

APPENDICES FOR:

SEDIMENT QUALITY OF THE NY/NJ HARBOR SYSTEM

EPA/902-R-98-001

Darvene A. Adams U.S. Environmental Protection Agency - Region 2 Edison, NJ

Joel S. O'Connor U.S. Environmental Protection Agency - Region 2 New York, NY

Stephen B. Weisberg Southern California Coastal Water Research Project Westminster, CA

March 1998

Appendix A

Sampling station maps

R-EMAP SUMMER 1993 AND 1994 SAMPLING LOCATIONS, NY/NJ HARBOR

R-EMAP SUMMER 1993 AND 1994 SAMPLING LOCATIONS, RARITAN BAY

R-EMAP SUMMER 1993 AND 1994 SAMPLING LOCATIONS, WESTERN LONG ISLAND SOUND

R-EMAP SUMMER 1993 AND 1994 SAMPLING LOCATIONS, JAMAICA BAY

Appendix B

Analytical detection values

_
\leq
п
Ч
2
\mathbf{Q}
0
п
>
σ
\sim
4
S
5

Parameter	DL	Parameter	DL
PAHs (ug/kg, dry wt.)		Major and Trace Elements (ug/g, dry wt.)	
Acenaphthene	12,24	Aluminum (Al)	200
Acenaphthylene	12	Antimony (Sb)	0.1
Anthracene	12	Arsenic (As)	0.24
Benzo(a)anthracene	12	Cadmium (Cd)	0.018
Benzo(b,k)fluoranthene	12,31	Chromium (Cr)	0.1
Benzo(g,h,i)perylene	12,25	Copper (Cu)	0.44
Benzo(a)pyrene	12	Iron (Fe)	40
Benzo(e)pyrene	12	Lead (Pb)	0.15
Biphenyl	12,24	Manganese (Mn)	3.5
Chrysene	12	Mercury (Hg)	0.01
Dibenz(a,h)anthracene	12,32	Nickel (Ni)	0.4
2,6-Dimethylnaphthalene	12	Selenium (Se)	0.1
Fluoranthene	12	Silver (Ag)	0.013
Fluorene	12,24	Tin (Sn)	0.1
Indeno(1,2,3-C,D)pyrene	12,30	Zinc (Zn)	1.5
2-Methylnaphthalene	12		
1-Methylnaphthalene	12,24	PCBs (ng/g, dry wt.)	
1-Methylphenanthrene	12.30	2.4'-dichlorobinhenyl (8)	2
Naphthalene	12	2.2'.5-trichlorobiphenyl (18)	2
Pervlene	12	2.4.4'-trichlorobiphenyl (28)	2
Phenanthrene	12	2.2', 3.5'-tetrachlorobiphenyl (44)	2
Pvrene	12	2.2'.5.5'-tetrachlorobiphenyl (52)	2
2.3.5-Trimethylnaphthalene	12.33	2.3'.4.4'-tetrachlorobiphenyl (66)	2
2,0,0 111110113111411010	12,00	2.2'.4.5.5'-pentachlorobiphenyl (101)	2
Pesticides (ng/g dry wt)		2 3 3' 4 4'-pentachlorobiphenyl (105)	2
o p'-DDD	1	2,3,3,1,1 perturbition problem (103)	2
n n'-DDD	1	2,3,4,4,5-pentaemorooppicity (118)	$\frac{2}{2}$
o p'-DDE	1	2,2,3,3,4,4 -hexachlorobiphenyl (120)	2
n n'-DDF	1	2,2,3,4,4,5 hexteniorophonyl (133)	2
o p'-DDT	1	2 2' 3 3' 4 4' 5-hentachlorohinhenyl (180)	2
n n'-DDT	1	2 2' 3 3' 4 4' 5 5'-heptachlorobiphenyl (187)	2
Aldrin	1	2 2' 3 3' 4 4' 5 6-octachlorobinhenyl (195)	2
alpha-Chlordane	1	2 2' 3 3' 4 4' 5 5' 6-nonachlorobinhenvl (206)	2
trans-Nonachlor	1	2.2'.3.3'.4.4'.5.5'.6.6'-decachlorobiphenyl (209)	2
Dieldrin	1	2,2,0,0,1,1,0,0,0,0,0 decaemoreorphonyr (20))	-
Hentachlor	1	Butyltine (ng/g dry wt)	
Heptachlor enovide	1	Monobutyltin	5
	1		5
Hexachiorbenzene	1		5
Lindane (gamma-BHC)	1	Tributyltin	5
Mirex	1	Tetrabutyltin	5
AVS/SEM (ug/g, dry wt.)		Dioxin & Furan Congeners (ng/kg, dry wt.)	
AVS	5	Detection limits for dioxins and furans varied by	
SEM-Cd	0.2	sample. See accompanying data disk for detection	
SEM-Cu	0.5	limits.	
SEM-Hg	0.07		
SEM-Ni	0.5		
SEM-Pb	1		
SEM-Zn	5		

Analytical Detection Values for Sediment Samples

Two values for a detection limit represent values achieved for 1993 and 1994 samples, respectively.

Appendix C

Development of the Benthic Index of Biotic Integrity (B-IBI)

Running Head: NY/NJ Harbor B-IBI

A BENTHIC INDEX OF BIOTIC INTEGRITY (B-IBI) FOR THE NEW YORK/NEW JERSEY HARBOR

Stephen B. Weisberg^{1*} J. Ananda Ranasinghe¹ Joel S. O'Connor² Darvene A. Adams³

¹Versar, Inc. 9200 Rumsey Road Columbia, Maryland 21045

²U. S. Environmental Protection Agency Water Management Division 290 Broadway New York, NY 10007

³U. S. Environmental Protection Agency Environmental Services Division 2890 Woodbridge Avenue Edison, NJ 08837

*Present Address: Southern California Coastal Water Research Project 7171 Fenwick Lane Westminster, CA 92683 (714) 894-2222

ABSTRACT

A multi-metric benthic index of biotic integrity (B-IBI) for the New York/New Jersey Harbor was developed by comparing the response of nine candidate measures of benthic condition (metrics) between a set of minimally-affected reference sites and a set of sites with known anthropogenic stress. The index was developed independently for each of four habitats defined by salinity and substrate. All nine candidate metrics differed significantly between reference sites and stressed sites in the calibration data set for at least one habitat. Six metrics differed significantly between reference and stressed sites in all habitats: species richness, species diversity, biomass, percent of abundance as pollution-sensitive taxa, percent of abundance as pollution-tolerant taxa, and percent of abundance as carnivores/omnivores. The index was calculated by scoring each of five selected metrics as 5, 3, or 1 depending on whether its value approximated, deviated slightly from, or deviated greatly from conditions at the best reference sites. Validation using independent data from 72 sites in the NY/NJ Harbor complex showed that the index was 93% effective at distinguishing anthropogenically stressed sites from reference sites.

INTRODUCTION

Numerous studies have documented a high degree of toxic contamination of sediments in the New York/New Jersey Harbor complex (Ianuzzi et al. 1995, Huntley et al 1993, Bonnevie et al. 1993, Williams et al. 1978). Billions of dollars have been spent to reduce source loads, which have declined by more than 90% in the last decade (Crawford et al. 1995). The proximal goal of these expenditures has been reduction of toxic contaminant inputs and ambient sediment concentrations, but the ultimate goal is protection of biological and human health resources. Few studies, though, have examined the extent of contaminant effects on the quality of biological assemblages (Steimle and Caracciolo-Ward 1989, Franz et al. 1988); most biological assessments conducted in the New York Harbor have focused on food chain effects of contaminants in tissues (Stainken and Rollwagen 1979. Burger and Gochfeld 1993, Zongwei et al. 1994, Peven et al. 1996).

The condition of benthic macrofaunal invertebrate assemblages is a good candidate for assessing the present condition and future changes in biotic condition of the NY/NJ Harbor. Benthos have limited mobility and cannot avoid adverse conditions (Gray 1979) so their condition accurately reflects local environmental conditions. Benthos live in sediments, where exposure to contaminant and hypoxia stress is generally most

severe. Benthos are an important component of the food web, serving as an important link between primary producers and higher trophic levels (Holland et al. 1980, Baird and Ulanowicz 1989). Benthos also significantly affect oxygen, nutrient, and carbon cycles and may control the coupling of benthic and pelagic processes (Rhoads and Young 1970, Kemp and Boynton 1981, Blackburn and Henriksen 1983).

One factor limiting use of benthos for assessing condition of New York Harbor sediment is a lack of clear expectations for benthic assemblage characteristics in non-stressed habitats. These expectations are a necessary first step in using benthic community measures in assessments because expectations establish criteria for distinguishing between non-stressed sites and those with varying degrees of anthropogenic alteration. Such criteria could also be used to identify areas most in need of restoration and provide a quantitative endpoint for restoration.

One approach that has been used extensively in fresh water to define expectations at non-stressed sites is the Index of Biotic Integrity (IBI) (Kerans and Karr 1994, Simon and Lyons 1995). This approach defines community characteristics expected at sites free from anthropogenic stress, and scores metrics that quantify those expectations based upon observations at nonstressed reference sites. Characteristics of biota at other sites are then compared with these expectations to provide an

assessment of site conditions. In this paper, we use that approach to develop a benthic index of biotic integrity (B-IBI) for application to summer estuarine benthic communities of the New York/New Jersey Harbor complex.

METHODS

Data Sources

The B-IBI was developed using data from EPA's Environmental Monitoring Assessment Program (EMAP), which collected benthos, sediment chemistry and sediment toxicity samples at 525 randomly selected sites in the Virginian biogeographic province in August and September between 1990 and 1993 (Paul et al 1992). At each site, triplicate samples of benthic macrofaunal communities were collected using a 440-cm², stainless steel, Young-modified VanVeen grab, and sieved in the field using a 0.5-mm screen and preserved in a 10% solution of buffered formaldehyde stained with rose bengal. A 50-ml core from each grab was frozen in a plastic bag for analysis of silt-clay content. Sediment samples for analysis of sediment chemistry and toxicity and were also collected using the VanVeen grab. A teflon spoon was used to remove the top 2 cm of sediment to a clean glass jar with a teflon lid, which was stored frozen. Dissolved oxygen and salinity were measured near the bottom of each site using a SeaBird CTD.

In the laboratory, macroinvertebrates were identified to the lowest practical taxonomic level and counted. Biomass was measured for 30 dominant species; other taxa were combined by feeding type and major taxonomic group (i.e., subsurface,

deposit-feeding polychaetes). Biomass was determined as shellfree dry weight after drying at 60 °C for 48 hours. Bivalves longer than 2 cm were shucked and smaller shells removed by acidification in 10% HCl before determining biomass. Percent sand in the sediment was estimated as the fraction retained on a 63 u sieve. Percent silt and percent clay were determined using pipette analysis of the filtrate.

Sediment samples were analyzed for the NOAA Status and Trends Program list of chemicals (O'Connor and Ehler 1991) using standard methodologies (Table 1). Sediment toxicity was measured using the ten-day acute, static, non-renewal <u>Ampelisca abdita</u> test following ASTM (1990) protocols. For each toxicity test, 200 ml of composited, press-sieved sample was placed in 1 L glass test chambers and covered with 600 ml of seawater. Five replicate test chambers were used for each sample, with 20 organisms placed into each replicate.

The index was validated using independent data from 168 randomly selected sites in the New York/New Jersey Harbor complex between August and September in 1993 and 1994. The validation data set included the same variables collected using the same field and laboratory methods as described above, except that only two benthic macrofaunal samples were processed for each site.

Index Development

The B-IBI was developed by testing and quantifying previously established principles that benthic assemblages respond to improvements in habitat quality in at least four ways: (1) species diversity increases as new taxa that are unable to tolerate poor habitat quality flourish (Pearson and Rosenberg 1978); (2) the abundance and biomass of organisms increases (Pearson and Rosenberg 1978, Warwick and Clarke 1991); (3) the dominant species at the site change from pollution-tolerant to pollution-sensitive (Boesch 1973, Warwick 1986, Dauer 1993); and 4) the diversity of feeding guilds increases (Brown et al. in press). These hypotheses were tested by comparing benthic assemblages at reference sites with those at anthropogenically stressed sites, selecting attributes that differed significantly between the two groups for inclusion in the index, and establishing thresholds for the selected attributes based on the range of attribute values at the reference sites.

Reference sites were selected by eliminating locations near known point-source discharges, and selecting from the remaining sites those where bioassay survival exceeded 80% of controls, and no contaminant exceeded Long et al.'s (1995) Effects Range-Median (ER-M) concentration, and no more than two contaminants exceeded Long et al's Effects Range-Low (ER-L) concentration, and total organic content of the sediment was less than 2.5%, and dissolved

oxygen concentration at the time of sampling exceeded 5 ppm. Sites were also screened to exclude those that occurred in areas of known frequent hypoxia, such as western Long Island Sound. The anthropogenically stressed sites used for comparison of response were identified as sites where any sediment contaminant exceeded Long et al.'s (1995) ER-M concentration and survival in sediment toxicity tests was less than 80% of control, or dissolved oxygen content was below 2 ppm.

Two criteria were used to compare attribute values between reference and stressed sites. First, a Mann-Whitney U-test was used to test for difference in median. Second, the Kolmogorov-Smirnov two-sample test was used to test for other distributional differences. The latter is particularly important for attributes such as abundance and biomass, for which the anticipated response at stressed sites could be higher or lower than at reference sites, depending on the severity of the stress.

Nine candidate metrics from the four categories of benthic response were tested (Table 2). The feeding guild and pollutionsensitivity metrics required classification of collected species into groups. Feeding modes were assigned using literature descriptions of feeding behavior (Jorgensen 1966; Bousfield 1973; Fauchald and Jumars 1979; Dauer et al. 1981). Lists of pollution-indicative (Table 3) and pollution-sensitive (Table 4) taxa were developed by comparing relative abundance of taxa

between the reference sites and stressed sites in the calibration data set. Pollution-indicative taxa were selected as those for which average abundance, average percent of abundance, and frequency of occurrence were all higher at stressed than reference sites (Table 3). Pollution-sensitive taxa were selected as those for which average abundance, average percent of abundance, and frequency of occurrence were all higher at reference than stressed sites, and for which percent of abundance at reference sites averaged at least 0.2% (Table 4).

Attributes were tested separately for each of four habitats defined by salinity and substrate type (Table 5). The four habitats were established using cluster analysis (Bray-Curtis similarity coefficient, flexible sorting, β =-0.25) on species abundances in the calibration data set to identify major site groupings, followed by ANOVA to determine whether salinity, grain size or depth differed significantly among the site groupings (Ranasinghe et al. in prep). Results from the cluster analysis were also used to identify geographical limitations for selection of reference sites; reference sites were selected from estuarine and coastal areas between Chincoteague Bay and Cape Cod, because euhaline and polyhaline benthic assemblages within the Virginian Province, except for Chesapeake Bay, exhibited a high degree of similarity (Ranasinghe et al. in prep).

Thresholds for each selected metric were established based on the distribution of its values at the reference sites. The IBI approach involves scoring each metric as 5, 3, or 1, depending on whether its value at a site approximates, deviates slightly from, or deviates greatly from conditions at the best reference sites (Karr et al. 1986). Threshold values were established as approximately the 5th and 50th (median) percentile values for reference sites in each habitat. For each metric, values below the 5th percentile were scored as 1; values between the 5th and 50th percentiles were scored as 3, and values above the 50th percentile were scored as 5. The scored values of the metrics were combined into an index by computing the mean attribute score across all selected metrics. Assemblages with an index score less than 3 are considered stressed, as they have metric values that on average are less than that at the poorest reference sites.

Two of the attributes, abundance and biomass, respond to stress bimodally, where the response can be greater than reference at sites with moderate degrees of stress and less than reference at sites with high degrees of stress (Pearson and Rosenberg 1978, Dauer and Conner 1980, Stull et al. 1986, Ferraro et al. 1991). These two attributes were scored as 5 for those values falling between the 25th and 75th percentile response at reference sites, and as a 3 for those values between the 5-25th and 75-95th percentiles at reference sites. Abundance values

lower than the 5th percentile or higher than the 95th percentile were scored as a 1; biomass values higher than the 95th percentile were scored as a 3 since high biomass can occur naturally at non-stressed sites where biomass is dominated by large bivalves.

Index validation was conducted in three ways. First, we examined index values at reference sites and anthropogenicallystressed sites in the validation data set, which was independent of the data set used to develop the index. Our criteria for defining reference sites and known stressed sites from the validation data set were the same as those for the calibration data set; our hypothesis was that reference sites should have index values of three or greater, while stressed sites should have values less than three. Second, we examined the relationship between the index and TOC concentration, hypothesizing that stressed assemblages would occur at higher concentrations of TOC. We examined the B-IBI relationship with TOC in a correlative, rather than in a categorical, fashion because threshold levels for anticipated biological response to TOC levels are not well established. Third, we calculated the correlation between replicates in the validation data set to examine stability of the index over small spatial scales.

One hundred and twenty-five sites from the calibration data set met our criteria for reference sites. There were at least 25 reference sites for each habitat class, except for the polyhaline mud habitat, for which only eleven reference sites were available (Table 5). Twenty-five sites met our criteria as anthropogenically-stressed (Figure 1), though only two were identified for the euhaline sand habitat (Table 5).

All nine candidate metrics differed significantly between reference sites and stressed sites for at least one habitat in the calibration data set (Table 2). Species richness (number of species per sample), species diversity, biomass, percentage of abundance as pollution-sensitive taxa, percent of abundance as pollution-indicative taxa, and percent of abundance as carnivore/omnivores significantly differentiated reference and stressed sites in all four habitats.

Our initial list of metrics selected for the B-IBI, and their thresholds, are presented in Table 6. In developing the index, we chose to include the abundance metric in the index for all habitats even though it statistically distinguished reference and stressed sites in only three of the four habitats; we did so because the pattern of response was similar in all habitats, and the response in the fourth habitat was significant at p = 0.2. We excluded species diversity from the index because it was highly correlated with species richness, and species richness was slightly more effective at differentiating reference and stressed sites.

Validation

The initial index developed from the calibration data set classified 89% of the validation sites correctly, with classification efficiency equalling or exceeding 80% in each habitat except polyhaline sand (Table 7). When we examined the validation efficiency of each metric individually, we found that the proportion of abundance as carnivore/omnivores was the least effective metric for differentiating reference from stressed sites and was the metric that differed most in classification efficiency between the calibration and validation data sets (Table 8). We also found that when the carnivore/omnivore metric was removed from the index, classification efficiency of the index at validation sites improved slightly (Tables 7). Therefore, we removed this metric from the index, improving overall validation efficiency to 93%.

The final index was significantly correlated with total organic carbon in both the calibration (r = -0.50) and validation (r = -0.54) data sets. Ninety-two percent of the samples for which TOC exceeded 3%, and all of the samples for which TOC

exceeded 4%, had an index value less than 3, indicating a stressed benthic assemblage.

Index scores were significantly correlated (r = 0.84)between replicates; average difference in index scores between replicates was 0.32. Ninety-one percent of replicates at the same site classified the same; at most sites where replicates classified differently, the replicates had similar index values, but were close to, and on either side of, the index threshold value of 3.

DISCUSSION

The premise of the IBI approach is that there are selected quantifiable characteristics of biotic assemblages which are held in common at reference sites and which differ from those at anthropogenically stressed sites. Our study found that this was the case for at least five different metrics, each of which was effective at discriminating stressed sites in all of the habitats we studied. Cumulatively, these metrics were 93% effective at differentiating reference and stressed sites.

