US ERA ARCHIVE DOCUMENT

ASSESSING THE ECOLOGICAL CONDITION OF SOUTHEAST U.S. ESTUARIES

James Harvey
U.S. EPA/ORD/NHEERL
2004 EMAP Symposium
May 3-6, 2004

- Corey Garza
- Linda Harwell
- Tom Heitmuller
- Virginia Engle

- Lisa Smith
- John Macauley
- Kevin Summers

- http://www.epa.gov/emap/nca/index.html
- •http://www.epa.gov/nheerl/arm/
- http://www.epa.gov/owow/oceans/nccr2/index.html

"Good News - Based on my years in the environmental movement, I think the Agency does an exemplary job of protecting the nation's public health and quality of the environment.

Bad News - I can't prove it."

Former EPA Administrator William Reilly 1989

Public Questions

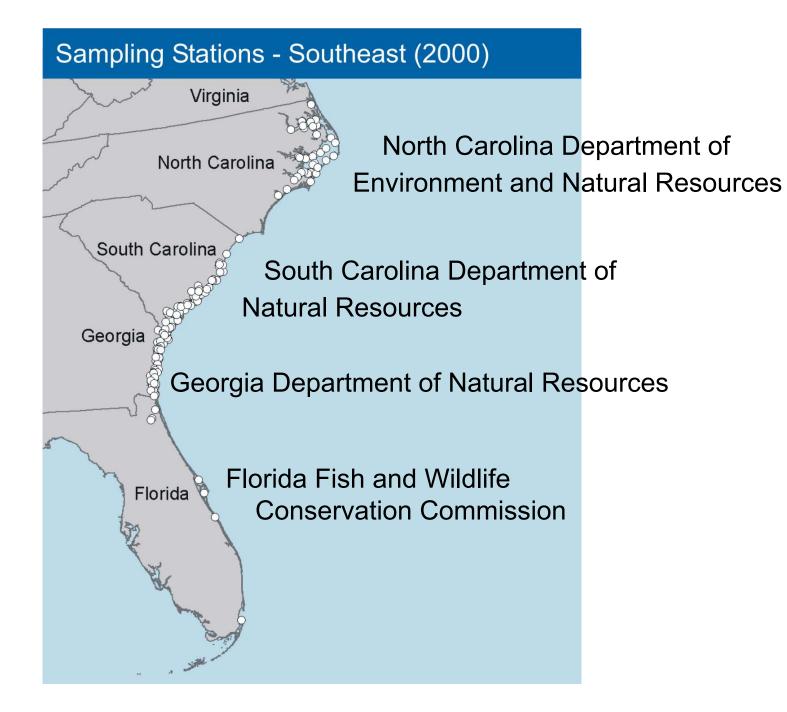
- Can I swim in it?
- Can I fish in it?
- Can I eat the fish?
- Is it safe?
- What are you doing to make it better?

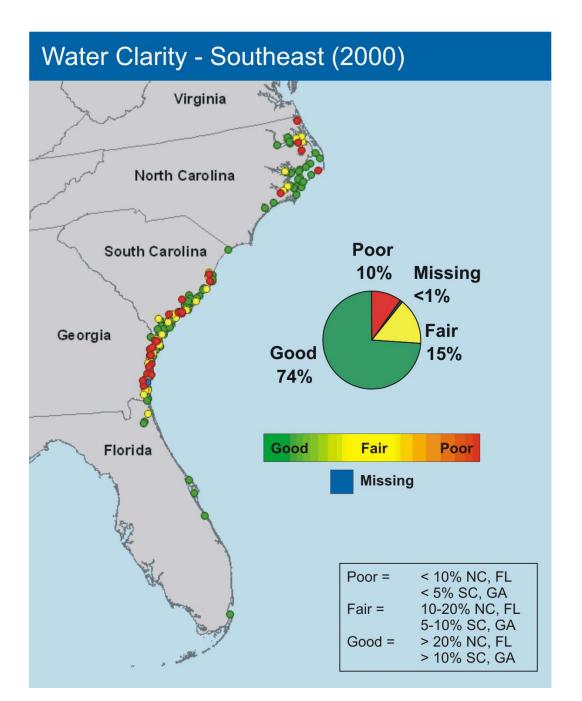
Agency-level Questions

- What are the current conditions of our ecosystems?
- Where and how is the condition improving or declining?
- What stresses are associated with declines?
- Are our management programs and policies working?

