US ERA ARCHIVE DOCUMENT

ORD's Environmental Monitoring and Assessment Program

Key Monitoring Questions

What are the current conditions of our ecosystems?

- Where are the conditions improving or declining?
- What stresses are associated with declines?
- Are management programs and policies working?

GOALS of EMAP

- Develop the scientific basis for consistent, unbiased, cost-effective measurement of the condition of the Nation's aquatic ecosystems
 - Status
 - Trends
- Build state and tribal capacity for monitoring condition and transfer our technology
- Make our data generally available
- Develop an integrated monitoring approach

EMAP Approach

EMAP Design Approach

- Probabilistic Design Framework Randomized statistical designs allow interpretation of monitoring data with known uncertainty, extrapolation to the entire population with a small sample size, and statistical aggregation of like data to larger geographic areas
- Classification meaningful groupings within resource types and/or ecosystem types to allow better statistical design and analysis
- Biological Indicators Direct measures of aquatic ecosystem condition, integrates stressors, and more sensitive

Effectiveness of Design

- Eutrophication of NE US lakes
 - 4219 mostly problem lakes sampled by states for 305(b)
 - 2756 non-random lakes censused (Rohm et al. 1995)
 - 344 lakes with EMAP probability design (11,076 lakes total)

Statistical Change Detection

 Change in Percent Area of Chesapeake Bay with Impaired Benthic Community

EMAP Geographic Research

- National Coastal Assessment First statistically-based determination of condition for any national aquatic resource
- Western EMAP Develop baselines for streams in western states
- Great River Ecosystems Develop baselines for the large rivers of the Central Basin
- R-EMAP Smaller-scale, Regional and State problem solving
- STAR Grants University research

EMAP's National Coastal Assessment

 24 marine coastal states monitoring with core EMAP design and indicators

National Coastal Condition

Western EMAP Streams

- Develop the science for a national state-based probabilistic condition assessments of streams
 - Design and analysis
 - Indicators
 - Reference Conditions

Sites for Wadeable Streams Assessment

- 52 Mixed Wood Shield
- 53 Atlantic Highlands
- 62 Western Cordillera
- Marine West Coast Forest
- 8.1 Mixed Wood Plains
- 82 Central Plains
- 83 Southeastern Plains
- 8.4 Ozark, Ouachita-Appalachian Forests

- Mississippi Alluvial / Southeast
 Coastal Plains
- 92 Temperate Prairies
- 93 West-Central Semi-And Prairies
- 9.4 South-Central Semi-Arid Prairies
- 9.5 Texas-Louisiana Coastal Plain
- 9.6 Tamaulipas-Texas Semi-And Plain

- 10.1 Western Interior Basins and Ranges
- 102 Sonoran and Mohave Deserts
- 10.4 Chihuahuan Desert
- 11.1 Mediterranean California
- 12.1 Western Sierra Madre Piedmont
- 13.1 Upper Gila Mountains
- 15.4 Everglades

- Sites sampled, 2000–2004
- Sites to be sampled, 2004

Ecoregions (North America Level II)

Great River Ecosystems

- Develop the scientific basis for assessing the condition of large rivers
 - Missouri, Ohio, Upper Mississippi Rivers

Regional EMAP

 Smaller-scale geographic demonstrations involving condition assessment at regional, state and local levels

EPA Region 7 Example

EMAP/STAR Academic Research

 EMAP is integrated with academic scientists through ORD's STAR Grants

Program

-Ecological Indicators

-Statistical Designs

October 2003

Note: Combining state survey results requires consistent state coverage of streams and rivers, indicators measured, or criteria for impairment.

Quantitative Condition Measures

 Reference conditions - scientifically-defensible benchmark for measuring condition

Threshold for Biological Impact

Stream Miles Impaired in Maryland

8800 stream miles stream miles in MD MD 66% 1st order and 17% 2nd order

7304 miles in 1st and 2nd order streams

3725 miles of 1st and 2nd order streams should be on 303(d) List based on benthic impairment

Probability of Impairment Models

Combine condition information with other data to predict probability of impairment

EMAP

- Nationally consistent approach for monitoring streams and estuaries is available
- Statistical detection of changes and trends in ecological condition is possible
- Developing the science for determining condition of the large and Great Rivers
- Developing the science needed for implementing an integrated monitoring approach