Another premise of the IBI approach is that biotic communities respond to stress in numerous ways, often in a staged fashion, and that multiple metrics are required to appropriately integrate these responses (Barbour et al. 1995). Pearson and Rosenberg (1978) erected a paradigm along these lines for marine benthos, with different metrics providing better discrimination of effect at varying distances from sources of stress. Our results are consistent with the multi-metric premise, as we found that the combination of metrics provided greater discrimination than any of the metrics alone (Tables 7 and 8).

We found the most efficient metrics were those based on pollution-tolerance of species occurring at the sites (Table 8). Our empirical approach to defining pollution-indicative taxa differs from most previous efforts at categorizing marine species

groups, in which pollution tolerance has been largely inferred from life history characteristics (Dauer 1993). The two approaches are not inconsistent, as indicated by the similarity of our list of pollution-indicative taxa and the lists of opportunistic taxa from other studies of east coast benthic macrofauna (Grassle and Grassle 1974, McCall 1977, Dauer 1993). One possible reason for the similarity in lists is that our approach for identifying pollution-indicative taxa does not discriminate between pollution-tolerant taxa and those that recolonize quickly following stress events. The similarity of the lists suggests that the latter is the predominant mechanism.

. d.

Our list of pollution-sensitive taxa is less consistent with previously developed lists of equilibrium taxa. Perhaps the difference results from incomplete knowledge of life histories for many benthic organisms, as Seitz and Schaffner (1995) have suggested. Despite this difference, the pollution-sensitive taxa metric had a higher classification efficiency than the pollutionindicative taxa metric for the validation sites. Perhaps this is because the pollution-indicative taxa are ubiquitous colonizing taxa, and their presence alone is not necessarily an indicator of poor habitat conditions at the site; only when the pollutionindicative taxa constitute a sizable portion of the assemblage do they become reliable indicators. In contrast, the pollutionsensitive taxa show a high fidelity to reference sites and may be the first to die or leave the site as stress occurs.

In developing the index, we chose a species richness metric in preference to species diversity. We did so because the richness metric was more effective at distinguishing reference from stressed sites in the calibration (and subsequently in the validation) data set. Species richness has the disadvantage, though, of being gear-specific, whereas diversity is less so (Ewing et al. 1988). We felt comfortable including richness because we used the same sampling device at all of our sites. If the index is applied to historical data, or to data collected using a different gear type, we recommend substituting a diversity metric in place of species richness. The thresholds for the diversity metric based on our calibration data set were 1.9 and 3.2 for all habitats. In our validation data set, substituting the diversity metric for species richness reduced validation efficiency to 89%.

Biomass is a metric in our index that is not measured by some benthic programs because of cost. We found it to be the least effective of our metrics at distinguishing stressed sites. It was also the metric that varied most among replicates (Table 9), probably because it can be so easily skewed by a single large individual. Calculating the final index without the biomass metric, as if these data were not available, reduced validation efficiency to 89%.

Although index development was conducted on a habitatspecific basis, the metric response values at reference sites were largely habitat-independent. Applying metric threshold values averaged across habitat reduced classification efficiency of the index by only 2% in the calibration data set and not at all in the validation data set. Weisberg et al. (In press), conducting a similar effort to establish thresholds for benthic assemblage response variables at reference sites in Chesapeake Bay, also found consistency in response among higher salinity habitats. Lopez (1988) suggested that many of the factors that structure benthic communities are similar over gradients as sharp as those from freshwater to saltwater. Such cross-habitat comparative studies are rare in benthic ecology; the consistency of our assemblage metric thresholds across habitats, despite substantial differences in species composition in the different habitats, suggests that further comparative work is warranted.

There has been recent debate as to whether the condition of benthic communities is more appropriately assessed using multivariate examination of individual species responses, or by using assemblage level metrics, as was used here (Norris 1995, Gerritsen 1995). We suggest that these approaches are not mutually exclusive and may be best employed together; multivariate approaches are sensitive enough to illuminate even minor changes in species composition, whereas the assemblage level approach provides perspective on the importance of those

changes. The multivariate approach, though, may be harder to employ. Both approaches require description of reference condition. Assemblage level metrics appear to be relatively robust to physical habitat variation; species composition is not. The high degree of habitat specificity of individual species may lead to difficultly in defining reference condition for the multivariate approach, with false positives resulting if there are minor differences in natural physical habitat between the reference and potentially affected sites.

While our B-IBI was validated using data only from the NY/NJ Harbor, it was developed based on data from a large portion of the mid-Atlantic coast. One issue that remains unresolved is whether it is applicable over the larger geographic scale of the calibration data set, which will be difficult to address because their are few independent data sets from the east coast with concurrently collected benthic and stressor data that could be used for validation. One such data set, to which we applied the B-IBI, was collected from the Delmarva peninsula (Chaillou and Weisberg 1995) located at the southern boundary of our calibration data set. We found that the index validated at all sixteen sites in that data set that met our criteria as reference or stressed sites, suggesting that the index is applicable to at least the southern portion of the province. In contrast to our NY/NJ Harbor validation, however, the percent of abundance as pollution-sensitive taxa was only 69% efficient at discriminating

sites, indicating that either the taxa list, or the thresholds used for this metric, may not be uniformly applicable at extreme ends of the province. Attempts at validation with data sets from other areas will be required to assess the degree of index modification necessary to assure that the index is applicable to the remainder of the Virginian Province.

ACKNOWLEDGEMENTS

We would like to thank F. Grassle, J. Grassle, E. Gallagher A. Cristini, R. Loveland, R. Whitlatch and J. Vitaliano who served as an advisory group and provided many valuable suggestions during this work. We would also like to thank K. Summers and J. Paul for access to the EMAP data which was used to develop the index, and J. Frithsen, N. Roth and C. DeLisle for their helpful comments on the manuscript. This work was supported by Contract No. 68-DO-30013 from the U.S. Environmental Protection Agency. ASTM (American Society of Testing and Materials) 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. ASTM Standards Volume 11.04: 1052-1075.

Baird, D. and R. E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay Ecosystem. <u>Ecological Monographs</u> 59:329-364.

Barbour, M.T., J.B. Stribling and J.R. Karr. 1995. Multi-metric approach for establishing biocriteria and measuring biological condition. pp. 63-80 in W.P. Davis and T.P. Simon (eds), <u>Biological Assessment and Criteria</u>. Lewis Publishers, Boca Raton, F1.

Blackburn, T. H. and K. Henriksen. 1983. Nitrogen cycling in different types of sediments from Danish waters. <u>Limnology and</u> <u>Oceanography</u> 28:477-493.

Boesch, D. F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. <u>Marine Biology</u> 21:226-244.
Bonnevie, N.L., R.J. Wenning, S.L. Huntley, and H. Bedbury. 1993. Distribution of inorganic compounds in sediments from three waterways in northern New Jersey. <u>Bulletin of Environmental</u> <u>Contamination and Toxicology</u> 51:672-680.

Bousfield, E. L. 1973. Shallow-water Gammaridean Amphipoda of New England. Cornell University Press, Ithaca, New York. 312 p.

Brown, S.S., G. R. Gaston, C. F. Rakocinski, R. W. Heard and J. K. Summers. In press. Macrobenthic trophic structure responses to environmental factors and sediment contaminants in Northern Gulf of Mexico estuaries. <u>Estuaries</u>.

Burger, J. and M. Gochfeld. 1993. Lead and cadmium accumulation in eggs and fledgling seabirds in the New York Bight. Environmental Contamination and Toxicology 12:261-267.

Chaillou, J.A. and S.B. Weisberg. 1995. Assessment of the ecological condition of the Delaware and Maryland coastal bays. Prepared for EPA Region III, Annapolis, MD.

Crawford, D.W., N.L. Bonnevie, and R.J. Wenning. 1995. Sources of pollution and sediment contamination in Newark Bay, New Jersey. <u>Ecotoxicology and Environmental Safety</u> 30:85-100.

Dauer, D. M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. <u>Marine Pollution</u> <u>Bulletin</u> 26:249-257.

Dauer, D. M., and W. G. Conner. 1980. Effects of moderate sewage on benthic polychaete populations. <u>Estuarine and Coastal Marine</u> <u>Science</u> 10:335-346.

Dauer, D. M., C. A. Maybury, and R. M. Ewing. 1981. Feeding behavior and general ecology of several spionid polychaetes from Chesapeake Bay. <u>Journal of Experimental Marine Biology and</u> <u>Ecology</u> 54:21-38.

Ewing, R. M., J. A. Ranasinghe and D. M. Dauer. 1988. Comparison of five benthic sampling devices. Prepared for the Virginia Water Control Board, Richmond, Virginia.

Fauchald, K. and P. A. Jumars. 1979. The diet of worms. A study of polychaete feeding guilds. <u>Oceanography and Marine Biology</u> <u>Annual Review</u> 17:193-284.

Ferraro, S. P., R. C. Swartz, F. A. Cole, and D. W. Schults. 1991. Temporal changes in the benthos along a pollution gradient: Discriminating the effects of natural phenomena from sewageindustrial wastewater effects. <u>Estuarine Coastal and Shelf</u> <u>Science</u> 33:383-407.

Franz, D.R. and W.H. Harris. 1988. Seasonal and spatial variability in macrobenthos communities in Jamaica Bay, New York -an urban estuary. <u>Estuaries</u> 11:15-28.

Gerritsen, J. 1995. Additive biological indices for resource management. <u>Journal of the North American Benthological Society</u> 14:451-457.

Grassle, J.F. and J.P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research 32:253-284.

Gray, J. S. 1979. Pollution-induced changes in populations. Transactions of the Royal Philosophical Society of London (B) 286:545-561.

Holland, A. F., N. K. Mountford, M. H. Heigel, K. R. Kaumeyer and J. A. Mihursky. 1980. The influence of predation on infaunal abundance in upper Chesapeake Bay. <u>Marine Biology</u> 57:221-235.

Huntley, S.L., N.L. Bonnevie, R.J. Wenning, and H. Bedbury. 1993. Distribution of polycyclic aromatic hydrocarbons (PAHs) in three northern New Jersey waterways. <u>Bulletin of Environmental</u> <u>Contamination and Toxicology</u> 51:865-872.

Ianuzzi, T.J., S.L. Huntley, N.L. Bonnevie, B.L. Finley and R.J. Wenning. 1995. Distribution and possible sources of polychlorinated biphenyls in dated sediments from the Newark Bay estuary, New Jersey. <u>Archives of Environmental Contamination and</u> <u>Toxicology</u> 28:108-117.

Jorgensen, C. B. 1966. Biology of Suspension Feeding. Pergamon Press, Oxford.

Kemp, W. M. and W. R. Boynton. 1981. External and internal factors regulating metabolic rates in an estuarine benthic community. <u>Oecologia</u> 51:19-27.

Kerans, B. L., and J. R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. <u>Ecological</u> <u>Applications</u> 4:768-785.

Long, E. R., D. D. McDonald, S. L. Smith, and F. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. <u>Environmental</u> <u>Management</u> 19:81-95.

Lopez, G. R. 1988. Comparative ecology of the macrofauna of freshwater and marine muds. <u>Limnology and Oceanography</u> 33:946-962.

McCall, P.L. 1974. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. <u>Journal of Marine</u> <u>Research</u> 35:221-266.

Norris, R.H. 1995. Biological monitoring: the dilemna of data analysis. Journal of the North American Benthological Society 14:440-450.

Paul, J.F., K.J. Scott, A.F. Holland, S.B. Weisberg, J.K. Summers, and A. Robertson. 1992. The estuarine component of the U.S. EPA's Environmental Monitoring and Assessment Program. <u>Chemistry and Ecology</u> 7:93-116.

Pearson, T. H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. <u>Oceanography and Marine Biology Annual Review</u> 16:229-311.

Peven, C.S., A.D. Uhler, R.E. Hillman and W.G. Steinhauer. 1996. Concentrations of organic contaminants in *Mytilus edulis* from the Hudson-Raritan estuary and long Island Sound. <u>Science of the</u> <u>Total Environment</u> 179:135-147. Rhoads, D. C. and D. K. Young. 1970. The influence of deposit feeding organisms on sediment stability and community trophic structure. Journal of Marine Research 28:150-177.

Seitz, R. D. and L.C. Schaffner. 1995. Population ecology and secondary production of the polychaete Loimia medusa (Terebellidae). Marine Biology 121:701-711.

Simon, T.P. and J. Lyons. 1995. Application of the index of biotic integrity to evaluate water resources integrity in freshwater ecosystems. pp. 245-262 in W.P. Davis and T.P. Simon (eds), <u>Biological Assessment and Criteria</u>. Lewis Publishers, Boca Raton, Fl.

Stainken, D. and J. Rollwagen. 1979. PCB residues in bivalves and sediments of Raritan Bay. <u>Bulletin of Environmental</u> <u>Contamination and Toxicology</u> 23:690-697.

Steimle, F.W. and J. Caracciolo-Ward. 1989. A reassessment of the status of the benthic macrofauna of the Raritan estuary. <u>Estuaries</u> 12:145-156.

Stull, J.K., C. I. Haydock, R.W. Smith and D.E. Montagne. 1986. Long-term changes in the benthic community on the coastal shelf of Palos Verdes, Southern California. <u>Marine Biology</u> 91:539-551.

Warwick, R. M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. <u>Marine Biology</u> 92: 557-562.

Warwick, R. M. and K. R. Clarke. 1991. A comparison of some methods for analysing changes in benthic community structure. Journal of the Marine Biological Association of the United <u>Kingdom</u> 71:225-244.

Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner R.J. Diaz and J.B. Frithsen. In Press. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. <u>Estuaries</u>.

Williams, S.C., H.J. Simpson, C.R. Olsen and R.F. Bopp. 1978. Sources of heavy metals in sediments of the Hudson River estuary. <u>Marine Chemistry</u> 6:195-213.

Wilson, J. G. and D. W. Jeffrey. 1994. Benthic biological pollution indices in estuaries, p. 311-327. <u>In</u> J. M. Kramer (ed.), <u>Biomonitoring of Coastal Waters and Estuaries</u>. CRC Press, Boca Raton, Florida.

Word, J. Q. 1978. The infaunal trophic index, p. 19-39. <u>In</u> W. Bascom (ed.), Coastal Water Research Project, Annual Report for the Year 1978. Southern California Coastal Water Research Project, El Segundo, California.

Zongwei, C., V.M.S. Ramanujam, M.L. Gross, A. Cristini, and R.K. Tucker. 1994. Levels of polychlorodibenzo-p-dioxins and dibenzofurans in crab tissues from the Newark Bay/Raritan Bay system. <u>Environmental Science and Technology</u> 28:1528-1534. Table 1. Physical/Chemical Analytical Methods

Parameter	Method
PAHS	Methylene chloride extraction; determination by GC/MS
PCBs/Pesticides	Methylene chloride extraction; determination by HRGC/ECD
Major and Trace	HNO3 and HF acid digestion: Hg - CVAAS;
Elements	Cu, Ni, Pb, Cr, Sb, Sn, As, Se, Ag, Cd -
	GFAAS; Al, Fe, Mn, Si, Zn - FAAS
Dioxins & Furans	Extraction with toluene; determination by
	HRGC/HRMS; second column confirmation for
	2,3,7,8-TCDD
тос	Acidification with H-PO.: determination using

Acidification with H_3PO_4 ; determination using a CO_2 analyzer

Grain size

Sieving and pipette analysis

Table 2. Mean benthic assemblage values at reference sites (top number) and stressed sites (bottom number). Top number shaded indicates pair is different by Mann-Whitney test; bottom number shaded indicates different by Kolmogorov-Smirnov test.

*	Polyhaline	Polyhaline	Euhaline	Euhaline
	Sand	Mud	Sand	Mud
Species Diversity				
Number of Taxa	19.5	21.2	28.3	24.0
	15.4	6.0	14.7	7.5
Shannon-Weiner	2.58	2.81	3.04	2.73
	2.15	1.01	0.85	1.11
Abundance and Biomass	1			·
Abundance (#/m ²)	9111	7319	11686	83
	8656	6638	14027	7234
Biomass (g dry	4.9	6.8	7.4	14.4
	15.2	22.1	1.7	36.6
Species Composition				
Percent of abundance as pollution- indicative taxa	11.4 68.1	15.1 79.3	12.4 52.2	14.6 90.5
Percent of abundance	18.5	18.3	30.2	8.8
as pollution-		0.1	0.2	0.1
Intolerant taxa				
Percent of abundance as carnivore/ omnivores	17.0	14.8 5.2	13.2 0.5	13.1 2.0
Percent of abundance	42.1	40.6	27.1	53.5
as deposit feeders	34.6	24.7	27.8	56.3
Percent of abundance as suspension feeders	40.4	44.6	59.5 38.4	33.3 41.7

d frequency of occurrence of	and stressed sites in the calibration	
, and	nce a	
ndance	refere	
abu	at	
: of	аха	
cent	vet	
per	cati	
ince	ndi	
unda	i-no	Ļ
n ab	luti	a se
Meal	pol.	dati
з.		
Table		

	Abundance Reference Sites	a (∦/m ²) Stressed Sites	<pre>% of Ab Reference Sites</pre>	undance Stressed Sites	Frequer Occuri Reference Sites	ncy of rence Stressed Sites
Streblospio benedicti	332	2299	3.1	32.7	38.8	66.7
Capitella spp.	26	42	0.3	5.5	12.9	14.8
Polydora cornuta	92	355	1.0	2.5	29.8	42.6
Mulinia lateralis	84	2786	2.0	15.8	28.6	46.3
Oligochaetes	524	738	7.1	24.9	7.7	77.8

Table 4. Mean abundance, percent of abundance, and frequency of occurrence of pollution-sensitive taxa at reference and stressed sites in the calibration data set .

	Abunda (/#)	lance **^)	Percei	it of ance	Frequen Occuri	cy of ence
	Reference Sites	Stressed Sites	Reference Sites	Stressed Sites	Reference Sútes	Stressed Sites
Polychaeta						
Ampharete arctica	42.5	0.0	0.4	0.0	16.9	0.0
Aricidea catherinae	176.5	0.8	2.1	0.0	33.7	1.9
Caulleriella spp.	9.4	0.0	e 0	0.0	15.7	0.0
Clymenella torquata	25.6	0.0	0.2	0.0	13.7	0.0
Glycinde solitaria	45.4	6.7	0.1	0.1	25.9	13.0
Levinsenia gracilis	93.3	0.0	0.7	0.0	13.3	0.0
Macrocylmene zonalis	16.0	0.0	0.2	0.0	17.6	0-0
Nephtys picta	30.9	0.0	1.0	0.0	29.0	0.0
Ninoe nigripes	27.8	0.0	0.4	0.0	14.1	0.0
Polygordius spp.	53.7	0.0	0.6	0.0	15.7	0.0
Sabaco elongatus	32.9	0.4	0.5	0.0	16-5	6.1
Scalibregma inflatum	61.2	0.0	0.5	0.0	8.2	0.0
Spiophanes bombyx	82.3	0.0	1.5	0.0	31.4	0.0
follusca			-		,	
Spisula solidissima	28.3	0.0	0.7		0 01	c c
Tellina adilis	313.4	15.6	4 - 4	4	0.01	
Acteocina canaliculata	88.7	1.3	1.6	0.0	32.6	3.7
lrt.hronođa	·					
Ampelisca agassizi	68.3	0.0	0.3	0.0	3.5	0.0
Ampelisca verrilli	224.5	0.0	2.1	0.0	26.3	0.0
<i>Byblis</i> serrata	40.5	0.0	0.2	0.0	6°3	0.0
ruepoxynus auasoni	1.52	0.4	0.1	0.0	11.8	1.9

Table 5. Number of sites in calibration data set

	Habitat	Environmental	Conditions
Balinity Class	Sediment Type	Reference Sites	Stressed Sites
Polyhaline	Mud (≥40% silt/clay)	11	12
(15-28 ppt)	Sand (<40% silt/clay)	28	Q
		· .	
Suhaline	Mud (≥40% silt/clay)	26	ŝ
(28-35 ppt)	Sand (<40% silt/clay)	60	0

36

.