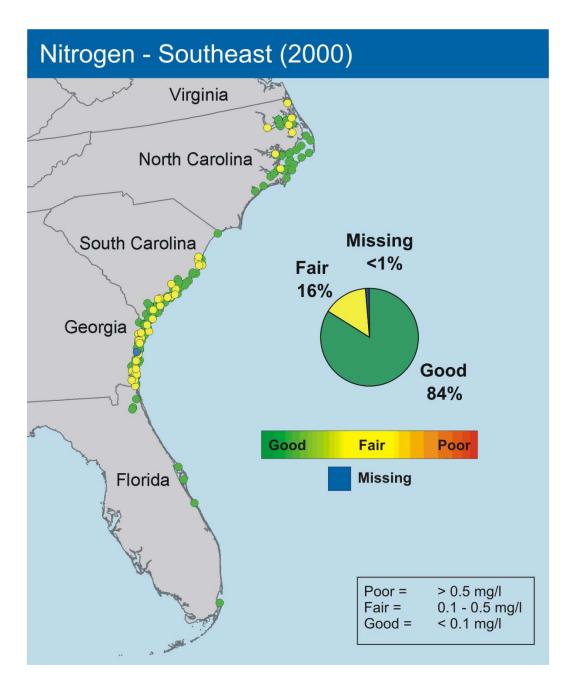
National Coastal Assessment

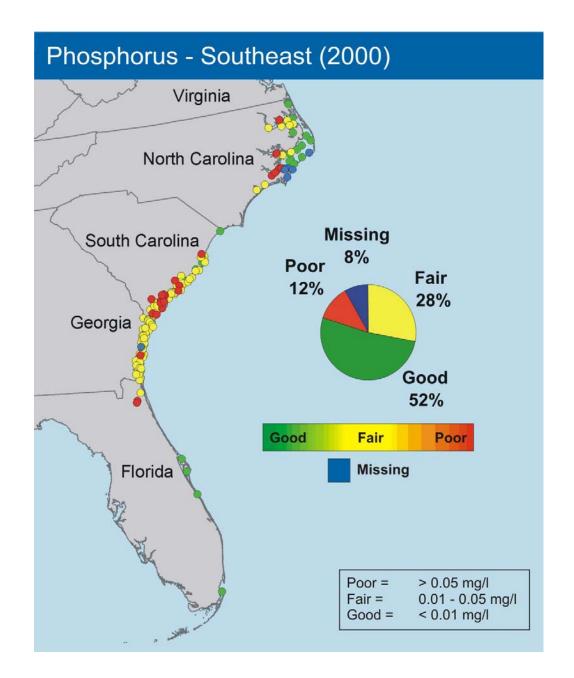
 Build state capacity for monitoring condition and transfer our technology


 Develop the scientific basis for consistent, unbiased, cost-effective measurement of the condition of the Nation's aquatic ecosystems

