US ERA ARCHIVE DOCUMENT

Probability survey design alternatives for watershed-based stream and river monitoring programs

Anthony (Tony) R. Olsen
USEPA NHEERL Western Ecology Division
200 S.W. 35th Street; Corvallis, OR 97330

Olsen.tony@epa.gov (541) 754-4790

Watershed Definition for Streams

- "A region or area bounded peripherally by a water parting and draining ultimately to a particular watercourse or body of water" [Webster's]
- Common to apply definition at confluences
- Definition is hydrologic but typical to use terrain elevation to define watershed boundaries
- Definition applies to any point on a stream network

USGS Hydrologic Unit Maps

- Hierarchical subdivision of <u>land area</u> of United States based on hydrology
- National maps available for 1st, 2nd, 3rd, and 4th fields: regions (21), subregions (222), accounting units (352), cataloging units (2150)
- Being extended to 5th and 6th field
- Approximately 50% of units at any level correspond to "true" watersheds

USGS Hydrologic Units

- "Provide a standardized base for use by water-resource organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications" (USGS Water-Supply Paper 2294, 1987)
- "A cataloging unit is a geographic area representing part or all of a surface drainage basin, a combination of drainage basins, or a distinct hydrologic feature"
- Almost all cataloging units are larger than 1800 sq km except in special circumstances.

D. Multiple River Basin (along a sea coast)

E. Lake or Estuary

Types of Statistical Designs

- Experimental designs
 - Random allocation of treatments to units
 - Not common in aquatic ecology
- Observational studies
 - Factor space designs
 - Gradient studies
 - Available sites
- Survey designs
 - Census
 - Probability survey

Survey Design Structure

Target Population and Watersheds

- Target population denotes the ecological resource about which information is wanted.
 - Requires a clear, precise definition
 - Includes definition of the <u>elements</u> that make up the target population
 - More difficult to define than most expect
- "Watershed" based alternatives for <u>elements</u>
 - All watersheds associated with every location on stream/river linear network ("watersheds", infinite #)
 - All hydrologic units at a specified field level for HUCS ("HUCs", finite #)
 - All watersheds associated with streams defined at confluence ("confluence watersheds", finite #)

Monitoring Objectives Determine Element Definition Choice

- How many stream/river km in the United States meet their designated use?
- What is the condition of all 6th field hydrologic units in the Northwest Forest Plan region?
- What proportion of headwater watersheds in the Mid-Atlantic coastal region exceed total nitrogen criteria at outflow of watershed?

EMAP Mid-Atlantic Highland Streams

Spatially-Balanced Sample of 6-th Field Hydrologic Units Coastal Region of Oregon

West Virginia Diagnostic Study Detenbach: NHEERL MED

Basic Spatial Survey Designs

- Simple Random Sample
- Systematic Sample
 - Regular grid
 - Regular spacing on linear resource
- Spatially Balanced Sample
 - Combination of simple random and systematic
 - Guarantees all possible samples are distributed across the resource (target population)
 - Generalized Random Tessellation Stratified (GRTS) design

Why aren't basic designs sufficient for watershed studies?

- Estimates for particular subpopulations requires unequal allocation of sampling effort
 - Stratification
 - Unequal probability
- Diagnostic modeling requires survey design that ensures complete factor space coverage, i.e. sample includes range of each predictor variable
- Not possible to delineate all watershed units before selecting sample (frame not available)
 - Two-stage survey design

GRTS Survey Design Options

- Multiple density categories to allocate samples: unequal probability
- Nested subsamples for measuring additional indicators or duplicate samples
- Panels for monitoring over time
- Oversample selection to address non-target and inaccessible sites
- Special study areas with study-wide base
- Explicit stratification
- Incorporate multiple stage sampling

Example Watershed Designs

- LIPS-MACS: headwater watersheds in Mid-Atlantic Coastal Plain
 - Stratified by Hydrogeologic framework
 - GRTS unequal probability within strata by Percent Developed Land
- West Virginia Diagnostic Study of 4th field HUCs with 2nd order stream outflow
 - Stratified random sample
- Northwest Forest Plan 6th field HUC study
 - First stage: GRTS sample of 5th field HUCs
 - Second stage: IRS of 6th field after delineation
 - Third stage: GRTS sample of stream sites

Example Watershed Designs (continued)

- West Virginia rotating basin biological monitoring
 - Stratified by groups of 4th field HUCs (basins)
 - GRTS unequal probability sample of points on stream network within strata
 - by Strahler order
 - by HUC groups within strata
- Sierra Nevada Mountain Yellow-legged Frog
 - First stage: GRTS unequal probability subsample of an FIA systematic point sample
 - Delineate 7th field HUCs in regions of first stage sample
 - Second stage: GRTS unequal probability sample of 7th fields

Watersheds, HUCs and Confluence Watersheds?

- Survey designs possible regardless of choice; hence survey design is not deciding factor
- Watersheds include all possible true watersheds, at cost of variable size
- Confluence Watersheds are a subset of watersheds
- HUCs tile the landscape into elements at the same scale approximately, at cost of introducing "incomplete" watersheds

Watersheds Advantages Limitations

- Complete watersheds
- Include all possible watersheds
- Consistent with 305(b) reporting
- Consistent with watershed management view
- Can restrict estimates to watershed area classes

- Watersheds overlap
- Wide range in watershed areas
- Infinite number of watersheds
- 303(d) listing requires definition of unit to list

HUCs

Advantages

- Tile landscape at selected scales: 1st-6th field
- Easy to display results of HUC condition

Limitations

- Incomplete watersheds
 50% of time
- Only available at selected scales
- No agreement on which scale to do analysis
- How to generalize to all possible watersheds

Conclusions

- Survey designs can, and have, been applied to all three alternative definitions for watersheds
- Monitoring objectives drive the choice of watershed definition
- Defensible scientific inference from the sample to the target population is critical