Table 6. Thresholds used to score each metric of the NY-NJ Harbor B-IBI

•

		Scoring Criteria	
	ŝ	M	
Number of Species Polyhaline Sand Polyhaline Mud	> 20 > 20	15 - 20 15 - 20	< 15 < 15
Euhaline Sand Euhaline Mud	> 25 > 25	15 - 25 15 - 25	151515
Abundance (# /m ²) Polyhaline Sand	2,500 - 10,000	1,000 - 2,500 or	< 1,000 or
Polyhaline Mud	3,000 - 10,000	1,500 - 3,000 1,500 - 3,000	<pre>> 25,000 < 1,500 or or</pre>
Euhaline Sand	3 ,000 - 10,000	1,500 - 20,000 1,500 - 3,000 0r 10,000 - 50,000	> 20,000 < 1,500 or > 30,000
Euhaline Mud	3,500 - 10,000	2,000 - 3,500 10,000 - or	 2,000 or
Biomass Polyhaline Sand Polyhaline Mud Euhaline Sand Eihaline Sand	100 100 100 100 100 100 100 100 100 100	0.8 - 2 or > 8 1 - 3 or > 10 0.8 - 2 or > 10	000,62 ×
Abundance of Pollution- Indicative Taxa (%) Polyhaline Sand Polyhaline Mud Euhaline Sand Euhaline Mud	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 - 4 or > 10 $10 - 40$ $10 - 40$ $10 - 40$ $10 - 40$	

Continued Table 6.

> 15 > 2 15 > 10 10 Abundance of Carnivores/Omnivores (%) Polyhaline Sand Polyhaline Mud Euhaline Sand Euhaline Mud Abundance of Pollution-Sensitive Taxa (%) Polyhaline Sand Polyhaline Mud Euhaline Sand Euhaline Mud

Scoring Criteria

ŝ

- 10 **1**0 15 15 15 ហ្ម m 1 **m** N m m m **N** m

2 m v v

m

-

Table 7. Percent of sites in the validation data set correctly classified by the B-IBI, with and without the carnivore/omnivore metric

			Percent Correctly
		Percent Correctly	Classified Without
Habitat	Number of Sites	Classified	Carnivore/Omnivore
· .		· · ·	Metric
Polyhaline Sand	19	74	62
Polyhaline Mud	20	100	100
Euhaline Sand	23	96	100
Euhaline Mud	10	80	06
Overall	72	88.9	93.1

Table 8. Classification efficiency (%) of reference and stressed sites for the

individual metrics

Metric

Calibration Data Set Validation Data Set

Number of Taxa	84.7	68.1
Shannon-Weiner Diversity	78.2	58.3
Abundance	75.3	63.9
Biomass	81.3	63.9
<pre>% of Abundance as Pollution-indicative Taxa</pre>	0.06	77.8
<pre>\$ of Abundance as Pollution-sensitive Taxa</pre>	83.3	88.9
<pre>% of Abundance as Carnivores/Omnivores</pre>	81.3	56.9

Table 9. Correlation between replicate samples for each of the metric values in the index

	•
Metric	Correlation Coefficient
Number of Species	0.89
Shannon-Weiner Diversity	0.84
Abundance	0.84
Biomass	0.62
Percent Abundance as Pollution-Indicative Taxa	0.86
Percent Abundance as Pollution-Sensitive Taxa	0.95

Appendix D

Aluminum-normalization procedure

Comparison of sediment metal:aluminum relationships between the eastern and gulf coasts of the United States

S. B. Weisberg^{1*}

H. T. Wilson²

D. G. Heimbuch²

H. L. Windom³

J. K. Summers⁴

¹Versar 9200 Rumsey Road Columbia, MD 21045

²Coastal Environmental Services 1099 Winterson Rd. Linthicum, MD 21090

³Skidaway Institute of Oceanography 10 Ocean Science Circle Savannah, GA 31411

⁴US EPA Sabine Island Gulf Breeze, FL 32561

*Present Address: Southern California Coastal Water Research Project 7171 Fenwick Lane Westminster, CA 92683 Stevew@sccwrp.org

INTRODUCTION

Metal contamination of sediments is a concern to the normal function of estuarine and nearshore systems [1,2]. A portion of the metals in sediments comes from natural weathering of crustal rocks, with naturally higher concentrations of metals occurring in finer-grained fractions of sediments. One challenge in assessing the spatial extent of metal contamination is separating anthropogenic contributions of metals from natural contributions.

Several techniques have been developed for making this distinction [3], the most popular of which is aluminumnormalization [4,5,6,7,8,9]. Using this approach, aluminum is treated as a conservative tracer of the natural metal-bearing phases (i.e., aluminosilicates) in the fine sediment fraction. Anthropogenic contributions to aluminum concentrations are trivial compared to the natural contribution, and the natural metal-toaluminum ratio should be relatively constant within a region and similar to the crustal ratio [10] or to the ratio observed in source rocks in the regional watershed. Using the normalization approach, a set of uncontaminated sites are identified, and statistical relationships between each metal and aluminum are identified for those sites. Significant deviation from those relationships indicates anthropogenic enrichment.

Metal-to-aluminum ratios have been determined on several spatial scales ranging from individual estuarine systems [11,12,13]

to entire countries [7,8,14]. Differences in metal-to-aluminum ratios have been found among studies conducted on these different spatial scales, which could be explained by regional differences in the ratios within source rocks or by differences in the fractionation of metals between soluble and particulate phases during weathering. These geologic explanations, though, are confounded by differences in data analysis approaches used by various investigators in defining the relationships. The most important methodological differences among such studies are in the assumed functional form of the relationship and in the means of ensuring that only non-contaminated sites are included in the data sets used to derive the relationships.

The uncertainty concerning differences in normalization techniques among studies hampers inter-regional comparisons of anthropogenic influence. If the metal-to-aluminum ratios in crustal or source rock, or weathering characteristics differ between regions, then locally derived aluminum relationships would be the most appropriate basis for such comparisons. Alternatively, if differences in metal-to-aluminum ratios are artifacts of data analysis techniques used to define the relationship, then using relationships would bias inter-regional locally derived This paper addresses these concerns by applying a comparisons. common analytical methodology to data collected on the Atlantic and Gulf coasts to identify the most appropriate spatial scales for developing aluminum-normalization curves.

METHODS

Data Sources

Sampling was conducted in two biogeographical provinces: the Virginian Province, extending from Cape Cod to Cape Henry on the Atlantic coast (Figure 1), and the Louisianian Province, extending from Tampa Bay to the Mexican border along the Gulf Coast (Figure Sampling in the Virginian Province was conducted from late 2). July to early September annually between 1990 and 1993. Sampling in the Louisianian Province was conducted from July 1 through August 30 annually between 1991 and 1994. Between 100 and 160 sites were sampled in each province each year. Sampling sites were selected using a stratified random design in which the estuaries were classified as large estuaries (surface area >250 km²); large tidal rivers (surface area >250 km² with an aspect ratio of 18:1 or greater); and small estuarine systems, which included all other systems with a surface area of at least 2.5 km². Sampling sites within each stratum were selected randomly.

Sediment samples were collected at each site using a $440-cm^2$ Young-modified VanVeen grab. A teflon spoon was used to remove the top 2 cm of sediment to a clean glass jar with a teflon lid, which was stored frozen. Metals were analyzed in the laboratory by HF/HNO₃ digestion, followed by inductively coupled plasma mass emission spectrometry (Ag, Al, Cr, Cu, Fe, Ni, Pb, Zn), microwave

digestion using HNO₃/HCl followed by graphite furnace atomic absorption spectrophotometry (Cd, Sb, Se, Sn), or cold vapor atomic absorption spectrophotometry (Hg). Silver, antimony, selenium, and tin were measured in the Virginian Province only during the last three years. Reagent and procedural blanks were analyzed to check for laboratory contamination during processing. Approximately every tenth sample was split and processed as a laboratory duplicate. In addition, National Research Council of Canada Certified Reference Material BCSS-1 was analyzed with approximately every 10 samples to assess accuracy and precision.

<u>Data Analysis</u>

The relationship between the concentration of aluminum and a response metal was estimated based on a linear model:

 $Y = \beta * A1 + m + e$

where,

y = concentration of the response metal $\beta = \text{slope relating the response metal to aluminum}$ Al = aluminum concentrationm = intercept

e = random measurement error

Anthropogenically contaminated sites were removed from the data set by comparing the residual of the regression with an estimate of laboratory measurement error. This approach was based on the premise that if the data set did not include anthropogenically enriched sites, the mean square error (MSE) from the regression would equal measurement error. If the MSE exceeded measurement error, the site with the highest residual in the model was removed, and the model was reparameterized. This procedure was repeated until the MSE was no greater than measurement error. Laboratory measurement error was estimated based on repeated measurements from blind laboratory duplicates and standard reference materials.

To compare metal-to-aluminum relationships between the two provinces, we applied our estimation method separately to data from each year, providing four independent slope and intercept estimates for each province. These annual estimates for each province served as replicates to test whether the intercept differed significantly from zero, and whether slope or intercept differed between provinces, based on a t-test ($\alpha = 0.05$). Initial applications of the model included an intercept term. If the average intercept for a given metal did not differ significantly from zero in our initial runs, the regression was recalculated with a no-intercept model. If the intercepts were significantly different from zero, but not different between provinces, the regression was recalculated after setting the intercept equal to the average intercept between

provinces. If the intercepts for both provinces were equivalent, the four independent yearly estimates were used to assess whether slopes differed significantly between provinces.

RESULTS

Mean and maximum aluminum concentrations differed between the two provinces by about 15%. Mean concentration of other metals differed by a substantially greater margin, with differences of 100% or more for 5 of the 12 metals examined (Table 1). For every metal except aluminum, the mean and maximum observed concentrations were higher in the Virginian Province.

Six of the 10 metals we examined had intercepts that differed significantly from zero in at least one of the provinces (Table 2). In all cases where the intercept was significant, the intercepts were positive values. For only three metals did the intercept differ significantly between provinces. Most intercept values were small compared with the mean value for the province; however, for silver in the Louisianian Province and selenium in the Virginian Province the intercept values were almost half of the mean values for the province.

Of the six metals that had an equivalent intercept between provinces, only three (Hg, Pb, Ni) had significantly different slopes (Table 3). For each of these metals the slope was higher in the Virginian Province than in the Louisianian Province. For nickel, the slope difference was only 30%; for lead and mercury, the difference was almost 100% (Table 3).

The number of samples removed from the regression based on deviation greater than measurement error differed substantially among chemicals and between the provinces (Table 4). Thirty-six percent of the sites in the Virginian Province and 22% in the Louisianian Province were eliminated from the regression for at least one chemical. Most of the sites that were eliminated for one chemical were eliminated for several chemicals (Table 5). The spatial pattern of eliminated sites was highly clustered, with most sites occurring around the major cities of New York, Philadelphia, Baltimore, Galveston, Mobile, and New Orleans (Figures 1 and 2).

DISCUSSION

Most of the differences in metal-to-aluminum ratios between the mid-Atlantic and Gulf coasts of the United States were small. Slopes differed by more than 30% only for mercury, lead, silver, and selenium, and comparisons for the latter two were confounded by differences in intercept. Differences in slope or intercept were mostly limited to metals with small natural concentrations; there were no significant differences in slope or intercept for the naturally most abundant metals (e.g., copper, zinc, chromium).

We used a new approach for ensuring that only unenriched sites were used to estimate the natural metal-to-aluminum relationships within a province. Previous authors have used a variety of techniques for accomplishing this objective. Some authors have removed sites with large concentrations or sites where biological effects are suspected [9]. This may lead to a shallower slope if naturally occurring high concentrations are removed from the regression. Other authors have screened their sites based on the uses of the surrounding land by equating low population density or absence of known point sources with a lack of anthropogenic input [5,7,8,14]. This approach is probably suitable for sparsely populated areas, but becomes highly subjective in densely populated areas such as the Virginian Province.

Our approach is most similar to that of Schropp et al. [5], in which sites were sequentially eliminated from the regression until the residuals were distributed normally. Our approach, however, uses additional information to identify a quantitative stopping rule for data removal; Schropp et al.'s approach of examining kurtosis is more subjective. Our approach, though, requires an unbiased estimate of measurement error, which can be hard to develop because many laboratories fail to quantify error or do so as part of a performance evaluation in which the analyst knows which samples are being used for the test.

Our approach also assumes that the study area encompasses enough unenriched sites to define a baseline relationship. This may not be the case for lead in the Virginian Province because atmospheric deposition is a primary source of lead. If atmospheric deposition enhanced concentrations equally everywhere, then our approach would quantify the deposited lead as an addition to the intercept term. If atmospheric inputs varied within a region, or if these additions bound disproportionately to the fine-grained sediment, our approach would quantify the additional lead as an increase in slope. The higher slope we observed in the Virginian Province probably reflects widespread enrichment, and the lead-toaluminum relationship we defined for the Virginian Province may underestimate enrichment.

An alternate approach for obtaining reliable baseline conditions for defining metal-to-aluminum relationships is to sample deep sediments that were deposited before the industrial period. Obtaining such samples requires expensive coring equipment and specialized techniques for dating the sediments accurately. Such data records are few, and they typically do not include a sufficient range of aluminum concentrations to identify metal-toaluminum relationships. The available coring data, however, provide a benchmark for validating the relationships we identified in other ways. For the Virginian Province, we compared our metalto-aluminum relationships with those in pre-industrial sediment cores collected by Goldberg et al. in Chesapeake Bay [15] and Narragansett Bay [16]. For copper, cadmium, nickel and zinc, the historic data matched our findings well; all of the historic samples were bisected by and within the measurement error of our regression line (Figure 3). Our relationship for lead was steeper than suggested by the deep sediment samples, confirming our concern that widespread contamination has caused us to overestimate the underlying relationship. Our relationship for chromium had a shallower slope than suggested by the deep sediment samples.

For the Louisianian Province, we compared our findings to ratios in pre-industrial cores from the Mississippi River [17] and Texas [18]. Data for all metals, except copper, were mostly within the measurement error of our metal-to-aluminum relationships (Figure 4). For copper, our data matched the data from Texas well

but had a shallower slope than the data from the Mississippi River. Our shallower slope for copper than in sediments from the Mississippi River is not an artifact of our data analysis because we eliminated very few data points in identifying the relationship between copper and aluminum.

We also compared our metal-to-aluminum relationships with those identified by other authors working in our geographic study areas and found considerable similarity for all metals except lead in the Virginian Province. For lead, most previous studies suggested a relationship more similar to the slope we found for the Louisianian Province. Interestingly, all of the previous studies found slopes for chromium in the Virginian Province that were equivalent to or less than those we found in the pre-industrial cores (Figure 5). It is unclear why samples of pre-industrial sediment contained larger chromium-to-aluminum ratios than those estimated in all other studies, but suggests the earlier data may contain a systematic analytical error. Standard reference materials were not readily available during the earlier studies; therefore, researchers had no way to assess the quality of their data, and because of its refractory nature, chromium is a difficult metal to analyze accurately. Perhaps our disagreement with copper data for the Mississippi River can be explained similarly.

One substantial difference between the relationships we defined and those defined in other studies is the magnitude and

sign of the intercept term. We found the intercept to be nonsignificant in more than half of the cases we examined; when the intercept was significant, it was always a positive value. Many previous studies have reported negative intercepts. We believe the theoretical basis for a negative intercept is weak. The model of the metal-to-aluminum relationship is based on conservative mixing of aluminosilicates, which naturally contain large concentrations of metals, with quartz or other low metal-bearing phases such as carbonates. The intercept term should be equal to the concentration of the dependent metal in the low-metal phase end member.

In many of the previous studies, the negative intercept values were small enough to have resulted from random measurement error, which we were able to assess because we had four independent intercept estimates. Negative intercepts can also be analytical artifacts introduced when concentrations of the dependent metals fall below detection limits. An artificial negative slope would occur if samples with concentrations below detection limits were treated as zeros and combined with positive aluminum measurements (concentrations of aluminum typically exceed detection limits). Conversely, setting values of undetected dependent metals equal to detection limits of the analytical technique would artificially create a positive intercept. In our study, we chose to remove samples with values below the detection limit from analyses.

One shortcoming of our analytical approach is that we were unable to incorporate a measurement error term for aluminum. To determine if our results were sensitive to this shortcoming, we used the same analytical approach employing iron, which is also abundant in crustal rock, as the conservative tracer and tested to see if the same samples fell outside the background relationship. Eighty-three percent of the samples that we identified as enriched by aluminum-normalization were also identified as enriched by normalizing to iron. Another 9% were identified as enriched by the iron analyses only. Re-running our models, eliminating only samples that were identified as enriched in both the iron and aluminum analyses, had a negligible effect on the slopes of our metal-to-aluminum relationships.

One issue that we chose not to address in our analysis was mean-to-variance relationships. The data suggested a small meanto-variance relationship in laboratory measurement error for most metals. Adjusting our model to exclude points based on a mean-tovariance relationship resulted in eliminating most samples closest to the origin. This difficulty arose because measurement error was not a linear function of concentration; rather there was a "nugget effect" in which measurement error relative to the mean increased at lower concentrations. We had too few replicate data at low concentrations to quantify the nugget effect. Modelling measurement error would be a fruitful area for refining our approach.

One advantage of our approach for examining metal-to-aluminum relationships is that our results can be applied easily to other data sets that either are too small or are collected from geographic areas that are too enriched to identify metal-toaluminum relationships. Within our study areas, the base metal-toaluminum relationship is constant for most metals. The only thing that changes among studies is the allowable deviation from these relationships. We suggest that there are three components of allowable deviation: (1) variance of the slope estimate, which can be estimated from the variability among our four independent slope (Table 6); (2) variance of the intercept estimates (where appropriate), which also can be estimated from our four yearly estimates (Table 6); and (3) measurement variance of the specific study. The probability that a sample has an enriched concentration of a metal can be estimated by dividing the difference between the observed and predicted concentrations of the metal by the square root of the sum of the three sources of error and comparing the quotient to standard normal critical values. Samples with quotients exceeding 1.96 have a 95% probability of enrichment.

