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Outline

• Primer on small area estimation

– direct and indirect estimation

– synthetic and composite estimation

– borrowing strength and shrinkage

– simultaneous and ensemble estimation

• Small area estimation examples

– semi-parametric small area estimation

– constrained estimation for ensembles
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Domains

•Domain = subpopulation of interest in a survey

– geographic domains = areas (EPA region, state, county,
HUC)

•Major domains: addressed by CWA 305(b)

– sufficient sample size allocated at the design stage

– standard survey estimation procedures yields estimates
of adequate precision
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Major Domains: Use Direct Estimation

• Direct estimators:

– use data only from the study units in the domain and
time period of interest

– include standard weighted survey estimators

– good design properties: unbiased estimator and valid
confidence intervals without any statistical model!

• Direct estimation is not reliable if sample size is extremely
small
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Small Domains: Direct Estimates Not Reliable

• Small domains/Small areas

– sample size is small and may be zero in some domains

– model-based inference is necessary to yield estimates
of adequate precision

– (definition depends on sampling resources and precision
requirements)

•Might consider small area estimates for CWA 303(d)

– rare to have adequate sample size everywhere
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Indirect Estimation: Borrowing Strength

• Indirect estimators:

– use data from outside the domain and/or time period
of interest

– (time indirect, domain indirect, domain and time
indirect)

– explicitly use statistical model to “borrow strength”
across time or space

– include various small area estimators
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Indirect Estimation: Synthetic Estimator

• Have: study variables for sample, covariates for entire
landscape

• Fit “global” model relating study variable to covariates

• Predict study variable at unobserved locations using
available covariates and fitted model

– works even if no samples in the area

– may be poor if model is incorrectly specified
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Direct, Synthetic and Composite Estimators

• One covariate, three small areas
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Shrinkage in the Composite Estimator

• Direct is moved toward synthetic to get composite
estimator

– equivalently, small-area specific effect “shrinks toward
zero”

•Much of small area estimation involves choosing the
shrinkage factor

• Ad hoc composite estimator

composite = wh(direct) + (1− wh)(synthetic)

– still rated PG
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Formal Composite Estimation

• wh = function of parameters from a fitted mixed model

•Mature audiences only:

– good auxiliary information

– correctly-specified global regression structure

– correctly-specified local correlation structure

– (may require violence or coarse language)

– sexy models and methods: EBLUP/EB, HB
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Basic Small Area Models

•Model for direct estimates:

θ̂h = direct estimate for small area h

= θh + eh

= truth+sampling error

θh = xT
hβ + ωh

= regression + area-specific deviation

• Two ways to borrow strength:

– globally, through regression fitted to all data

– locally, through spatially (or temporally) correlated
random effects
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Two Small Area Estimation Problems

• Acid Neutralizing Capacity (ANC)

– surface waters are acidic if ANC < 0

– supply of acids from atmospheric deposition and
watershed processes exceeds buffering capacity

• ANC level: Semiparametric small area estimation

– HUCs in Northeast

• ANC trend: Constrained ensemble estimates

– HUCs in mid-Atlantic highlands
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Semiparametric Small Area Estimation of ANC Level

• Joint work with J. Opsomer, G. Ranalli, G. Claeskens,
G. Kauermann

• 557 observations over 113 HUCs

13



HUCs as Small Areas

• Few sample observations available in most HUCs

– Average sample size/HUC: 4.9

– 64 HUCs contain less than 5 observations

– 27 out of 113 HUCs contain no sample observations

• Site-specific covariates: lake location and elevation

– need to account for spatial structure

– worry about spatial model misspecification

• Simpler way to capture spatial effects?
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Semiparametric Small Area Model

• Replace linear function of covariates by more general model:

direct = truth+sampling error

truth = m(xh; γ) + ωh

= semiparametric regression + area-specific deviation

= xT
hβ + zT

hα + ωh

• Semiparametric regression expressed as mixed linear model

– penalized splines (P-splines)

– thin plate splines

– kriging

• EBLUP easily handled with standard software (SAS, SPlus)
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Fitting by Penalized Splines Regression

