING DESIGNS WITH MANAGEMENT QUESTIONS

P. Trowbridge, S. Jones,

H. Walker, and J. Kiddon

EMAP Symposium, Newport RI May 6, 2004

Acknowledgments

Co-Authors

- Dr. Stephen Jones, UNH
- Dr. Hal Walker, EPA/ORD
- Dr. John Kiddon, EPA/ORD

Objectives

- To investigate the effects of spatial scales on the outcomes of Probability-Based Monitoring (PBM) programs
 - Representativeness
 - Spatial Autocorrelation
 - Confidence Intervals
- To provide practical advice to State managers for implementing PBMs.

Methods

- Use "natural experiment" of NH's small scale for the National Coastal Assessment
- Conduct fine-scale studies at 4 NH sites
- Make comparisons between results for mercury in sediment at three scales:
 - Gulf of Maine
 - New Hampshire
 - Small study areas

Scale/Model of Hexagon Sizes

Maine: 50,000 ha 22 km X 22 km New Hampshire: 322 ha 2 km X 2 km

> Massachusetts: 17,500 ha 13 km X 13 km

Resource Area in NH NCA and Special Study Hexagons

Outcome: The NCA study design reasonably estimates average values at multiple spatial scales.

Methods

- Compare cumulative distribution function (CDF) from a random subsample of NH NCA data to whole NH NCA dataset
- Compare CDF for 4 intensive study areas to NH NCA samples from the same area
- Use mercury in sediment concentrations as a common parameter

Comparison of Hg CDFs for different scales

Median Values

	Hg (ppm)	
Trend stns	0.16	
All data	0.14	

- NCA study design captures median values of CDFs but misses extremes.
- Representativeness was demonstrated at two different scales so is likely to be robust.

Outcome: For stations <20 km apart, spatial correlation is likely.

- As hexagon sizes shrink, the stations converge.
- Adjacent stations provide similar information.
- Autocorrelated stations are not independent.

- Investigate spatial autocorrelation by charting semivariograms for mercury in sediments at three different scales
 - Gulf of Maine
 - New Hampshire
 - Special study sites

Definition of Semivariogram

Source: John W Kern

Semivariogram for Ln [Hg] Gulf of Maine

Range ~20 km

Nugget Semivariance ~0.35

Sill Semivariance ~1.2

Semivariogram for Ln [Hg] NH NCA (2000-2001)

All NH NCA sites appear to be autocorrelated

Exponential model (Co = 0.4340; Co + C = 1.7170; Ao = 39680.00; r2 = 0.646; RSS = 0.0671)

List Values Graph Cloud Edit Graph Print Graph Exit

Semivariogram for Ln [Hg] 4 Special Study Areas Combined

Semivariogram for Ln [Hg] SE Great Bay

Semivariogram for Ln [Hg] Cocheco River

Summary - High Density Hg Data

- **SE Great Bay.** Median [Hg] = 0.22 Max = 0.30
 - Semivariance suggestive of small nugget at fine scale.

Max=0.76

- All nugget but low semivariance (0.26).
- Consistently high Hg concentrations.

$$Max = 0.67$$

Salmon Falls. Median
$$[Hg] = 0.27$$
 Max = 0.60

$$Max = 0.60$$

- All nugget with high semivariance (0.90-0.97)
- Mixture of high and low Hg concentrations. Heterogeneous.

Spatial Correlation Conclusions

- On a broad scale, stations > 20 km apart are uncorrelated and independent
- NH NCA stations are ~ 2 km apart so autocorrelation appears to be present. However, the type and level of autocorrelation is not uniform.
- Drill down into four areas with high Hg in NH NCA survey revealed three different contamination structures.

Outcome: Variance was higher than expected. For small scales, variance algorithm and assumption of independence may be in error.

Variance/Confidence Intervals

- With 82 NCA stations for the 18 miles of NH coastline, we would expect tight confidence intervals on the results.
- However, the Horvitz-Thompson Estimator algorithm produced very large error bars on our estimates.

Mercury in Sediment in NH's Estuaries

Variance estimates for percent of NH's estuaries <ERL for Hg

Scenario	LCL	UCL	CI	Error Bar
Original	35.55%	74.34%	38.80%	19.40%
Orginial with Area X1000	35.55%	74.34%	38.80%	19.40%
Original with Area X0.001	35.55%	74.34%	38.80%	19.40%
Smallest 10 Removed	38.90%	71.92%	33.03%	16.51%
Largest 10 Removed	36.71%	65.38%	28.67%	14.33%
Smallest and Largest 10 Removed	41.25%	63.14%	21.89%	10.94%
Medians	43.23%	53.27%	10.04%	5.02%

Possible Causes for High Variance

 Is the recommended algorithm for variance calculations correct for the situation in NH? The jury is still out.
 Something is not quite right here.

Other issues

- Samples in NH are not independent because of scale
 - New analysis methods might be needed to address spatial autocorrelation.
- Are hexagons the appropriate sampling design for the resource in NH?
 - Most NH hexagons are <50% resource</p>
 - Median %resource in a hex is 18%

Value of the NCA Approach

- Provides unbiased comparisons of conditions between states.
- Provides accurate representation of median values of a parameter at the state and regional level.
- Cost-effective monitoring strategy for assessing 100% of surface waters for §305(b) reporting.

Potential Problems with the NCA Approach at Small Scales

- For stations <20 km apart, autocorrelation is likely. May violate assumption of independence.
- Inflated variance/confidence intervals can develop at small spatial scales. Possible errors in variance estimator algorithm at this scale.
- State managers need to consider these factors when using NCA data or data from small scale PBMs for CWA reporting requirements.

Questions/Comments

Phil Trowbridge
NH Estuaries Project
Department of Enviro

Department of Environmental Services

29 Hazen Drive

Concord, NH 03302-0095

Tel: 603/271-8872

ptrowbridge@des.state.nh.us

Methods

- "Sampled" bathymetry coverage to determine estimated CDFs for different hex sizes.
- Compared estimated CDFs to "true" CDF.
- Identified unresolved features and relationship to hex size

Bathymetry CDFs for Different Designs

Percent of hex covered by unresolved feature

Study Design	% of Resource Area with >20 ft depth
20 hexs	17%
40 hexs	23%
80 hexs (NH NCA)	25%
160 hexs	32%
	(able to resolve feature)

Spatial Resolution Conclusions

- In this case, to resolve a given bathymetric feature, need hexagons that are ~1/3 filled by the feature.
- This result may not be translatable to other cases/situations.
- Could generate a rule of thumb if this result were repeated with different parameters in different locations.

Semivariogram for Ln [Hg] for the Northeast (DE through ME)