The authors thank Gail Sloane for helpful comments on the manuscript. This work was supported by the U.S. Environmental Protection Agency under contract #68-D0-30013.
LITERATURE CITED

- [1] Furness, R.W. and P.S. Rainbow. 1990. <u>Heavy metals in the</u> <u>marine environment</u>. CRC Press. Boca Raton, FL.
- [2] O'Connor, T. P. and C. N. Ehler. 1991. Results from the NOAA National Status and Trends Program on distribution and effects of chemical contamination in the coastal and estuarine United States. Environmental Monitoring and Assessment 17: 33-49.
- [3] Luoma, S.N. 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. pp 51-66 in R. W. Furness and P. S. Rainbow (eds) Heavy metals in the marine environment. CRC Press. Boca Raton, Fl.
- [4] Windom, H.L., S.J. Schropp, F.D. Calder, J.D. Ryan, R.G. Smith, L.C. Burney, F.G. Lewis and C.H. Rawlinson. 1989. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern united states. Environmental Science and Technology 23:314-320.
- [5] Schropp, S. J., F.G. Lewis, H. L. Windom, J. D. Ryan, F. D. Calder, and L. C. Burney. 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13:227-235.

- [6] Loring, D. H. 1991. Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal of Marine Science 48:101-115.
- [7] Hanson, P.J., D. W. Evans, and D. R. Colby. 1993. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modeling of sediments. Marine Environmental Research 36:237-266.
- [8] Daskalakis, K.D. and T.P. O'Connor. 1995. Normalization and elemental sediment contamination in the coastal United States. Environmental Science and Technology 29:470-477.
- [9] Summers, J.K., T.L. Wade, V.D. Engle and Z.A. Maleeb. In press. Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries.
- [10] Taylor. S.R. and S.M. McLennan. 1981. The composition and evolution of the earth's crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society, London A 301:381-399.
- [11] Goldberg E.D., J.J. Griffin, V. Hodge, M. Koide and H. Windom. 1979. Pollution history of the savannah River estuary. Environmental Science and Technology 13:588-594.

- [12] Klinkhammer, G. P. and M. L. Bender. 1981. Trace metal distributions in the Hudson River estuary. Estuarine, Coastal and Shelf Science 12:629-643.
- [13] Trefry, J.H. and B.J. Presley. 1986. Heavy metals in sediment from San Antonio Bay and the northwest Gulf of Mexico. Environmental Geology 1:283-294.
- [14] Din, Z.B. 1992. Use of aluminum to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin 24:484-491.
- [15] Goldberg, E.D., E. Gamble, J.J. Griffin and M. Koide. 1977. Pollution history of Narragansett Bay as recorded in its sediments. Estuarine and Coastal Marine Science 5:549-561.
- [16] Goldberg, E.D., V. Hodge, M. Koide, J. Griffin, E. Gamble, O.P. Bricker, G. Matisoff, G.R. Holden and R. Braun. 1978. A pollution history of Chesapeake Bay. Geochimica et Cosmochimica Acta 42:1413-1425.
- [17] Trefry, J.H. 1977. The transport of heavy metals by the Mississippi River and their fate in the Gulf of Mexico. Ph.D. Dissertation. Texas A&M University, College Station, TX.

[18] Presley, B.J. pers. comm.

ĺ

Table 1. Mean and maximum concentrations (ppm, except for aluminum, which is percent) of metals measured in each province. Table is based on all data collected.

	Mean Con	centration	Maximum Co	ncentration
	Virginian	Louisianian	Virginian	Louisianian
	Province	Province	Province	Province
Aluminum	4.1	4.6	9.8	13.8
Silver	0.4	0.1	9.7	0.9
Cadmium	0.5	0.2	8.0	1.5
Chromium	48.2	43.5	365.0	149.0
Copper	30.9	11.3	680.0	104.0
Mercury	0.1	0.1	3.3	0.4
Nickel	18.3	16.7	136.0	51.2
Lead	62.6	16.4	13,600.0	610.0
Antimony	1.0	0.6	152.0	3.8
Selenium	0.4	0.3	9.1	1.8
Tin	3.3	1.4	48.7	13.5
Zinc	115.6	64.3	1,090.0	625.1
			•	

Table 2. Annual intercept estimates for each province (ND = no data). Asterisk indicates the mean intercept value was significantly different from zero in the Virginia Province; △ indicates the same for the Louisianian Province.

	v	irginian	Provinc	e	Loui	sianian	Provinc	•
Metal	90	91	92	93	91	92	93	94
Ag₄	ND	-0.005	0.029	-0.008	0.083	0.019	0.055	0.049
Cd*∆	0.098	0.114	0.107	0.262	0.058	-0.004	0.085	0.086
Cr	-0.694	-1.762	0.976	-4.85	5.340	3.009	-0.488	1.389
Cu	-1.48	-1.07	-1.21	0.137	0.203	-0.359	-0.957	0.448
Hg*⊿	0.013	0.017	0.007	0.000	0.018	0.012	0.015	0.000
Ni	-5.88	-2.04	3.31	-4.29	-0.381	0.334	-1.18	2.36
Pb*▲	6.97	2.85	1.58	-0.41	3.11	1.19	1.40	2.57
Sb*4	ND	0.066	0.158	0.265	0.216	0.083	0.162	0.160
Se*∆	ND	0.159	0.179	0.352	0.057	0.062	0.056	0.106
Sn*	ND	0.087	0.210	0.225	0.081	0.010	0.189	-0.040
Zn	6.47	-3.57	3.05	-2.05	1.28	0.89	4.01	0.63

	estim	ating th	e slopes							
	-	/irginian	Province		Lou	isianian	Province		Intercept	Values
letal	06	6	92	63	16	92	93	94	Δħ	911
Ag	QN	0.0247	0.0382	0.0360	0.0140	0.0186	0.0121	0.0135	0	0.0514
cd	0.0447	0.0337	0.0426	0.0147	0.0265	0.0440	0.0172	0.0321	0.1008	0.1008
Cr	8.970	9.084	10.627	9.238	10.353	8.821	9.470	7.391	0	0
Сu	2.257	3.21 3	3.657	2.624	2.406	2.394	2.203	2.407	0	0
Нд	0.0152	0.0122	0.0193	0.0187	0.0074	0.0073	0.0083	0,0099	0.0103	0.0103
Nİ	4.633	4.813	5.115	4.171	3.932	3.709	3.500	3.225	0	0
qd	5.218	5.016	5.193	5.193	2.996	2.787	2.992	2.514	2.0954	2.0954
sb	QN	0.0817	0.0762	0.0529	0.0963	0,0905	0.0780	0.676	0.1586	0.1586
Se	QN	0.0429	0.0286	0.0208	0.0460	0.0394	0.0499	0.0186	0.2296	0.0703
Sn	QN	0.5233	0.5096	0.4700	0.3282	0.3190	0.2134	0.3222	0.1732	. 0
ĽZ	13.527	14.028	15.403	12.212	11.992	13.424	12.919	10.765	o	0

Table 3. Annual slope estimates for each province and the intercept values used in

24

Table 4. Percent of sites removed from the regression for each metal in each province.

	Virginian Province	Louisianian Province
Silver	20.0	0.0
Cadmium	12.5	0.0
Chromium	17.4	6.1
Copper	41.8	0.8
Mercury	13.7	0.0
Nickel	0.5	0.0
Lead	32.9	0.3
Antimony	10.5	2.8
Selenium	35.7	17.1
Tin	12.5	0.0
Zinc	51.6	11.2

Table 5.	Frequency	distribution	of	number	of	metals	removed
	from the r	regression			-		

Number of	Percent	of Sites
Metals Removed	Virginian Province	Louisianian Province
0	41.4	66.1
1	14.9	18.6
2	11.5	9.2
3	7.5	2.0
4	5.3	1.4
5	3.6	0.9
6	4.3	0.8
7	3.8	0.2
8	2.8	0.2
. 9	3.2	0.0
10	1.3	0.0
11	0.4	0.0

Table 6. Variance associated with parameter estimates for the metal:aluminum models in each province

				Slope	Intercept
Metal	Province	Slope	Intercept	Variance	Variance
Silver	Louisianian	0.0146	0.0514	0.0	0.0002
Silver	Virginian	0.0330	-	0.0	ο
Cadmium	Both	0.0323	0.1008	0.0	0.0007
Chromium	Both	9.2442	-	0.1233	-
Copper	Both	2.6451	-	0.0338	-
Mercury	Louisianian	0.0082	0.0103	0.0	0.0
Mercury	Virginian	0.0164	0.0103	0.0	0.0
Nickel	Louisianian	3.5914	-	0.0227	-
Nickel	Virginian	4.6826	-	0.0390	-
Lead	Louisianian	2.8223	2.0954	0.0129	0.5509
Lead	Virginian	4.6600	2.0954	0.2461	0.5509
Antimony	Both	0.0776	0.1586	0.0	0.0007
Selenium	Louisianian	0.0385	0.0703	0.0001	0.0001
Selenium	Virginian	0.0308	0.2296	0.0	0.0038
Tin	Louisianian	0.2957	-	0.0008	-
Tin	Virginian	0.5009	0.1737	0.0003	0.0019
Zinc	Both	13.0336	-	0.2485	-

Figure 1. Number of metals found to be anthropogenically enriched at study sites in the Virginian Province.

Figure 2. Number of metals found to be anthropogenically enriched at study sites in the Louisianian Province.

Figure 3. Metal-to-aluminum relationships in pre-industrial sediment cores from the Virginian Province and samples used in the present study. Dashed lines represent 95% confidence intervals based on laboratory measurement error. Circles are from Goldberg et al.'s Core #1314 [16]. Squares are from Goldberg et al.'s Core #1411 [16]. Asterisks are from Goldberg et al.'s Core #7408 [15].

Figure 4. Metal-to-aluminum relationships in pre-industrial sediment cores from the Louisianian Province and those from the present study. Dashed lines represent 95% confidence intervals based on laboratory measurement error. Squares are data from the Mississippi River [17]. Asterisks are data from Texas [18].

Figure 5. Chromium-to-aluminum relationships among several studies and in deep sediment cores. Symbols are the same as in Figure 3.

Appendix E

Tables:

E-1) Area-weighted mean concentrations E-2) Percent of area exceeding ERM values Table E-1 Area-Weighted Mean Sediment Contaminant Concentrations (± represent 90% confidence intervals)

16066.0 ±3447.2 483.18 ±98.54 ±9.46 ±0.19 ± 0.10 35.74 21.69 Bight ±3376 ±2.12 Apex 26345 0.17 9.26 ± 5.23 ±5.71 8.48 0.81 W. Long Is. Sound 28149.3 ±2665.1 988.18 ± 120.43 ±10.70 ±11.63 57.38 ±9.39 80.66 70.43 ±0.14 ±0.84 62745 ±4324 ±0.11 0.70 7.05 0.70 ±3208.9 27269.04 Upper Harbor 110.12 ±57.65 ± 18.40 ±78.59 ±12.27 605.71 96.55 ±0.18 ± 1.14 ± 0.18 92.44 56705 ±4551 9.04 1.11 0.93 22170.9 ±4405.9 481.32 Harbor ± 15.32 ± 16.01 ±17.47 ±63.71 ± 0.18 71.48 63.78 1.24 ± 0.30 ±2.49 47.29 Lower 38706 ±6466 10.01 0.54 ±3830.8 ±60.70 226.69 ±105.28 33980.2 427.94 ±53.12 ±20.15 ± 14.08 Newark 137.31 193.92 2.52 ±0.58 6.27 ±6.80 Bay 64633 ±4207 25.51 ±3230.7 Jamaica 16883.4 ±35.09 ±37.42 390.86 ±66.24 55.15 ±9.17 63.29 ±0.52 ±1.26 ±0.53 50.96 31862 ±3761 0.845.07 0.95 Bay 23483.6 ±2897.0 ±17.40 ±12.83 495.26 ± 44.14 Harbor ± 10.11 78.84 1.49 ± 0.48 10.33 ±2.05 ±0.13 78.09 72.53 ±4229 43456 0.79 METALS (ppm) Manganese Chromium Aluminum Antimony Cadmium Arsenic Copper Lead Iron

Table E-1 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Mercury	0.74 ± 0.14	0.29 ±0.13	2.59 ±0.58	0.61 ±0.21	$\begin{array}{c} 0.80 \\ \pm 0.16 \end{array}$	0.22 ±0.04	0.12 ± 0.10
Nickel	24.07 ±2.90	17.80 ± 10.31	50.81 ±8.72	20.08 ±4.03	30.92 ± 3.80	26.92 ±3.45	8.69 ±2.50
Selenium	3.82 ±1.02	$\begin{array}{c} 1.34 \\ \pm 0.56 \end{array}$	10.98 ± 4.14	3.60 ±1.50	3.41 ±1.28	2.16 ±0.73	$\begin{array}{c} 0.85 \\ \pm 0.71 \end{array}$
Silicon	354788 ±16077	349968 ±26009	315399 ±16061	367569 ±24327	330116 ±17836	300703 ± 19640	412862 ±12327
Silver	1.59 ± 0.30	$\begin{array}{c} 1.14 \\ \pm 0.42 \end{array}$	2.98 ±0.61	1.29 ± 0.44	2.28 ±0.46	1.19 ± 0.32	0.23 ±0.14
Tin	4.96 ±1.54	2.84 ±1.43	15.29 ±13.27	3.43 ±1.40	7.45 ±4.44	2.98 ±0.96	$\begin{array}{c} 1.57\\ \pm 0.66\end{array}$
Zinc	170.06 ±25.56	134.89 ±74.55	308.04 ±55.85	162.56 ±37.38	166.68 ±26.28	177.34 ±24.25	47.02 ±10.06
ORGANICS (ppb)							
Total PCBs = (∑congeners) x 2	224.35 ±42.25	112.34 ±67.57	755.62 ±270.28	120.46 ±43.88	428.74 ±124.62	85.51 ±22.11	55.26 ±40.98
Parent DDT	9.57 ±9.38	0.92 ±0.15	132.97 ±147.29	$\begin{array}{c} 1.28 \\ \pm 0.31 \end{array}$	0.99 ± 0.19	0.97 ±0.20	$\begin{array}{c} 1.33 \\ \pm 0.57 \end{array}$
Total DDD	14.16 ±5.98	2.83 ±1.32	122.41 ±89.49	5.71 ±2.60	11.94 ±3.60	3.00 ± 0.65	1.75 ±1.30

Table E-1 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
DDE	8.53 ±2.54	3.18 ±1.60	65.20 ±35.68	4.04 ±1.66	7.32 ±2.04	2.72 ±0.54	$\begin{array}{c} 1.18\\ \pm 0.69\end{array}$
Total DDT	31.59 ±16.64	5.95 ±2.90	320.31 ±256.91	$\begin{array}{c} 10.28 \\ \pm 4.52 \end{array}$	19.84 ±5.07	6.38 ±1.30	2.78 ±2.63
Chlordane	5.11 ±1.01	5.19 ±2.50	21.64 ±2.83	2.95 ±1.21	6.60 ±1.77	2.65 ±0.74	14.32 ±22.58
Dieldrin	$\begin{array}{c} 0.80 \\ \pm 0.12 \end{array}$	$\begin{array}{c} 0.73 \\ \pm 0.35 \end{array}$	2.34 ±0.36	$\begin{array}{c} 0.53 \\ \pm 0.13 \end{array}$	1.19 ± 0.33	$\begin{array}{c} 0.69 \\ \pm 0.17 \end{array}$	$\begin{array}{c} 0.28 \\ \pm 0.10 \end{array}$
Endrin	0.67 ± 0.19	$\begin{array}{c} 0.47 \\ \pm 0.04 \end{array}$	0.76 ±0.42	$\begin{array}{c} 0.51 \\ \pm 0.05 \end{array}$	$\begin{array}{c} 1.22 \\ \pm 0.90 \end{array}$	$\begin{array}{c} 1.56\\ \pm 1.44\end{array}$	$\begin{array}{c} 0.41 \\ \pm 0.07 \end{array}$
Acenaphthene	82.78 ±65.43	45.05 ±48.02	92.82 ±30.15	17.81 ±5.69	294.62 ±312.96	28.21 ±12.24	$\begin{array}{c} 10.57\\ \pm 4.38\end{array}$
Acenaphthylene	122.93 ±41.89	50.00 ±34.26	202.46 ±30.69	40.84 ± 14.13	381.64 ±195.75	95.05 ±40.25	16.86 ± 11.72
Anthracene	365.05 ±220.76	151.36 ±144.73	511.49 ±163.77	63.54 ±26.52	1335.14 ±1054.25	105.14 ± 45.35	26.86 ± 19.85
Benzo(a)anthracene	486.83 ±129.35	231.11 ±185.03	905.11 ± 199.37	141.74 ±50.53	1525.6 ±593.1	395.20 ±320.69	49.34 ±39.34
Benzo(a)pyrene	303.05 ±83.12	138.96 ±111.32	516.92 ±79.50	113.25 ±40.94	889.96 ±375.20	194.09 ±52.38	33.19 ±24.55
Benzo(k)fluoranthene	781.78 ±177.51	531.68 ±415.14	1669.94 ±264.54	294.28 ±99.79	2107.79 ±769.94	518.25 ±164.81	94.86 ± 68.05

Table E-1 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Benzo(g,h,i)perylene	302.69 ±72.98	186.48 ±173.51	579.08 ±101.00	112.75 ±41.96	849.14 ±315.35	173.15 ±67.70	30.65 ±19.81
Biphenyl	32.16 ±11.74	38.86 ±42.83	45.73 ±7.67	15.02 ±4.21	77.14 ±51.31	17.01 ±4.11	9.06 ± 3.10
Chrysene	544.76 ±145.85	313.48 ±271.91	1076.9 ±217.0	161.69 ±56.44	1653.2 ±664.7	311.20 ±123.95	51.54 ±41.17
Dibenz(a,h)anthracene	79.42 ±31.10	17.32 ± 6.72	146.12 ±25.41	26.66 ±9.59	247.84 ±146.29	34.93 ±10.65	13.00 ±8.15
2,6-Dimethylnaphthalene	198.15 ±57.34	582.37 ±382.91	181.20 ± 52.59	135.41 ±62.49	219.79 ±95.74	116.40 ± 34.59	17.25 ±11.02
Fluoranthene	743.25 ±278.61	568.79 ±481.83	1280.0 ±397.6	201.34 ±80.22	2308.0 ±1292.0	325.36 ±109.31	65.51 ±51.71
Fluorene	176.41 ±182.11	77.62 ±87.06	107.72 ±23.17	28.20 ±13.07	693.43 ± 873.05	37.15 ±13.42	12.32 ± 5.96
Ideno(1,2,3-c,d)pyrene	291.62 ±90.08	132.04 ±106.36	575.81 ±74.23	117.62 ± 42.01	806.89 ±409.94	195.27 ±60.61	35.54 ±27.73
2-Methylnaphthalene	89.91 ±42.02	95.08 ±122.30	114.36 ±21.63	33.04 ±13.05	253.21 ±189.86	43.72 ±12.86	14.33 ±7.65
1-Methylnaphthalene	46.37 ±24.30	59.61 ±81.69	47.24 ±6.97	$\begin{array}{c} 15.16\\ \pm 4.83\end{array}$	135.10 ±109.67	19.08 ±5.86	9.71 ±3.65
1-Methylphenanthrene	156.10 ±88.28	130.93 ± 187.12	150.03 ± 84.70	9.65 ±3.57	615.18 ±414.55	29.18 ±27.49	6.00 ± 0.00