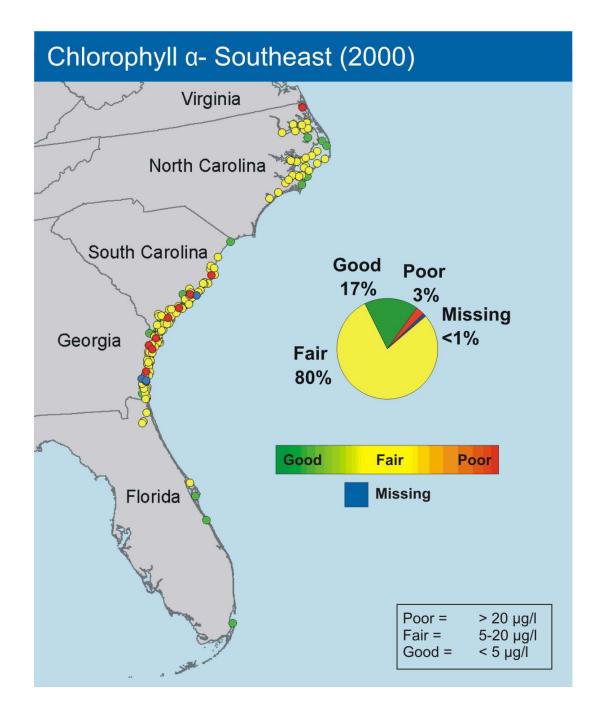

Selection of Indicators

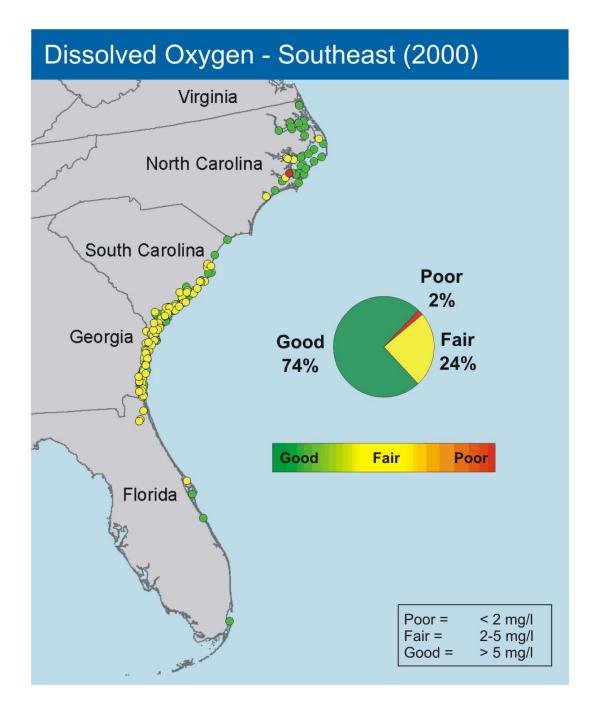
- Biotic Condition Indicators
- Exposure Indicators
- Habitat Indicators
- Stressor Indicators