• Allow slope changes at each of many knots

– penalize excessive slope changes via λ
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Spatial Smoothing Using P-Splines

• NE Lakes data require bivariate (spatial) smoothing ≈
thin-plate spline (Ruppert et al. 2003)

• Knot selection: space-filling algorithm
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NE Lakes HUC Predictions

• Correlation between ANC and model prediction: 0.96

−106.4 − 300.0

300.1 − 600.0

600.1 − 900.0

900.1 − 1200.0

1200.1 − 2727.0
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Constrained Bayes Estimation for ANC Trend

• Joint work with M. Delorey

• 88 HUC’s in Mid-Atlantic Highlands

• ANC in at least two years from 1993–1998

• HUC-level covariates:

– area

– average elevation

– average slope, max slope

– percents agriculture, urban, and forest

– spatial coordinates
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Small Area Model for Trend Estimates

• Temporal trend estimates:

τ̂h = within-HUC estimated slope = τh + eh

= truth + sampling error

τh = xT
hβ + ωh

= regression + area-specific effect

• Spatial correlation in {ωh} modeled by conditional au-
toregression (CAR)
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Two Inferential Goals

• Interested in estimating individual HUC-specific slopes

• Also interested in ensemble:
spatially-indexed true values: {τh}mh=1
spatially-indexed estimates: {τest

h }mh=1

– subgroup analysis: what proportion of HUC’s have
ANC decreasing over time?

– “empirical” distribution function (edf):

Fτ (z) =
1

m

m∑
h=1

I{τh≤z}
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Bayesian Inference

• Individual estimates: use posterior means

– pretty much sophisticated composite estimators

• Do Bayes estimates yield a good ensemble estimate?

– use edf of Bayes estimates to estimate Fτ?

•No! Bayes estimates are “over-shrunk”

– too little variability to give good representation of edf
(Louis 1984, Ghosh 1992)
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Constrained Bayes Adjusts the Shrinkage

• Posterior means not good for both individual and
ensemble estimates

• Improve by reducing shrinkage

– sample mean of Bayes estimates already matches
posterior mean of {τh}

– adjust shrinkage so that sample variance of estimates
matches posterior variance of true values

• Resulting estimates are called Constrained Bayes

– Louis (1984), Ghosh (1992)

– require posterior analysis
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Shrinkage Comparisons for the Slope Ensemble

Slope in ug / L / year
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Numerical Implementation of Hierarchical Bayes

•Markov chain Monte Carlo (MCMC): often necessary to
approximate posterior distribution of unknowns given data

• Idea: any distribution can be studied provided we can
simulate from it

– iid draws from distribution would be ideal

– dependent, identically distributed draws would be fine
if dependence is not too strong (ergodic theorem)

– dependent, nearly identically distributed draws might
be OK
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Markov Chain Monte Carlo (MCMC)

•MCMC generates Markov chain with invariant distribu-
tion equal to posterior distribution of interest

– not independent due to Markov structure

– not identically distributed except asymptotically, due
to initialization problem

– assessing convergence is critical

•MCMC recipes for constructing suitable Markov chains
include

– Gibbs sampler

– Metropolis-Hastings algorithm
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Gibbs Sampler: DISCO

• Derive full set of conditionals

• Initialize unknowns

• Sample sequentially from conditionals many times

• Check convergence, discarding a large number of
“burn-in” draws

• Ordinary data analysis on remaining data set

posterior mean of τh ' sample mean of draws

posterior variance of τh ' sample variance of draws

posterior median of τh ' sample median of draws
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Estimated EDF’s of the Slope Ensemble

Slope in ug / L / year
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Small Area Estimation Needed to Link 305(b) and 303(d)

•G-rated direct estimates: no shrinkage

• Indirect estimates: PG or R

– need good covariates and/or useful correlations

– rare in aquatic resources

• Shrinkage:

– none = direct: G-rated

– total = synthetic: PG-rated

– ad hoc composite: PG-rated

– formal composite: R-rated

• Two examples: semiparametric and constrained
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