Table E-1 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Naphthalene	163.96 ± 100.34	96.04 ±92.26	217.87 ±28.42	48.90 ±16.84	528.57 ±477.41	82.89 ±24.35	26.32 ±12.43
Perylene	333.54	113.98	608.35	127.84	975.43	169.73	37.83
	±113.69	±55.94	±173.42	±47.68	±523.23	±67.87	±43.06
Phenanthrene	628.06	363.98	417.30	116.85	2368.6	197.89	48.20
	±520.48	±412.31	±61.09	±45.44	±2489.5	±69.24	±35.82
Pyrene	767.60	508.73	1144.7	202.19	2491.0	364.17	69.63
	±269.73	±440.02	±288.8	±77.94	±1255.0	±141.09	±57.35
2,3,5-Trimethylnaphthalene	47.00	183.02	70.47	9.82	91.21	10.70	7.29
	±29.87	±287.39	±37.44	±2.60	±57.89	±3.60	±1.48
Total PAHs	7177.4	4838.5	11471	2179.2	22141	3749.7	730.0
	±2607.9	±4279.8	±1836.3	±723.5	±12165	±1310.2	±521.7
Monobutyltin	5.32	8.51	11.74	4.48	4.46	1.21	2.77
	±1.37	±5.13	±3.92	±1.93	±1.38	±0.24	±1.28
Dibutyltin	16.33 ± 6.04	11.25 ±6.78	38.95 ±22.07	15.45 ±9.06	14.39 ±5.02	2.45 ±0.46	6.08 ±3.33
Tributyltin	$\begin{array}{c} 30.08 \\ \pm 8.52 \end{array}$	38.64 ±19.50	69.31 ±23.39	24.07 ±11.77	32.50 ±16.17	23.98 ±8.02	19.54 ±9.35
Tetrabutyltin	$\begin{array}{c} 4.17\\ \pm 0.52\end{array}$	4.99 ±2.18	5.39 ±2.28	3.95 ±0.66	$\begin{array}{c} 4.11 \\ \pm 0.88 \end{array}$	3.75 ±0.40	3.61 ±0.45

Table E-2Percent of Area Exceeding Sediment Contaminant ERMs (Long & Morgan, 1991; Long et al., 1995a)values in parentheses represent 90% confidence intervals

	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
METALS							
Antimony	1 (-1-2)	0 (0-8)	12 (-8-32)	0 (0-8)	0 (0-8)	0 (0-8)	0 (0-8)
Arsenic	1 (-1-2)	0 (0-8)	12 (-8-32)	0 (0-8)	0 (0-8)	0 (0-8)	0 (0-8)
Cadmium	0-0)	0 (0-8)	2 (-1-4)	0 (0-8)	0 (0-8)	0 (0-8)	0 (0-8)
Chromium	0-0)	0 (0-8)	0-0)	0 (0-8)	0 (0-8)	0 (0-8)	0 (0-8)
Copper	3 (1-5)	4 (0-13)	32 (8-56)	0 (0-8)	4 (0-13)	0 (0-8)	7 (0-8)
Lead	4 (2-6)	4 (0-13)	35 (11-59)	0 (0-8)	7 (2-18)	0 (0-8)	0 (0-8)
Mercury	34 (24-44)	4 (0-13)	91 (82-99)	29 (17-42)	46 (33-60)	0 (0-8)	4 (0-13)
Nickel	4 (2-6)	4 (0-13)	52 (30-73)	0 (0-8)	4 (0-13)	0 (0-8)	0(0-8)
Silver	13 (6-20)	7 (2-18)	32 (8-56)	11 (4-22)	18 (9-31)	4 (0-13)	$\begin{pmatrix} 0\\ (0-8) \end{pmatrix}$

Table E-2 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Zinc	3	4	35	0	0	(8-0)	0
	(1-4)	(0-13)	(11-59)	(8-0)	(0-8)	0	(0-8)
ORGANICS							
Total PCBs	39	14	75	32	61	4	7
= (∑congeners) x 2	(35-43)	(3-25)	(51-93)	(18-46)	(46-76)	(0-10	(0-15)
Parent DDT	3	0	46	0	0	0	4
	(2-4)	(0-8)	(24-67)	(0-8)	(0-8)	(0-8)	(0-13)
Total DDD	12	0	73	7	14	0	4
	(6-18)	(0-8)	(52-94)	(2-18)	(6-27)	0	(0-13)
p,p'-DDE	3	0	51	0	0	0	0
	(2-5)	(0-8)	(29-73)	0	(0-8)	(0-8)	(0-8)
Total DDE	13	4	79	7	14	(8-0)	0
	(7-19)	(0-13)	(58-99)	(2-18)	(6-27)	0	0
Total DDT	8 (4-12)	0 (0-8)	65 (44-87)	4 (0-13)	7 (2-18)	(8-0) 0	0.
Chlordane	32	29	91	25	39	14	7
	(23-42)	(17-42)	(82-99)	(14-38)	(27-53)	(6-27)	(2-18)
Dieldrin	0-0)	0 (0-8)	(0-0) 0	0 (0-8)	0 (0-8)	(8-0) 0	(8-0) 0
Endrin	0-0)	0 (0-8)	0-0)	0 (0-8)	0 (0-8)	0-8)	(8-0) 0

Table E-2 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Acenaphthene	1	4	1	0	4	0	0
	(0-2)	(0-13)	(0-1)	(0-8)	(0-13)	(0-8)	(0-8)
Anthracene	6	4	12	0	21	0	0
	(3-9)	(0-13)	(-7-32)	(0-8)	(12-35)	(0-8)	(0-8)
Acenaphthylene	3	0	1	0	14	4	0
	(1-5)	(0-8)	(0-1)	(0-8)	(6-27)	(0-13)	(0-8)
Benzo(a)anthracene	7	4	10	0	29	4	0
	(4-10)	(0-13)	(0-20)	(0-8)	(17-42)	(0-13)	(0-8)
Benzo(a)pyrene	6	4	6	0	25	4	0
	(3-9)	(0-13)	(0-11)	(0-8)	(14-38)	(0-13)	(0-8)
Chrysene	4	4	1	0	18	0	0
	(2-7)	(0-13)	(0-1)	(0-8)	(9-31)	(0-8)	(0-8)
Dibenz(a,h)anthracene	5	0	3	0	21	0	0
	(2-7)	(0-8)	(0-6)	(0-8)	(12-35)	(0-8)	(0-8)
Fluoranthene	3	4	(0-0)	0	11	0	0
	(0-5)	(0-13)	0	(0-8)	(4-22)	(0-8)	(0-8)
Fluorene	2 (0-4)	4 (0-13)	1 (0-1)	0 (0-8)	7 (2-18)	0 (0-8)	0 (0-8)
2-Methylnaphthalene	1	4	1	0	4	0	0
	(0-2)	(0-13)	(0-1)	(0-8)	(0-13)	(0-8)	(0-8)
Naphthalene	1	0	0	0	4	0	0
	(0-2)	(0-8)	(0-8)	(0-8)	(0-13)	(0-8)	(0-8)

Table E-2 Continued.	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. Long Is. Sound	Bight Apex
Phenanthrene	6 (3-8)	4 (0-13)	1 (0-1)	0 (0-8)	25 (14-38)	0 (0-8)	0 (0-8)
Pyrene	6 (3-9)	4 (0-13)	7 (-2-17)	0 (0-8)	25 (14-38)	0 (0-8)	0 (0-8)
Low Molec. Wt. PAHs	9 (5-12)	0 (0-8)	4 (0-8)	0 (0-8)	39 (27-53)	4 (0-13)	0 (0-8)
High Molec. Wt. PAHs	12 (9-16)	4 (0-13)	46 (23-68)	0 (0-8)	43 (30-57)	7 (2-18)	0 (0-8)
Total PAHs	3 (0-5)	4 (0-13)	1 (0-1)	0 (0-8)	11 (4-22)	$\begin{pmatrix} 0\\ (0-8) \end{pmatrix}$	$\begin{array}{c} 0\\ (0-8)\end{array}$

Appendix F

Dioxin bioaccumulation calculation

Theoretical Bioaccumulation Potential (TBP) Calculation

Because the relative toxicity of congeners to humans may differ from toxicity to aquatic organisms, different toxicity equivalents have been defined for humans and for [aquatic] "ecological systems." Human toxicity equivalents are probably closer to those of other mammals and birds than the equivalents for aquatic organisms. Preliminary efforts to define toxicity equivalency factors for aquatic "ecological systems" are based solely upon laboratory mortalities of early life-stage fishes (U.S. EPA 1993; Cura, Heiger-Bernays and Bucholz 1995, p.2-11). These preliminary toxicity equivalency factors for aquatic ecosystems are so uncertain (indeed, completely unknown for several congeners) that they are not used here. Further, it is clear that fish-eating birds and mammals, including humans, are at much greater risk from dioxins/furans than the benthos (U.S. EPA 1993; Cura, Heiger-Bernays and Bucholz 1995). Consequently this investigation attempts to estimate dioxin/furan concentrations in sediments which would not be a risk to humans or fish-eating wildlife.

Measured concentrations of 2,3,7,8-TCDD and the "human health toxicity equivalents" of all dioxin/furan congeners - expressed as weighted additive equivalents - are summarized in Table 4.3.1. The biotic effects of 2,3,7,8-TCDD alone are not interpretable. Concentrations of this single isomer are shown only because they are comparable to commonly reported 2,3,7,8-TCDD values.

We attempt to estimate a "safe" concentration of dioxins/furans (expressed as human health toxicity equivalents) in sediments, based upon a presumably protective range of concentrations in fishes, and an estimated relationship between sediment and fish concentrations. First, we specify dioxins/furans concentrations in fishes that seem to pose low and high risks to humans and wildlife. The range of 0.7 to 7 pptr dioxins/furans in fishes is presumed to embrace low to high risks for piscivorous mammals - probably the organisms at greatest potential risk (U.S. EPA 1993, Table E-1). Following the NYS Department of Health, we presume that 10 pptr in fishes protects against effects of dioxins/furans in adult humans unless exceptionally large quantities of fishes are eaten. Thus we consider a protective range for mammalian wildlife of one pptr (low risk) to 7 pptr mean fish concentration (high risk), and presume that 7 pptr is also a low risk to most adult humans.

We then work down the food web from fishes to estimate a "safe" range of dioxins/furans in sediments. Wide ranges have been measured for dioxin/furan biomagnification from benthic invertebrates to fishes. We use an intermediate value of two (U.S. EPA 1993; Cura, Heiger-Bernays and Buckolz 1995). Thus, our "high risk" concentration of 7 pptr in fishes would result from 7/2 = 3.5 pptr in the benthos. Dioxin/furan concentrations in the benthos are estimated from: (1) the "accumulation factor" of dioxin/furan transfer from sediment to benthos, (2) dioxin/furan concentration in sediment, (3) lipid content of the benthos, and (4) fraction of organic carbon in the sediments. This relationship has been expressed as an estimator of "theoretical bioaccumulation potential" (TBP) of benthic infaunal organisms (U.S. EPA 1993):

 $TBP = AF(C_{s}@L)/\% TOC$

where: TBP = 2,3,7,8-TCDD human health equivalents in benthic tissue (pptr, wet wt), AF = accumulation factor, or dioxin/furan concentration in benthos as fraction of concentration

in sediment,

 $C_s = dioxin/furan$ concentration in sediments,

%L = percent lipid in fishes, and

%TOC = percent total organic carbon in sediments.

In our "high risk" case, TBP=3.5 pptr. Measured accumulation of 2,3,7,8-TCDD and 2,3,7,8-TCDF from sediments to marine invertebrates has ranged from 0.24 to 1.0 times the sediment concentration (Pruell et al. 1993). We assume an intermediate sediment to polychaete "accumulation factor" (AF) of 0.5. Percentages of lipid in the benthos are typically near 1%, and 3% total organic carbon is common in Harbor sediments.

Using these assumed and typical values, we can solve for a range of presumably safe, but mammalian wildlife "high risk" dioxin/furan concentrations in sediments:

3.5 pptr = $0.5(C_s@01)/.03$ $C_s = 21$ pptr.

Similarly, our estimate of "low risk" concentration in the benthos (TBP) is half the low risk protective concentration in fishes (1/2=0.5 pptr). So, low risk sediment concentrations are:

0.5 pptr = $0.5(C_s@01)/.03$ $C_s = 3.$

As mentioned above, we presume that even the high risk sediment concentrations (21 pptr) pose low risks for most adult humans. Hence these sediment concentrations apply to piscivorous birds and mammals. Several major uncertainties are inescapable in estimating these presumably "high" and "low" risk sediment concentrations for wildlife. Some uncertainties are so great that we can not even rank their severity. One obvious uncertainty is variability in wildlife exposures to dioxins/furans, and assimilation efficiencies, from foods, sediments and water. This obviously varies with the top carnivore involved, food available to the carnivore, differential bioaccumulation in the food web, etc. (U.S. EPA 1993). Also, dose-response relationships such as the above equation for theoretical bioaccumulation potential have little empirical support from few environments. Even if the TBP equation is robust, all the predictor variables are spatially heterogeneous, probably ensuring imprecise estimates of mean dioxin/furan concentrations in the benthos even if field measurements were extensive. Further, there are few direct measurements of variability in the most important variables, e.g., concentrations of dioxins/furans in commercial and recreational fishes. Hence, there is little basis for estimating the distributions of these variables.

Appendix G

Area-weighted mean abundances of all benthic macroinvertebrate species (mean #/.04 m²)

					:		
on Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Karıtan Bay	Upper Harbor	Jamauca Bay
thozoa	Anthozoa	0.3214	0.0179	0.2857	0.0517	4.5714	0.0000
thozoa	Ceriantheopsis americanus	4.3393	0.1429	0.0000	0.3276	0.0357	0.0000
es: Turbellaria	Turbellaria	0.0000	0.3571	0.3571	1.2931	0.2679	6.6071
	Malacobdella grossa	0.000	0.0179	0.0000	0.0000	0.0000	0.0000
	Nemertinea	4.1964	7.6250	1.4107	0.6379	1.3571	0.1786
lychaeta	Aglaophamus circinata	0.3036	0.000	0.0000	0.0000	0.0000	0.0000
lychaeta	Amastigos caperatus	0.5179	0.0000	0.0000	0.0517	0.0000	0.0000
ychaeta	Ampharete arctica	0.6607	0.3750	0.0000	0.0172	0.3036	0.0000
lychaeta	Ampharetidae	103.2321	0.2679	1.0179	0.8621	2.0714	0.1964
lychaeta	Ancistrosyllis hartmanae	0.0357	0.3393	0.0000	0.0000	0.0179	0.0000
lychaeta	Anobothrus gracilis	0.0536	0.000	0.000	0.0000	0.0000	0.0000
lychaeta	Aphelochaeta spp.	12.8036	0.1429	0.0000	0.0000	0.0000	0.0000
lychaeta	Aphrodita hastata	0.0179	0.000	0.0000	0.0000	0.0000	0.0000
lychaeta	Apoprionospio pygmaea	0.0357	0.0000	0.000	0.0000	0.0000	0.000
lychaeta	Aricidea catherinae	21.8393	1.1071	0.0000	29.5690	2.1071	2.1071
lychaeta	Aricidea cerrutti	0.0714	0.0000	0.0000	0.0000	0.0000	0.0000
olychaeta	Aricidea spp.	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
lychaeta	Aricidea wassi	2.3571	0.0000	0.0000	0.0000	0.0000	0.0000
olychaeta	Asabellides oculata	11 0/36		100			-

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Autolytus spp.	0.0000	0.0000	0.000	0.0000	0.0000	0.0179
Annelida : Polychaeta	Brada villosa	0.0357	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Brania clavata	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Brania spp.	0.0000	0.0000	0.0000	0.0172	0.0000	0.0000
Annelida : Polychaeta	Brania weltficctensis	0.0000	0.0357	0.0000	0.3793	0.0000	0.0000
Annelida : Polychaeta	Capitella spp.	0.5536	0.0714	0.2321	0.0000	0.0000	7.1964
Annelida : Polychaeta	Capitellidae	0.0714	0.0000	0.0179	0.3448	0.0179	0.0000
Annelida : Polychaeta	Carazziella hobsonae	0.0000	0.0179	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Caulleriella sp. B Blake	3.6607	0.0179	0.0000	3.8966	0.0179	13.5536
Annelida : Polychaeta	Chaetopterus variopedatus	0.000	0.0179	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Chone infundibuliformis	1.5179	0.0000	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Cirratulidae	8.8036	0.4643	0.000	0.0345	0.0000	5.2500
Annelida : Polychaeta	Cirriformia grandis	0.000	0.0000	0.000	0.0172	1.5714	0.0357
Annelida : Polychaeta	Cirrophorus sp. A Morris	0.000	0.0357	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Clymenella torquata	2.6964	0.0000	0.000	0.0000	0.000	0.0000
Annelida : Polychaeta	Cossura longocirrata	10.4464	10.8393	0.0000	0.0000	0.0179	0.0179
Annelida : Polychaeta	Demonax microphthalmus	0.0000	0.0714	0.0000	0.0345	0.3036	0.0714
Annelida : Polychaeta	Diopatra cuprea	0.0000	0.0000	0.0000	0.0345	0.0000	0.0000
Annelida : Polychaeta	Dispio uncinata	0.0000	0.000	0.0000	0.0172	0.0000	0.0000
							i

,

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Dodecaceria fimbriata	0.000.0	0.1071	0.0000	0.0000	0.0714	0.0000
Annelida : Polychaeta	Dorvillea rudolphi	0.0000	0.0000	0.0000	0.0000	0.0536	0.0714
Annelida : Polychaeta	Dorvilleidae sp. A Hilbig	0.0357	0.2679	0.0000	0.0517	0.0000	0.0000
Annelida : Połychaeta	Dritonereis longa	0.3571	0.0000	0.0000	0.1379	0.0000	0.0000
Annelida : Polychaeta	Euchone elegans	0.1250	0.000	0.0000	0.000	0.000	0.0000
Annelida : Polychaeta	Euchone incolor	14.7143	0.0000	0.0000	0.000	0.0000	0.0000
Annelida : Polychaeta	Euchone spp.	0.1964	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Eumida sanguinea	0.3571	0.5179	0.1071	4.1724	4.6071	5.0536
Annelida : Polychaeta	Exogone dispar	0.0893	0.0357	0.000	1.2931	0.0000	14.3750
Annelida : Polychaeta	Exogone hebes	9.1607	0.000	0.0179	0.000	0.0000	0.0000
Annelida : Polychaeta	Exogone spp.	0.0357	0.0179	0.0000	0.0345	0.000	0.0536
Annelida : Polychaeta	Exogone verugera	0.0714	0.000	0.0000	0.000	0.000	0.0000
Annelida : Polychaeta	Flabelligeridae	3.5893	0.0179	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Glycera americana	0.0000	0.3393	0.1607	1.6034	0.7857	0.1429
Annelida : Polychaeta	Glycera dibranchiata	0.6964	0.0714	0.0000	0.5345	0.0000	0.3571
Annelida : Polychaeta	Glycera spp.	0.3929	0.6607	1.7143	0.8966	1.1250	0.6071
Annelida : Polychaeta	Goniada maculata	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Goniadella gracilis	2.2679	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Goniadidae	0.1607	0.0000	0.000	0.0000	0.000	0.0000

