US ERA ARCHIVE DOCUMENT

Two Non-Traditional Concepts about Large River Reference Conditions:

From Recent Experience on the Upper Mississippi River

Ken Lubinski¹, John Nestler², and Piotre Parasiewicz³

¹ Great Rivers Center for Conservation and Learning, USGS

² U. S. Army Corps of Engineers

³ University of Massachusetts

Basin Conditions

River Key Ecosystem Attributes

Today

1. "Virtual Reference 2. "Collective Minimal Condition"

Standards"

Almost Equal Phrases on the Upper Mississippi River

"Virtual
Reference =
Condition"

"Desired Future Condition"

"River Ecosystem Health"

Spectrum of Ecosystem Conditions*

Ecosystem
Integrity
Pristine,
Undisturbed

Ecosystem Health

Degraded

No Life

Altered, but still mostly controlled by natural processes, can be preferred not just accepted

* Modified from Karr and Chu (1999)

Ecological Assessments of Three Reaches of the Upper Mississippi River

Ecosystem Criteria

- 1. Viable native populations and their habitats
- 2. Ability to recover from disturbance

Floodplain River Criteria

- 4. River provides basin services
- 5. Annual channel/ floodplain connectivity
- 6. Long-term structural dynamics(such as meandering)

Problems with Initial "Report Card":

- 1. Limited quantitative methods
- 2. Limited participation by public

Reference Conditions

(ala J. Nestler at International Aquatic Modeling Group, 2000-2001)

Nestler's Virtual Reference Condition concepts -

- 1. Needed to bridge gap between incremental and synthetic approach
- 2. Multi-variable and based on first principles
- 3. From model calibrated to historic states, internal sites, and external systems.

Question #1: How many variables does it take to adequately address first principles?

But, the actual UMR recipe (FOR V.R.C) -

- 1. Take 2000+ stakeholder needs ...
- 2. Blend and reduce
- Separate by essential ecosystem characteristic
- 4. Present as pseudonym for total "desirable future conditions"

Question #2

Is establishing the

"Virtual Reference Condition"

an objective or subjective task?

Getting the Goal-setting Process Right -

AN ECOSYSTEM REPORT CARD NEEDS TO BE SCIENTIFICALLY-CREDIBLE AND SOCIALLY ACCEPTABLE

Societal Input

Source: Harwell, et al. (1999)

But what happens when we try to synthesize variables?

River Ecosystem Health

mg/l

+ acres

+ invasive species

+ ..

+ ..

???

Question #3: Can a Multi-variable approach be Objective? "Collective Minimal Standards"?

The UMR Navigation-Ecosystem Sustainability Program (N.E.S.P.)

Goal = Economic and Ecosystem Sustainability

Scope of TNC's Great Rivers Center for Conservation and Learning

```
Total

System = f(economy) + f(ecosystem) + f(culture)

Quality
```

Two Models of Economic/Ecosystem Relationships

Theoretical Health/Wealth Relationships During 3 Stages of Natural Resource Use

Question #4: Under the co-dependency model -

Don't we have to establish minimally acceptable standards as well as objectives?

Review of Questions:

- 1. Do reference conditions have to be objective?
- 2. How many variables are necessary to adequately address first principles?
- 3. Can a multi-variable approach be objective?
- 4. Minimal standards as well as objectives?