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Harmothoe extenuata	0.0000	0.0000	0.0000	0.1034	0.7143	0.0536
Annelida : Potychaeta	Harmothoe imbricata	0.0000	0.0000	0.0000	0.0172	0.2679	0.1964
Annelida : Polychaeta	Hemipodus roseus	0.0714	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Hesionidae	0.0000	0.0000	0.0000	0.0172	0.0000	0.0536
Annelida : Polychaeta	Heteromastus filiformis	0.0000	0.0179	6.8571	30.5517	7.8036	0.5357
Annelida : Polychaeta	Hobsonia florida	0.0000	0.0000	0.0179	0.000	0.0000	0.0000
Annelida : Polychaeta	Hydroides dianthus	0.0000	0.0536	0.0000	0.000	0.0000	14.1786
Annelida : Polychaeta	Hydroides protulicola	0.0000	0.0000	0.0000	0.0000	0.0000	0.0357
Annelida : Polychaeta	Hydroides spp.	0.0000	0.0179	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Hypereteone foliosa	0.0893	0.0000	0.0893	0.0690	0.0000	0.0000
Annelida : Polychaeta	Hypereteone heteropoda	0.0000	0.5179	3.2500	10.9138	2.9821	7.0357
Annelida : Polychaeta	Hypereteone longa	0.0357	0.0000	0.000	0.0000	0.0000	0.000
Annelida : Polychaeta	Laconereis culveri	0.0000	0.0000	2.5357	0.0000	0.0000	0.0000
Annelida : Polychaeta	Laonice spp.	0.0357	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Leitoscoloplos robustus	0.3036	0.3571	23.9286	1.4483	5.4464	0.5357
Annelida : Polychaeta	Leitoscoloplos spp.	0.4107	1.9643	10.3214	2.8793	7.3929	1.8929
Annelida : Polychaeta	Lepidonotus spp.	0.0000	0.0179	0.0000	0.0690	0.1786	0.0000
Annelida : Polychaeta	Lepidonotus squamatus	0.0000	0.0000	0.0000	0.0000	0.0179	0.0000
Annelida : Polychaeta	Lepidonotus sublevis	0.0000	0.0179	0.0000	0.0517	0.0000	0.0179

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Levinsenia gracilis	18.5893	0.0179	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Loimia medusa	0.0000	0.0536	0.000	0.0000	0.0000	0.000
Annelida : Polychacta	Lumbrineridae	14.9107	0.2143	0.0000	0.000	0.0000	0.0357
Annelida : Polychaeta	Lumbrinerides acuta	0.6607	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Lumbrinerides spp.	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Macroclymene zonalis	0.0179	1.9464	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Magelona spp.	1.3571	0.0000	0.000	0.000	0.0000	0.000
Annelida : Polychaeta	Maldanidae	1.8929	4.7500	0.0000	0.0172	0.0000	0.0000
Annelida : Polychaeta	Marenzelleria viridis	0.000	0.0000	1.2143	0.0690	0.1607	0.0000
Annelida : Polychaeta	Marphysa belli	0.0179	0.0000	0.0000	0.0000	0.000	0.0000
Annelida : Polychaeta	Mediomastus ambiseta	5.1250	131.5000	13.7321	511.4483	97.9643	79.1071
Annelida : Polychaeta	Mediomastus spp.	0.0000	0.0000	0.000	0.0000	0.000	0.0536
Annelida : Polychaeta	Microphthalmus aberrans	0.0000	0.0000	0.0000	0.0000	0.000	0.0179
Annelida : Polychaeta	Microphthalmus fragilis	0.4107	0.0000	0.0000	0.000	0.0179	0.0000
Annelida : Polychaeta	Microphthalmus sczelkowii	0.1786	0.0536	0.7679	0.2414	0.2321	0.0000
Annelida : Polychaeta	Microphthalmus similis	3.6071	0.0000	0.000	0.0000	0.2500	0.1429
Annelida : Polychaeta	Microphthalmus spp.	0.0000	0.0000	0.0000	0.0172	0.000	0.0000
Annelida : Polychaeta	Monticellina baptisteae	5.4286	0.0536	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Neanthes arenaceodentata	0.0000	0.000	0.0000	0.0345	0.1429	5.8929

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Neanthes succinea	0.0179	3.1964	0.3393	0.9310	4.2143	2.0000
Annelida : Polychaeta	Neanthes virens	0.0000	0.0000	0.0000	0.0000	0.2857	0.0000
Annelida : Polychaeta	Nephtyidae	4.7500	2.3214	0.0179	0.0690	0.1250	0.0714
Annelida : Polychaeta	Nephtys bucera	0.0714	0.0000	0.0000	0.0172	0.0000	0.000
Annelida : Polychaeta	Nephtys incisa	1.5179	4.0714	0.0357	0.0345	0.0714	0.0000
Annelida : Polychaeta	Nephtys picta	0.8929	0.1429	0.000	1.0517	0.5000	0.4821
Annelida : Polychaeta	Nephtys spp.	0.0000	0.0179	0.000	0:0000	0.0000	0.0000
Annelida : Polychaeta	Nereididae	0.0714	0.0179	0.0536	0690.0	1.4107	0.3750
Annelida : Polychaeta	Nereis grayi	0.0536	0.000	0.0000	0:0000	0.0000	0.0000
Annelida : Polychaeta	Nicolea zostericola	0.0179	0.0000	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Ninoe nigripes	2.8393	0.0000	0.000	0.0000	0.0000	0.000
Annelida : Polychaeta	Notocirrus spiniferus	0.0000	0.0000	0.000	0:0000	0.0000	0.0179
Annelida : Polychaeta	Notomastus spp.	0.0357	0.0000	0.0000	0.0000	0.000	0.0000
Annelida : Polychaeta	Odontosyllis fulgurans	0.0000	0.0179	0.000	0.0000	0.0179	0.0000
Annelida : Polychaeta	Onuphidae	0.0179	0.0000	0.000	0.0000	0.0000	0.0000
Amelida : Polychaeta	Opheliidae	0.0179	0.000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Ophelina acuminata	0.0714	0.0000	0.0000	0.0000	0.000	0.0000
Annelida : Polychaeta	Owenia fusiformis	0.0536	4.1964	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Oweniidae	0.0000	0.4643	0.000	0.000	0.0000	0.0000
		• •					

.

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newartk Bay	Rarritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Paradoneis sp. A Morris	0.0179	0.000	0.000	0.0000	0.0000	0.000
Annelida : Polychaeta	Paradoneis sp. B Morris	1.3929	0.000	0.0000	0.0000	0.0000	0.000
Annelida : Polychaeta	Parahesione luteola	0.000	0.000	0.0000	0.0000	0.0000	0.0179
Annelida : Polychaeta	Paranaitis speciosa	0.0536	0.0357	0.0179	0.3793	0.2143	0.0179
Annelida : Polychaeta	Paraonis fulgens	0.0536	0.000	0.0000	0.0690	0.0000	0.0000
Annelida : Polychaeta	Paraonis pygoenigmatica	0.4286	0.0000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Parapionosyllis longicirrata	0.4643	0.0357	0.000	0.0690	0.0000	0.0000
Annelida : Polychaeta	Parougia cacca	3.9286	0.0179	0.0179	0.000	0.0000	0.0000
Annelida : Polychaeta	Pectinaria gouldii	0.0357	4.7321	0.7500	2.3793	2.5000	2.1964
Annelida : Polychaeta	Pectinaria spp.	00000	0.000	0.3214	0.0000	0.0000	0.0000
Annelida : Polychaeta	Pherusa affinis	1.5893	0.7857	0.0000	0.0517	0.0179	0.0357
Annelida : Polychaeta	Pherusa spp.	0.0536	0.000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Pholoe minuta	0.1429	0.1964	0.000	0.0000	0.0179	0.0000
Annelida : Polychaeta	Phyliodoce arenae	0.3750	0.0714	0.0536	0.2414	0.1250	0.1786
Annelida : Polychaeta	Phyllodoce mucosa	0.5357	0.0357	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Pilargidae	0.0000	0.0000	0.000	0.0000	0.0179	0.0000
Annelida : Polychaeta	Pisione remota	0.1607	0.0000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Podarke obscura	0.000	0.0536	0.0000	0.0000	0.4643	10.0000
Annelida : Polychaeta	Podarkeopsis levifuscina	0.0000	0.0536	0.1071	3.0862	0.1786	0.8571

Jamaica Bay	0.0179	0.0000	0.5179	0.0000	0.0000	19.2500	0.0000	0.0179	2.8571	0.3571	0.0000	0.0179	0.0000	0.0000	0.0000	0.1071	0.1250	0.0000	0.0000
Upper Harbor	0.0000	0.0000	0.5714	0.0000	0.0000	15.5893	0.0179	0.1429	0.0179	0.0179	0.8571	0.9464	0.0000	0.0000	0.0000	0.0536	0.0714	0.0000	0.0000
Raritan Bay	0.0000	0.0000	0.3103	0.000	0.0000	31.5517	0.1207	0.2069	0.1207	0.6379	0.2759	0.0862	0.0000	0.0000	0.0000	0.0000	0.1207	0.1897	0.0345
Newark Bay	0.000	0.0000	0.0000	0.0000	0.000	3.2143	0.0000	0.000	0.0536	0.0000	0.5893	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.3929	0.000
West. Long Island Sound	0.000	0.7500	2.7143	0.0357	0.000	1.9286	0.000	0.0893	0.0536	0.0000	7.2321	0.1786	0.0000	0.0357	1.0714	0.1250	0.0357	0.0000	0.2143
Bight Apex	0.000	0.0000	0.6429	0.0000	0.6607	0.1250	0.6250	3.6250	0.0714	0.000	551.8929	0.1071	0.0893	0.000	222.5893	0.0000	0.0000	0.0000	0.000
Taxon Name	Polychaeta: Unidentified	Polycirrus eximius	Polycirtus spp.	Polydora aggregata	Polydora caulleryi	Polydora cornuta	Polydora quadrilobata	Polydora socialis	Polydora spp.	Polydora websteri	Polygordius spp.	Polynoidae	Praxillura ornata	Priotospio spp.	Prionospio steenstrupi	Proceraea comuta	Pseudopotamilla reniformis	Pygospio elegans	Sabaco elongatus
Taxon Group	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta	Annelida : Polychaeta

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Sabellaria vulgaris	0.0536	0.7679	0.4821	2.8276	18.2143	39.1607
Annelida : Polychaeta	Sabellariidae	0.0000	0.0357	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Sabellidae	0.4107	0.0714	0.0000	0.0517	0.8750	0.5357
Annelida : Polychaeta	Scalibregma inflatum	4.8393	0.0893	0.000	0.0172	0.0000	0.0000
Annelida : Polychaeta	Scolelepis bousfieldi	0.0000	0.0893	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Scolelepis spp.	0.0000	0.0179	0.0000	0.1034	0.000	0.0357
Annelida : Polychaeta	Scolelepis squamata	0.7143	0.000	0.0000	0.000	0.0000	0.0000
Annelida : Polychaeta	Scolelepis texana	0.000	0.000	0.0179	0.1379	0.0000	0.4286
Annelida : Polychaeta	Scoletoma acicularum	0.2500	0.0714	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Scoletoma hebes	3.4286	0.0000	0.000	0.000	0.0000	0.0000
Annelida : Polychaeta	Scoletoma tenuis	0.0000	0.0179	0.000	0.000	0.000	0.0357
Annelida : Polychaeta	Scolopios rubra	0.0000	0.0357	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Scolopios spp.	0.0893	0.000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Sigalion arenicola	0.0536	0.0000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Sigalionidae	0.0357	0.0000	0.0000	0.0000	0.0536	0.0000
Annelida : Polychaeta	Sigambra tentaculata	0.0000	1.6607	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Sphaerosyllis spp.	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Spio filicomis	0.9821	0.0000	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Spio setosa	1.2679	0.0000	2.2143	4.1897	7.8571	1.2321

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Annelida : Polychaeta	Spio spp.	0.0357	0.000	0.000	0.1207	0.0000	0.000
Annelida : Polychaeta	Spiochaetopterus costarum	0.0536	0.5357	0.0179	0.5345	0.2321	0.1250
Annelida : Polychaeta	Spionidae	0.0000	0.0179	0.000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Spiophanes bombyx	7.6607	0.4286	0.0000	0.8966	0.4286	0.0357
Annelida : Polychaeta	Sthenelais boa	0.0000	0.0714	0.0000	0.0000	0.1250	0.0000
Annelida : Polychaeta	Sthenelais limicola	0.0893	0.000	0.0000	0.0000	0.0000	0.0000
Annelida : Polychaeta	Sthenelais spp.	1.8214	0.0179	0.000	0.0000	0.0357	0.0000
Annelida : Polychaeta	Streblospio benedicti	0.0893	36.3750	309.8393	262.7586	148.6786	339.9464
Annelida : Polychaeta	Streptosyllis pettiboneae	0.3750	0.000	0.0536	0.1724	0.0357	0.0536
Annelida : Polychaeta	Syllidae	0.2500	0.000	0.000	0.0000	0.0000	0.1071
Annelida : Polychaeta	Syllides convoluta	1.3929	0.000	0.0000	0.0000	0.0000	0.0179
Annelida : Polychaeta	Syllides verrilli	0.0893	0.0000	0.0000	0.0000	0.0000	0.0714
Annelida : Polychaeta	Terebellides stroemi	0.2143	0.000	0.0000	0.000	0.0000	0.0000
Annelida : Polychaeta	Tharyx acutus	6.0179	0.1429	0.0000	0.000	0.0000	0.0179
Annelida : Polychaeta	Tharyx sp. A Morris	17.4464	2.2679	8.3214	25.8621	26.5357	14.7679
Annelida : Polychaeta	Travisia sp. A Morris	0.3393	0.0000	0.0000	0.0345	0.0000	0.0000
Annelida : Polychaeta	Typosyllis alternata	0.0357	0.0000	0.000	0.000	0.0000	0.2857
Annelida : Oligochaeta	Oligochaeta	38.7500	27.5179	50.8036	71.9483	137.8571	48.5357
Mollusca : Gastropoda	Acteocina canaliculata	0.0179	4.9107	0.0000	0.1034	0.0179	0.0000

•

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Mollusca : Gastropoda	Alvania spp.	0.0179	0.000	0.0000	0.0000	0.0000	0.000
Molfusca : Gastropoda	Boonea bisuturalis	0.0000	0.0179	0.0357	1.3448	0.1964	5.4107
Moliusca : Gastropoda	Buccinidae	0.0000	0.000	0.0000	0.0172	0.0000	0.0000
Mollusca : Gastropoda	Colus pygmæeus	0.1250	0.000	0.0000	0.0000	0.0000	0.0000
Mollusca : Gastropoda	Cratena pilata	0.000	0.1429	0.0000	0.0000	0.000	0.0000
Mollusca : Gastropoda	Crepidula convexa	0.0000	0.0893	0.0000	0.000	0.4464	0.0000
Mollusca : Gastropoda	Crepidula fornicata	0.000	0.0000	0.000	1.5517	0.5893	2.7143
Mollusca : Gastropoda	Crepidula maculosa	0.0000	0.0357	0.0000	2.7241	0.0000	2.6786
Mollusca : Gastropoda	Crepidula plana	0.0357	0.0179	0.0000	0.9828	0.1607	0.0000
Mollusca : Gastropoda	Crepidula spp.	0.5536	0.5179	0.0357	1.7414	1.1071	2.6786
Mollusca : Gastropoda	Cylichnella bidentata	0.000	0.0536	0.0179	0.0000	0.0000	0.0000
Mollusca : Gastropoda	Doridella obscura	0.0000	0.0357	0.0357	0.0690	0.0714	0.1250
Mollusca : Gastropoda	Epitonium rupicola	0.0000	0.0000	0.0357	0.0000	0.0000	0.0000
Mollusca : Gastropoda	Eupleura caudata	0.0000	0.0000	0.0000	0.1034	0.0000	0.0179
Mollusca : Gastropoda	Gastropoda: Other	0.0179	0.0357	0.1071	0.3621	0.1071	0.0714
Mollusca : Gastropoda	Hamincea solitaria	0.0000	1.4286	4.0536	0.0000	0.000	0.0000
Mollusca : Gastropoda	Hydrobia spp.	0.0000	0.000	0.0536	0.0000	0.0000	0.0000
Mollusca : Gastropoda	Ilyanassa obsoleta	0.0000	0.0714	0.2857	2.1207	0.0357	12.6786
Mollusca : Gastropoda	Municidae	0.0000	0.0000	0.0000	0.0172	0.0000	0.0179

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay	
Mollusca : Gastropoda	Nassarius trivittatus	0.2500	16.9643	0.0357	10.9655	1.4821	0.0536	
Mollusca : Gastropoda	Nassarius vibex	0.0000	0.0000	0.1964	0.0690	0.0000	0.0714	
Mollusca : Gastropoda	Nudibranchia	0.0000	0.0000	0.0000	0.0000	0.0000	0.0714	
Mollusca : Gastropoda	Odostomia engonia	0.0000	0.000	0.8214	0.000	0.0179	0.0000	
Mollusca : Gastropoda	Odostomia spp.	0.0000	2.1429	1.1607	3.8276	1.8393	0.2321	
Mollusca : Gastropoda	Polinices duplicata	0.0179	0.000	0.0000	0.0000	0.0000	0.0000	
Mollusca : Gastropoda	Pyramidellidae	0.0179	0.000	0.0000	0.0000	0.0357	0.0179	
Mollusca : Gastropoda	Rictaxis punctostriatus	0.0357	13.0357	2.3571	5.9828	2.2500	1.2321	
Mollusca : Gastropoda	Turbonilla interrupta	0.0179	4.0893	0.0000	0.1379	0.0000	0.0000	
Mollusca : Gastropoda	Turbonilla spp.	0.000	0.0357	0.0000	0.0172	0.0000	0.0000	
Mollusca : Gastropoda	Urosalpinx cinerea	0.000	0.000	0.0000	0.0345	0.0000	0.0000	
Mollusca : Bivalvia	Aligena elevata	0.0357	0.0000	0.0000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Anadara transversa	0.0000	0.2679	0.000	0.0172	0.0000	0.1250	
Mollusca : Bivalvia	Anomia simplex	0.0000	0.0536	0.000	0.0000	0.0179	0.0000	
Mollusca : Bivalvia	Anomia spp.	0.000	0.0357	0.000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Astarte castanea	0.0357	0.1429	0.0000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Astarte spp.	0.1250	0.0000	0.0000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Astarte undata	0.3929	0.0714	0.0000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Asthenothaerus hemphilli	0.4286	0.0000	0.0000	0.0000	0.0000	0.0000	
Taxon Group	Taxon Name	Bight	West, Long	Newark	Raritan	Unner	Iemeire	1
----------------------	-----------------------	----------	---------------	--------	---------	--------	---------	---
Mollusca : Bivalvia	Bivalvia-Other C.		PUTIOS DURIST	Bay	Bay	Harbor	Bay	
-	Feeders	0.1429	0.0357	0.0179	0.0862	0.0714	0.1250	
Mollusca : Bivalvia	Bivalvia: Other -	0.2857						
Malla	Undentified			6/10.0	0.0517	0.0000	0.0000	
MOUUSCa : BIValvia	Bushia elegans	0.0170	0,000					
Moliusca : Bivalvia	(enstrulerer		anno:	0.0000	0.0000	0.0000	0.0000	
Mallinee B: • ·		0.4821	0.0000	0.0000				
MULLINCE : BIVALVIA	Crassostrea virginica	0.000			0000-0	0.000	0.0000	_
Mollusca : Bivalvia	Crenella decussata	Banio	00000	0.0000	0.0000	0.0357	0.0000	_
Mollusca : Bivalvia	Creation - 1	0.0357	0.0000	0.0000	0.0000	0.0000	0	
Mollusca - Rivelvice	CICHCIA GIANOULA	0.0357	0.0000	0.0000	0.0000	5050		
HAIDAIG .	Crenella spp.	0.0170					0.0000	
Mollusca : Bivalvia	Cyclocardia hornealie		0,000	0.0000	0.0000	0.0000	0.0000	
Mollusca : Bivalvia	Finsie direction	0.0536	0.0000	0.0000	0.0000	0.0000	0.00	
Mollineva - Dimera -	Smooth	0.2857	0.1071	0.2143	3 4665			
BIAIRAIG · BORNAL	Gemma gemma	C 71 4 3			Cront-1	100.0	0.0536	
Mollusca : Bivalvia	Lvonsia arenves	C#1/70	0.1071	0.0179	11.2414	1.1250	32.4286	
Mollusca : Bivalvia		0.0179	0.1250	0.0000	0.1379	0 0357		
Mollinera - Dirata :	Lyousia nyalina	0.0000	0.0000	0.0000	0.0517		Ren o	
BIVIEVIC . BOUND	Lyonsia spp.	0.1429	0 1607			0000.0	0.0000	
Mollusca : Bivalvia	Macoma balthica		1001.0	0.0179	0.4483	0.1429	0.0000	
Mollusca : Bivalvia	Macoma tento	0.000	0.0000	0.9464	0.0172	0.2500	0.00	
Mollusca : Bivalvia	Merromotio	0.0000	11.9107	0.0000	0.0000	0.0000		
Mollusca : Bivalvia		0.0179	0.3036	0.0000	1.7069	0.0536		
	muunia lateralis	0.0179	128.1786	7.8214	7 8776		0,0,0	
					0170-1	1016.1	0000.	

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Mollusca : Bivalvia	Musculus niger	0.0536	0.0000	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Mya arenaria	0.000	0.0357	2.5714	67.6897	2.8929	0.4643
Mollusca : Bivalvia	Myseila planulata	0.000	0.0000	0.0000	0.0000	0.0000	0.3214
Mollusca : Bivalvia	Mytilid a e	0.0179	0.0179	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Mytilus edulis	0.0536	0.1071	0.0893	0.1379	46.4643	0.0000
Mollusca : Bivalvia	Nucula amulata	198.1786	179.9643	0.0179	62.6724	1.1250	8.7857
Mollusca : Bivalvia	Nucula delphinodonta	0.6250	0.0000	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Nucula spp.	1.5714	0.0000	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Pandora gouldiana	0.0000	0.3393	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Pandora spp.	0.0357	0.5893	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Parvilucina multilineata	0.0179	0.0000	0.0000	0.0000	0.0000	0.0000
Mollusca : Bivalvia	Petricola pholadiformis	0.0357	0.2143	0.0000	1.3621	0.0893	0.8214
Mollusca : Bivalvia	Pitar morrhuanus	0.3393	0.3750	0.0000	0.1552	0.0000	0.0000
Mollusca : Bivalvia	Spisula solidissima	6.1786	1.9464	0.0000	2.0517	0.0179	0.0000
Mollusca : Bivalvia	Tellina agilis	7.2857	12.8393	0.3036	8.4828	11.1071	2.3571
Mollusca : Bivalvia	Tellinidae	0.0000	0.0000	0.0000	0.0000	0.0179	0.0000
Mollusca : Bivalvia	Yoldia limatula	0.4643	22.6071	0.0000	0.0000	0.0179	0.0000
Arthropoda : Merostomata	Limulus polyphemus	0.0000	0.0000	0.0000	0.0000	0.0000	0.0179
Arthropoda : Cephalocarida	Hutchinsoniella macracantha	0.0179	0.1250	0.0000	0.0000	0.0000	0.0000

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Arthropoda : Cirripedia	Balanus improvisus	0.0000	0.0357	4.3750	0.0000	6.1607	0.0000
Arthropoda : Cirripedia	Balanus spp.	0.0000	0.2500	0.0179	0.1034	0.0357	0.0000
Arthropoda : Cirripodia	Balanus venustus	0.0000	0.0714	0.0000	0.0000	0.0000	0.0000
Arthropoda : Stomatopoda	Squilla empusa	0.0000	0.0179	0.000	0.0000	0.000	0.0000
Arthropoda : Mysidacea	Heteromysis formosa	0.0000	0.1964	0.000	0.9483	0.2321	0.2500
Arthropoda : Mysidacea	Neomysis americana	0.0357	0.0536	0.7321	0.3621	0.2143	0.1964
Arthropoda : Cumacea	Diastylis quadrispinosa	0.0179	0.000	0.000	0.0000	0.0000	0.0000
Arthropoda : Cumacea	Diastylis spp.	0.0536	0.000	0.000	0.000	0.000	0.0000
Arthropoda : Cumacea	Eudorella pusilla	0.5357	0.000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Cumacea	Leucon americanus	0.0000	0.7679	8.0536	0.0000	3.1071	0.0000
Arthropoda : Cumacea	Oxyurostylis smithi	0.1786	0.1250	0.2321	0.7759	0.2857	0.1071
Arthropoda : Cumacea	Pseudoleptocuma minor	0.1071	0.000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Tanaidacea	Tanaissus psammophilus	2.2143	0.0000	0.000	0.0862	0.0000	0.0000
Arthropoda : Isopoda	Anthuridae	0.0000	0.0000	0.0000	0.0172	0.0000	0.0000
Arthropoda : Isopoda	Chiridotea spp.	0.0536	0.0000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Isopoda	Cyathura burbancki	0.0000	0.0000	0.0179	0.4138	0.1786	0.0536
Arthropoda : Isopoda	Cyathura polita	0.0000	0.0000	0.9107	0.1207	0.3571	0.0000
Arthropoda : Isopoda	Edotea triloba	0.7321	0.1429	1.6786	2.1207	3.2143	0.0179
Arthropoda : Isopoda	Pleurogonium inerme	0.1071	0.0000	0.0000	0.0000	0.0000	0.0000

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Arthropoda : Isopoda	Pleurogonium spinosissmum	0.0179	0.000	0.000	0.000	0.0000	0.0000
Arthropoda : Isopoda	Politolana polita	0.0357	0.000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Isopoda	Ptilanthura tenuis	0.5179	0.000	0.0000	0.0000	0.0000	0.0000
Arthropoda: Amphipoda	Acanthohaustorius millsi	0.0536	0.000	0.000	0.0172	0.0000	0.0000
Arthropoda : Amphipoda	Acanthohaustorius similis	0.0357	0.0000	0.000	0.0345	0.0000	0.0000
Arthropoda : Amphipoda	Acanthohaustorius spp.	0.0536	0.0000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Aeginina longicornis	0.0179	0.000	0.000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Ampelisca abdita	0.0000	55.0357	0.3393	443.2414	1.0179	405.4464
Arthropoda : Amphipoda	Ampelisca abdita-vadorum complex	0.0536	97.4286	0.6071	596.7586	1.2857	606.4821
Arthropoda : Amphipoda	Ampelisca agassizi	11.9464	0.0000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Ampelisca spp.	1.3393	0.0000	0.0000	0.0000	0.0000	0.000
Arthropoda : Amphipoda	Ampelisca vadorum	0.0000	0.2143	0.0000	0.0000	0.0000	29.0179
Arthropoda : Amphipoda	Ampelisca verrilli	3.9286	0.5179	0.000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Ampithoe valida	0.0000	0.000	0.0000	0.0000	0.0893	0.0000
Arthropoda : Amphipoda	Ampithoidae	0.0000	0.0000	0.0000	0.0000	0.0179	0.0000
Arthropoda : Amphipoda	Aoridae	0.000	0.0000	0.000	0.0000	0.0000	0.0179
Arthropoda : Amphipoda	Argissa hamatipes	0.0714	0.000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Byblis serrata	0.0714	0.0000	0.000	0.0000	0.0000	0.0000

Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
prella penantis	0.0000	0.0179	0.0000	0.0000	0.6429	0.1071
prellidae	0.0000	0.0000	0.0000	0.0172	0.0000	0.0000
sco bigelowi	0.0893	0.0000	0.000	0.0000	0.000	0.0000
rapus tubularis	0.0000	0.0179	0.0000	0.0000	0.0000	0.0000
stophium acherusicum	0.000	0.0000	0.0000	0.0000	0.4821	0.0000
rophium bonellii	0.0000	0.0000	0.0000	0.0000	0.0179	0.0000
rophium crassicome	1.3214	0.0000	0.0000	0.0000	0.0000	0.0000
rophium insidiosum	0.0000	0.0000	0.0000	0.0000	0.6071	0.0000
rtophium spp.	0.0714	0.0000	0.0179	0.0345	0.7857	0.0536
srophium tuberculatum	0.0179	0.0000	0.000	283.0517	0.2143	220.8214
opedos monacanthus	0.4464	0.000	0.000	0.0000	0.0000	0.0000
asmopus laevis	0.0357	0.0000	0.000	6.6724	3.0000	94.4643
brolgus spinosus	0.0000	0.000	0.000	0.4483	9.0179	14.5714
icthonius brasiliensis	0.0000	0.0714	0.0179	0.2241	1.3393	0.9107
ummarus annulatus	0.1250	0.0000	0.0000	0.4828	0.0000	0.0714
ummarus daiberi	0.0000	0.0000	10.3750	0.0000	0.0000	0.0000
ummarus spp.	0.0714	0.0000	0.0000	0.1379	0.0000	0.0000
upinia propinqua	1.2143	0.0000	0.0000	0.0000	0.0000	0.0000
ppomedon serratus	0.0357	0.000	0.0000	0.0000	0.0000	0.0000
	· .					
	sco bigelowi apus tubularis rophium acherusicum rophium bonellii rophium bonellii rophium tuberculatum rophium tuberculatum rophium tuberculatum rophium tuberculatum rophium tuberculatum rophium spp. brolgus spinosus trhonius brasiliensis mmarus sannulatus mmarus spinosus rpinia propinqua	sco bigelowi0.0893apus tubularis0.0000apus tubularis0.0000ophium acherusicum0.0000ophium bonellii0.0000ophium insidiosum0.0000ophium insidiosum0.0179opedos monacanthus0.0179opedos monacanthus0.0357opedos monacanthus0.0357opedos monacanthus0.1250nmarus annulatus0.0000nmarus sannulatus0.0000nmarus sannulatus0.0000nmarus spp.0.0714opomedon serratus0.0357opomedon serratus0.0357	sco bigelowi0.0000sco bigelowi0.0000napus tubularis0.0000rophium acherusicum0.0000rophium bonellii0.0000rophium insidiosum0.0000rophium sidiosum0.0000rophium sidiosum0.0000rophium sidiosum0.0000rophium sidiosum0.0000rophium tuberculatum0.0179rophium sidiosum0.0000rophium tuberculatum0.0179rophium tuberculatum0.1714onolgus spinosus0.0000brolgus spinosus0.0000oninarus annulatus0.1250nmarus spinosus0.0000nmarus spp.0.0000opinia propinqua1.2143opomedon serratus0.0357opomedon serratus0.0357	control control control sepus tubularis 0.0000 0.0179 0.0000 apus tubularis 0.0000 0.0179 0.0000 ophium acherusicum 0.0000 0.0000 0.0000 ophium bonellii 0.0000 0.0000 0.0000 ophium bonellii 0.0000 0.0000 0.0000 ophium insidiosum 0.0000 0.0000 0.0000 ophium sign 0.0000 0.0000 0.0000 ophium sign 0.0179 0.0000 0.0000 ophium sign 0.0000 0.0000 0.0000	control control control control control sepus tubultaris 0.0893 0.0000 0.0000 0.0000 0.0000 repus tubultaris 0.0000 0.0000 0.0000 0.0000 0.0000 rophium scherusicum 0.0000 0.0000 0.0000 0.0000 0.0000 rophium bonellii 0.0000 0.0000 0.0000 0.0000 0.0000 rophium bonellii 0.0000 0.0000 0.0000 0.0000 0.0000 rophium insidiosum 0.0000 0.0000 0.0000 0.0000 0.0000 rophium tuberculatum 0.0119 0.0000 0.0000 0.0000 0.0000 ophium tuberculatum 0.0179 0.0000 0.0000 0.0000 <t< td=""><td>matrix 0.0000<</td></t<>	matrix 0.0000<

e

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Arthropoda : Amphipoda	Jassa marmorata	0.0000	0.0536	0.0000	0.0000	0.0179	0.0000
Arthropoda : Amphipoda	Leptocheirus pinguis	0.6607	0.0714	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Listriella clymenellae	0.0000	0.0179	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Luconacia incerta	0.0000	0.0536	0.000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Lysianopsis alba	0.0000	0.0000	0.0000	0.0172	1.1250	19.1964
Arthropoda: Amphipoda	Melita nitida	0.0000	0.000	0.3929	0.5862	2.8571	2.0536
Arthropoda : Amphipoda	Microdeutopus gryllotalpa	0.0000	0.3036	0.0000	0.0345	1.8393	263.1429
Arthropoda : Amphipoda	Microprotopus raneyi	0.0000	0.0179	0.0000	0.000	0.0000	0.0000
Arthropoda : Amphipoda	Monoculodes sp. 1 Watling	0.0000	0.000	0.0000	0.2759	0.2679	0.0000
Arthropoda: Amphipoda	Mucrogammarus mucronatus	0.0000	0.0000	0.0000	000010	0.3393	0.0000
Arthropoda : Amphipoda	Orchomenella minuta	0.0714	0.0000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Paracaprella tenuis	0.0000	0.0893	0.0536	0.4828	5.3750	0.5179
Arthropoda : Amphipoda	Parametopella cypris	0.0000	0.3929	0.000	0.0690	1.1786	0.000
Arthropoda : Amphipoda	Parapleustes aestuarius	0.0000	0.000	0.0000	0.000	0.0536	0.0000
Arthropoda : Amphipoda	Photis dentata	0.0714	0.000	0.0000	0.000	0.0000	0.0000
Arthropoda: Amphipoda	Photis pollex	1.2500	0.0000	0.000	0.000	0.0000	0.0000
Arthropoda : Amphipoda	Phoxocephalus holbolli	0.0357	1.6964	0.0000	0.3448	0.0714	0.0000
Arthropoda : Amphipoda	Protohaustorius cf. deichmannae	2.5714	0.000	0.0000	0.0000	0.0000	0.0000

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Arthropoda : Amphipoda	Protohaustorius wigleyi	0.0357	0.000	0.000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Pseudohaustorius borealis	0.0179	0.000	0.0000	0.0000	0.000	0.0000
Arthropoda : Amphipoda	Pseudunciola obliquua	6.1964	0.000	0.000	0.000	0.0000	0.0000
Arthropoda : Amphipoda	Rhepoxynius epistomus	0.0000	0.000	0.000	0.0172	0.0000	0.0000
Arthropoda : Amphipoda	Rhepoxynius hudsoni	2.7679	0.0000	0.000	1.2759	0.0179	0.0357
Arthropoda : Amphipoda	Stenothoe minuta	0.0357	0.000	0.000	0.0345	0.0179	0.0714
Arthropoda : Amphipoda	Synchelidium americanum	0.0179	0.0000	0.000	0.000	0.000	0.0000
Arthropoda : Amphipoda	Unciola dissimilis	0.0000	0.000	0.000	0.8793	0.0179	0.4107
Arthropoda : Amphipoda	Unciola inermis	0.2857	0.0000	0.0000	0.0000	0.0000	0.0000
Arthropoda : Amphipoda	Unciola irrorata	2.8750	0.3929	0.000	0.1552	0.000	0.0000
Arthropoda : Amphipoda	Unciola serrata	0.0000	0.0179	0.8750	1.3276	12.1071	0.8214
Arthropoda : Amphipoda	Unciola spp.	1.7857	0.4464	0.2321	2.1207	4.0893	0.9107
Arthropoda : Decapoda	Callinectes sapidus	0.0000	0.0000	0.0179	0.000	0.0000	0.0000
Arthropoda : Decapoda	Cancer irroratus	0.3214	0.1071	0.000	0.2586	0.1071	0.0179
Arthropoda : Decapoda	Caridea	0.0000	0.000	0.0000	0.0172	0.000	0.0000
Arthropoda : Decapoda	Crangon septemspinosa	0.3214	0.3393	0.2857	0.3793	0.5000	0.1786
Arthropoda : Decapoda	Dyspanopeus sayi	0.0000	0.0179	0.000	2.0690	0.2679	4.7143
Arthropoda : Decapoda	Hexapanopeus angustifrons	0.0000	0.0000	0.000	0.0172	0.0536	0.0000
Arthropoda : Decapoda	Libinia spp.	0.0000	0.0536	0.000	0.0172	0.0000	0.0357
		•					

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Arthropoda : Decapoda	Ovalipes ocellatus	0.000	0.0357	0.000	0.0862	0.0000	0.0536
Arthropoda : Decapoda	Pagurus longicarpus	0.0536	0.0714	0.000	0.7069	0.0357	0.2321
Arthropoda : Decapoda	Pagurus spp.	0.0536	0.0357	0.000	0.0172	0.1250	0.0357
Arthropoda : Decapoda	Palaemonetes intermedius	0.0000	0.000	0.0000	0.0000	0.0000	0.0179
Arthropoda : Decapoda	Paleomonetes vulgaris	0.0000	0.000	0.0000	0.0000	0.0000	0.3750
Arthropoda : Decapoda	Panopeus herbstii	0.0000	0.000	0.000	0.0000	0.1607	0.0000
Arthropoda : Decapoda	Pinnixa spp.	0.0000	0.0536	0.0000	0.0000	0.0000	0.0179
Arthropoda : Decapoda	Rhithropenopeus herrisii	0.000	0.000	1.1786	0.0000	0.7321	0.0000
Arthropoda : Decapoda	Upogebia affinis	0.000	0.0357	0.0000	0.0000	0.0000	0.0000
Arthropoda : Decapoda	Xanthidae	0.000	0.2500	0.0893	0.1897	0.2321	0.0536
Arthropoda : Chironomidae	Chironomidae	0.0000	0.000	0.0000	0.0000	0.0000	0.0179
Sipuncula	Sipuncula	0.1786	0.0000	0.0000	0.0000	0.0000	0.0000
Phoronida	Phoronis spp.	3.2679	5.0536	0.000	0.1207	0.0357	0.0000
Echinodermata : Asteroidea	Asteroidea	0.1429	0.0179	0.000	0.0862	0.0357	0.0000
Echinodermata : Echinoidea	Echinarachnius parma	0.4286	0.000	0.0000	0.0000	0.0000	0.0000
Echinodermata : Echinoidea	Echinoidea	10.1429	0.000	0.000	0.0000	0.0000	0.0000
Echinodermata: Holothuroidea	Havelockia scabra	0.0179	0.000	0.000	0.0000	0.0000	0.0000
Hemichordata	Saccoglossus kowalevskij	0.0714	0.1250	0.0000	0.0000	0.0000	0.0000
Chordata : Ascidiacea	Ascidiacea	0.0357	0.0000	0.0536	0.0345	0.6429	0.0000

Taxon Group	Taxon Name	Bight Apex	West. Long Island Sound	Newark Bay	Raritan Bay	Upper Harbor	Jamaica Bay
Chardeta · Acridianas	Malmila	0000					
		0.000	0.01/9	0.0893	0.0862	4.5357	0.0000

,

22\epa96\ny-nj\10720+

Appendix H

Clostridium perfringens results

Clostridium perfringens results

Concentrations of *Clostridium perfringens* spores have been used as an indicator of sewage contamination (Hill et al., 1993; O'Reilly et al., 1995). *C. perfringens* is a obligate anaerobe bacterium found in fecal material. It can survive extreme environmental conditions. This study evaluated the concentrations of the spores in Harbor sediments. The laboratory procedure was the membrane filter method of Emerson and Cabelli (1982). Mean concentrations of *C. perfringens* spores are expressed as confirmed counts per gram (wet weight) of sediment.

The Lower Harbor had the lowest mean spore count of the sub-basins in the Harbor (Table J-1). The other three sub-basins of the Harbor all had similar mean spore concentrations, although variability was high. The mean spore concentration in western Long Island Sound was an order of magnitude lower than the Harbor mean.

Table J-1
Area-weighted Mean Concentrations of C. perfringens
$(\pm \text{ represent } 90\% \text{ confidence intervals})$

	Harbor	Jamaica Bay	Newark Bay	Lower Harbor	Upper Harbor	W. LI. Sound	Bight Apex
Mean number of <i>C</i> . <i>perfringens</i> spores (# spores/g-wet weight)	2440 716	4171 5187	5977 3335	935 355	5156 2015	237 67	556 536

Background concentrations of *C. perfringens* in surficial sediments from the outer New York Bight continental shelf of Georges Bank are 10-20 spores/g (dry weight) (Cabelli and Pedersen, 1982). Mean concentrations in the Harbor, western Long Island Sound and the Bight Apex were significantly above background (even after converting from wet weight to dry weight).

Literature Cited

Cabelli, V.J., and D. Pedersen. 1982. The movement of sewage sludge from the New York Bight dumpsite as seen from *Clostridium perfringens* spore densities. *In* Oceans '82 conference record, p. 995-999. Inst. Electr. Electron. Eng., Piscataway, New Jersey.

Emerson, D.J., and V.J. Cabelli. 1982. Extraction of *Clostridium perfringens* spores from bottom sediment samples. *Appl. Environ. Microbiol.* **44**:1144-1149.

Hill, R.T., I.T. Knight, M.S. Anikis, and R.R. Colwell. 1993. Benthic distribution of sewage sludge indicated by *Clostridium perfringens* at a deep-ocean dump site. *Appl. Environ*.

Microbiol. **59**(1):47-51.

O'Reilly, J.E., I. Katz, and A.F.J. Draxler. 1995. Changes in the abundance and distribution of *Clostridium perfringens*, a microbial indicator, related to cessation of sewage sludge dumping in the New York Bight, p. 113-132. *In* U.S. Dept. Of Commerce NOAA Technical Report NMFS 124.

Appendix I

Benthic Index (B-IBI) values for individual stations

UPDATED 93/94 NY/NJ DATA 1 Benthic Index 11:12 Tuesday, February 13, 1996

OBS	STATION	RINDEX52
1	BA002	3.4
2	BA005	4.0
3	BA007	3.2
4	BA010	3.2
5	BA012	3.4
6	BA014	3.8
7	BA016	4.4
8	BA017	3.8
9	BA021	4.6
10	BA025	4.4
11	BA026	4.0
12	BA030	3.4
13	BA033	4.2
14	BA035	3.8
10	BALUZ BALUZ	3.4
17	DALUS BALOS	3.4
10	BA104 BA105	4+4
10	BA105 BA106	2.4
20	BA107	4 6
21	BA108	3.8
22	BA109	4.4
23	BA110	4.6
24	BA111	4.2
25	BA112	4.0
26	BA113	3.0
27	BA114	4.6
28	BA115	4.0
29	JB002	2.4
30	JB006	2.4
31	JB008	1.4
32	JB012	1.4
33	JB015	1.2
34	TRODD	2.4
35	TROSE	2.0
37	JB020	2.0
38	JB033	3.0
39	JB039	3.0
40	JB041	3.0
41	JB042	3.8
42	JB043	2.6
43	JB101	1.8
44	JB103	1.0
45	JB104	2.6
46	JB106	2.6
47	JB108	2.2
48	JB110	2.8
49	JB111	2.6
50	JB112	3.0
51	JB113	2.8
52	JB114 TD115	3.U
ςς,	CTTO	3.4

.

UPDATED 93/94 NY/NJ DATA 2 Benthic Index 11:12 Tuesday, February 13, 1996

•

OBS	STATION	RINDEX52
54	JB117	2.8
55	JB119	3.2
56	JB120	3.2
57	LS001	5.0
58	LS004	3.2
59	LS006	3.8
60	LS010	3.4
61	LS011	2.6
62	LS016	3.0
63	LS018	3.4
64	LS019	2.8
65	LS020	2.4
66	LS024	4.2
67	LS026	2.4
68	LS027	3.0
69	LS030	2.8
70	LS035	1.6
71	LS101	4.2
72	LS102	3.2
73	LS103	4.2
74	LS104	4.2
75	LS106	2.4
76	LS107	2.6
77	1.5108	2.0
78	LS109	2.0
70	1.5110	2.2
80	1.9111	2.0
81 81	LS112	2.2
82	T.C113	1 2
83	T.S114	2 8
84	LO114 I.S115	2.0
85	NB018	2.1
95	NB010	2.2
97	NB021 NB025	2.0
20	NB025	2.4
90	NB027	2.2
0.9	NB030	3.0
90	NBOAA	2.0
97	ND044 ND045	2.4
92	NBU45	2.0
93	NDU47	1.2
94	NBU52 NBOE2	2.0
95	NBU53	2.0
96	NBU65	2.4
97	NBU66	1.6
98	NB075	1.2
99	NB102	1.8
100	NB103	2.6
101	NB104	2.4
102	NB105	2.0
103	NB106	2.6
104	NB107	2.6
105	NB108	1.8
106	NB109	2.2

.

UPDATED 93/94 NY/NJ DATA 3 Benthic Index 11:12 Tuesday, February 13, 1996

OBS	STATION	RINDEX52
107	NB110	2.8
108	NB111	2.4
109	NB112	2.2
110	NB113	2.4
111	NB114	1.6
112	NB115	2.6
113	RB001	2.8
114	RB002	3.6
115	RB 007	3.2
116	RB010	4.0
117	RB011	4.6
118	RB012	4.4
119	RB016	3.0
120	RB019	2.6
121	RB024	2.8
122	RB 027	2.8
123	RB029	3.0
124	RB 030	4.4
125	RB032	3.8
126	RB033	2.6
127	RB101	2.8
128	RB102	3.0
129	RB103	3.0
130	RB104	2.6
122	RBIUS	3.4
133	RD100	4.0
134	RB108	3.4
135	RB110	2.2
136	RB111	2.2
137	RB112	2.8
138	RB114	3.0
139	RB116	2.6
140	RB117	3.0
141	UH003	2.0
142	UH004	2.8
143	UH008	4.0
144	UH010	3.2
145	UH011	3.2
146	UH014	1.8
147	UH018	2.6
148	UH019	2.4
149	UH020	1.4
150	UH022	2.2
151	UH023	2.6
152	UH026	2.6
153	UH029	3.2
154	UH030	4.0
150	UNIOI	2.2
152	UH102	2.2
150		2.2
150		2.8
T03	OHIOS	4.0

UPDATED 93/94 NY/NJ DATA 4 Benthic Index 11:12 Tuesday, February 13, 1996

OBS	STATION	RINDEX52
160	UH106	3.4
161	UH107	1.4
162	UH108	2.2
163	UH109	2.2
164	UH110	2.0
165	UH111	2.6
166	UH112	1.8
167	UH113	2.4
168	UH114	3.4

Appendix J

Data disk explanatory information

-

April 27, 1995 1

CONTENTS PROCEDURE

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

				F.0.0
74	ACENTHE	Num	8	290
73	ACENTHY	Num	8	588
48	AG Ni	um 8	39	0
93	AG_RECOV	Num	8	748
60	AL NL	im 8	48	6
119	ALDRIN	Num	8	956
120	ALPHACHL	Num	8	964
94	AL_RECOV	Num	8	756
172	AMB_DO	Num	8	1380
170	AMB_SAL	Num	8	1364
171	AMBTEMP	Num	8	1372
77	ANTHRA	Num	8	620
491	AS N	um 8	39	18
95	AS RECOV	Num	8	764
33	AVS N	Num 8	3 2	70
40	AVS MM	Num	8	326
65	BASAREA	Num	8	526
1	BASINCOD	Char	2	0
80	BENANTH	Num	8	644
82	BENAPY	Num	8	660
86	BENEPY	Num	8	692
110	BENZOFL	Num	8	884
85	BENZOP	Num	8	684
108	BIO10DS1	Num	8	868
87	BIPHENYL	Num	8	700
165	BT TOT	Num	-8	1324
175	B BAC	Num	8	1404
176	BCOND	Num	8	1412
21	B DEPTH	Num	8	174
22	BDO	Num	8	182
26	BORP	Num	8	214
24	BPH	Num	8	198
23	B SAL	Num	8	190
20			-	

Acenaphthene (ppb) Acenaphthylene (ppb) Silver (ppm) Silver partial (ppm) Aluminum (ppm) Aldrin (ppb) Alpha-chlordane (ppb) Aluminum partial (ppm) Amb DO (mg/L) Amb Salinity (ppt) Amb Temp. (C) Anthracene (ppb) Arsenic (ppm) Arsenic partial (ppm) AVS (ppm) AVS (mmol) Total Basin Area (sq km) **Basin Code** Benzo[a]anthracene (ppb) Benzo[a]pyrene (ppb) Benzo[e]pyrene (ppb) Benzo[b,k]fluoranthene (ppb) Benzo[g,h,i]perviene (ppb) Biphenyt (ppb)

Total Butyi tins (ppb) Bottom BAC Bottom Conductivity (mS/cm) Bottom depth (m) Bottom DO (mg/L) Bottom ORP (mV) Bottom pH Bottom Salinity (ppt)

g | sample (.04 m²grab) # organisms | sample

A note that there are 2 replicates for each of these and they are Separate sheets on the Spreadsheet.

biomass

gbundance

CONTENTS PROCEDURE

Variable Type Len Pos Format Label

25		lum e	206	
50		n 8 4	200	Bottom Temp (C)
96	CD RECOV	Num P	770	Cadmium (ppm)
69	CHAN TYP	Char 8	558	Cadmium partial (ppm)
121	CHL TOTC	Num 8	972	
81	CHRYSENE	Num 8	552	Champana (anti)
109	CLOSTR N	Num R	876	Ciontrialium (# (= =)
51	CR Nun	n 8 4	14	Ciosingium (#/gm)
97	CR RECOV	Num A	780	Chromium (ppm)
52	CU Nun	3 8 4	22	Concer (nom)
98	CU RECOV	Num 8	788	
3	DATE Nur	n 8		F7 Date
159	DBT Nur	n 8 1;	276	Dibubdin (noh)
168	DDD TOT	Num 8	1348	Total DDD (anh)
167	DDE TOT I	Num 8	1340	
169	DDT STOT	Num 8	1356	
122	DDT TOT N	lum 8	980	Total DDT (ach)
7	DEPTH Nu	m 8	61	Denth (m)
84	DIBENZ Nu	m A	676	Oliberate blanthas a de de
123	DIELDRIN N	um B	999	Dividia (ash)
88	DIMETH NU	m 8	708	2.5.Dimethidesekteters (
124	ENDRIN NU	im 8	996	Endrin (nob)
61	FE Num	8 49	4	
99	FE RECOV N	lum 8	796	kon partiel (nom)
78	FLÜORANT N	lum 8	628	fluoreethese (set)
75	FLUORENE N	lum 8	604	
125	HEPTACHL N	Num A	1004	
126	HEPTAEPO N	Num 8	1012	Heptachior (ppb)
127	HEXACHL N	um A	1020	
63	HG Num	8 51	0	Mercular (apm)
101	HG RECOV	Num 8	812	Mercury (ppm)
83	INDÊNO Nu	m 8 (868	Indepo[1.2.2.C.D.aurosa (r.s.)
4	LAT Char	20 20		indeno(1,2,3-0,Djpyrene (ppp)
128	LINDANE Nu	m 8 1	028	Lindens - Gemme BUO ()
5	LONG Char	20 4	0	cincalie - Gamma-BHC (ppb)
160	MBT Num	8 12		Monobubdin (ash)
89	MENAP1 Nu	m 8 3	716	t-Methidaenhthelese (set)
72	MENAP2 Nu	m 8 /	580	
90	MEPHEN1 NI	រកា 8	724	
129	MIREX Nurr	າ 8້າດ	36	Mirex (ppb)
59	MN Num	8 478	3	Manganana (an.m.)
100	MN RECOV	lum a	804	
71	NAPH Num	A 57	2007	Nentstelene (anti)
53	NI Num	8 430	-	Naprimaiene (ppp)
102	NI RECOV NI	m 8	820	Nekel postal (app)
130	OPDDD Nur	n, 0 n 8 1/	020	Nickel partial (ppm)
131	OPDDE Nur	0 1(n <u> </u>	352	
132	OPDDT Nur	n 2.47	2016 100	
163	OPDDTTOT N	uno ≜	1200	
117	PAH HMWC	lum o	040	IOUI UPUUI (ppb)
116	PAH LMWC	u/n 9	371U 022	riign molecular Wt PAHs (ppb)
118	PAH TOTC N	im o	332 048	Low Molecular Wt PAHs (ppb)
54	PB Num	8 426	340 040	Iotal PAHS (ppb)
•••		o 438		Lead (ppm)

·

.

-

10:43 Thursday,

.

CONTENTS PROCEDURE

#	Variable	Туре	Len	Pos	Format	Label
			COL	FOS	Pormat	Labei

103 PB BECOV N	
152 PCBe Num 8 82	8 Lead partial (ppm)
142 PCP10 Num 8 1220	PCB Congener 8 (nob)
148 PCPop	PCB Concener 19 (ppb)
149 POD44 Num 8 1188	PCB Congener 28 (ppb)
149 PC844 Num 8 1196	PCB Conserver 44 (ppb)
150 PCB52 Num 8 1204	PCB Congenee 59 (ppb)
151 PCB66 Num 8 1212	PCB Congenier 52 (ppb)
133 PCB101 Num 8 1068	PCB Congener 66 (ppb)
134 PCB105 Num 8 1076	PCB Congener 101 (ppb)
136 PCB118 Num 8 1092	PCB Congener 105 (ppb)
137 PCB126 Num 8 1100	PCB Congener 118 (ppb)
138 PCB128 Num 8 1108	PCB Congener 126 (ppb)
139 PCB138 Num 8 1116	FCB Congener 128 (ppb)
140 PCB153 Num 8 1124	PCB Congener 138 (ppb)
141 PCB170 Num 8 1120	PCB Congener 153 (ppb)
143 PCB180 Num 8 1132	PCB Congener 179 (ppb)
144 PCB187 Num 8 1150	PCB Congener 180 (ppb)
145 PCB195 Num 8 1156	PCB Congener 187 (ppb)
146 PCB206 Num 0 1164	PCB Congener 195 (opb)
147 PCB209 Num 8 1172	PCB Congener 206 (ppb)
135 PCB11077 Num	PCB Congener 209 (pph)
166 PCB TOTO Num 8 1084	PCB Congener 110/77 (ppb)
29 PCTCON A NUM 8 1332	Total PCBs (ppb)
32 PCTCON M Num 8 238	Ampelison Surv as % of Control
30 PCTSUP A NUM 8 262	Microtox Surv as % of Control
91 PERVIENE NUM 8 246	Ampelisca % Survival
76 PHENANTH NUM 8 732	Perviene (noh)
6 BOSCOURD S	Phenanthrana (nob)
152 Oppos	Pos Linit
153 PPDDD Num 8 1228	P.P. DDD (pph)
155 PPDDE Num 8 1236	
155 PPDDT Num 8 1244	
104 PPDDTTOT Num 8 1316	Total PPDDT (mak)
79 PYRENE Num 8 636	Pyrene (nob)
179 RINDEX45 Num 8 1437	PGI Apples
70 SAMPLE Char 6 566	Sample ID
177 SAMPTYPE Char 9 1420	
55 SB Num 8 446	Antimony (mark)
104 SB_RECOV Num 8 836	
57 SE Num 8 462	Selicium (
11 SEAS Char to 92	Second (ppm)
9 SECCHI Num 8 70	Sea condition
66 SEGAREA Num 8 534	Secchi depth (m)
27 SEGMENT NUM 8 000	Segment Area (sq km) (NB only)
34 SEM CD Num & ozn	Segment (NB only)
41 SEM CD M Num 8 278	SEM Cd (ppm)
35 SEM CU Num 0 334	SEM Cd (mmol)
42 SEM CU M North 8 286	SEM Cu (ppm)
39 SEM HG Num 8 342	SEM Cu (mmol)
46 SEM HG M MUT 8 318	SEM Hg (ppm)
37 SEM NI NUM 8 374	SEM Hg (mmol)
44 SEM NU MA N	SEM NI (ppm)
36 SEM DD 1	SEM Ni (mmol)
43 SEM DD M	SEM Pb (ppm)
	SEM Pb (mmol)

.

,

10:43 Thursday,

CONTENTS PROCEDURE

Variable Type Len Pos Format Label

4	Z SEM TOT	Al	_	
3		Num	8 382	Total SEM (mmol)
4	5 SEM ZN A	NUM	8 310	SEM Zn (ppm)
10		VI Num	8 366	SEM Zn (mmol)
6	2 81	v Num	8 844	Selinium partial (nom)
2		e mu	502	Silicon (ppm)
3		Num (8 230	Ampelisca Significance (1 - signific
õ		Num 8	254	Microtox Significance (1 = signifi)
54		Num e	518	Percent Siliciay Content
2		um g	454	Tin (ppm)
67	STATION	Char 10	2 \$F8	B. Station Identifier
69		Num 8	542	Station Latitude
19	S AMPRO	Num a	550	Station Longitude
10	S AMBUU	Num	8 150	
	S_AMBSAL	Num	8 118	
172		Num	8 134	
173	S BAC	Num 8	1388	Surface BAC
12	S_COND	Num a	3 1396	Surface Conductivity (m.C. (and
12	S_DEPTH	Num 8	102	Surface depth (m)
20	3_DO N	Num a	142	Surface DO (mg (i))
20	S_OHP	Num 8	166	Surface ORP (m)A
13	S_PH N	ium 8	158	Surface oH
10	S_SAL N	lum 8	110	Surface Salinity (pot)
61 114	STEMP	Num 8	126	Surface Temp (C)
110	TZPAHC	Num 8	892	2-Ring PAHs (pob)
112	TAPAHC	Num 8	900	3-Ring PAHs (ppb)
113	14PAHC	Num 8	908	4-Bing PAHs (ppb)
114	ISPAHC	Num 8	916	5-Ring PAHs (opb)
110	TOPAHC	Num 8	924	6-Ring PAHs (opb)
105	IBI Nu	m 8 1	268	Tributyltin (opb)
101	TCDD N	ium 8	1292	
162	TCDF N	um 8	1300	Furan (2.3.7.8-TCOE) (ng/kg)
157	TETBT N	um g	1260	Tatrabubitin (nch)
100	INONCHL	Num 8	1252	Trans Nonaphler (arth)
107	TOC Nu	im g	860	Total Organia Carboo (apu)
8	THASH Ch	ar t	69	Trash?
92	THI235 Nul	m 8 7	740	2.3.5 Trimethylogophthetes
10	WEATHER (Char 14	78	Weather cond
178	YEAR Nu	m 8 1	429	
58	ZN Num	847	0	Zine (nom)
106	ZN_RECOV	Num a	852	