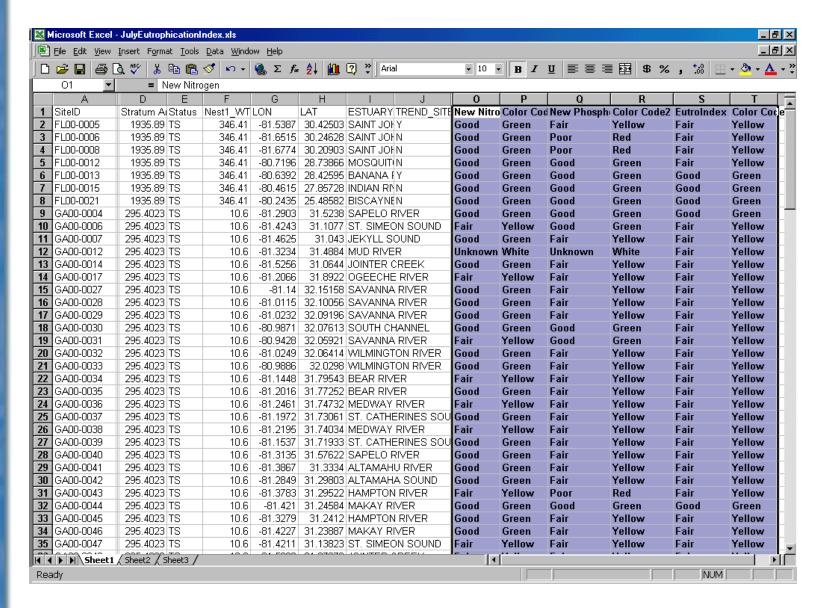


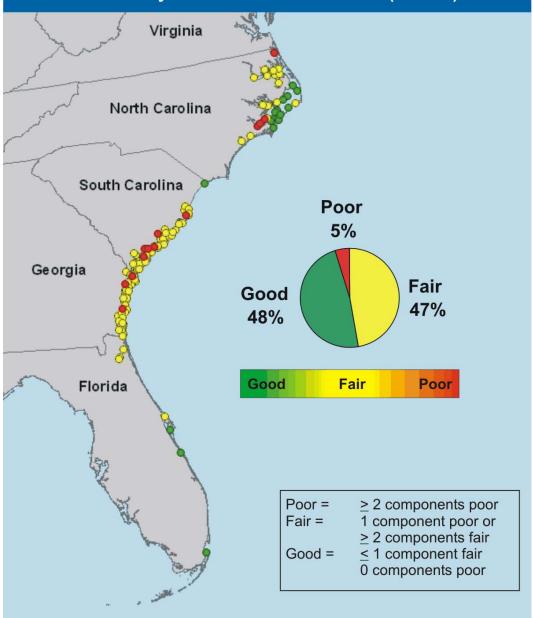


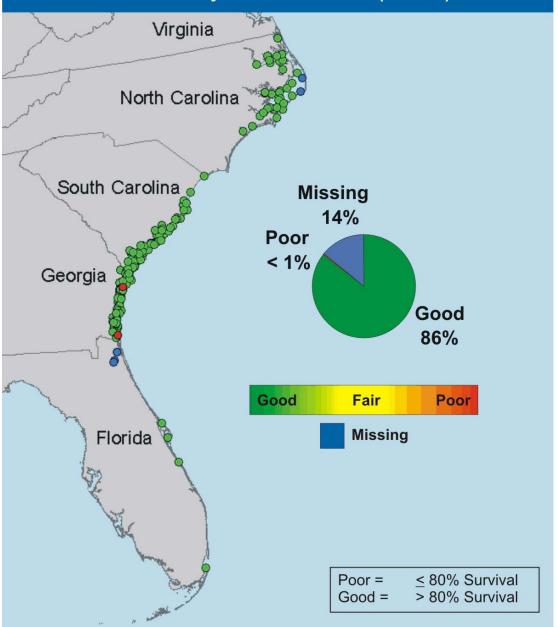
		waterclarity index 62403.xls									回×
[변] File	Edit View	<u>Insert Format Tools Data Window Help</u>									<u>리×</u>
🗅 😅		λ 💖 🐰 🗈 🖺 🍼 🗠 - 🦺 Σ	<i>f</i> ≈ 2 ↓ 1 11	🌠 👺 Arial		▼ 10 ▼ B	<i>I</i> <u>U</u> <u>■</u> <u>■</u> <u>■</u>	国 \$ %		- 🖄 - 🛕	· · ?
S2	2 ▼	= =IF(Q2 <m2,1,if(q2>L2,3,2))</m2,1,if(q2>)			<u>'</u>		'			
	Α	ВС	F	G	Н	J K	L M	0	Q	S	
48 GA	k00-0040	4.08432 SAPELO RIVER	31.57615	-81.3135	0.55	0.05 .10	2.995732 2.30258	5 1	1.818182	1	
49 GA	00-0041	2.7432 ALTAMAHU RIVER	31.33272	-81.3864	0.5	0.05 .10	2.995732 2.30258	5 1	2	1	П
50 GA	00-0042	1.8288 ALTAMAHA SOUND	31.29798	-81.2851	0.75	0.05 .10	2.995732 2.30258	5 1	1.333333	1	
51 GA	00-0043	3.41376 HAMPTON RIVER	31.288	-81.3793	0.55	0.05 .10	2.995732 2.30258	5 1	1.818182	1	
52 GA	00-0044	3.9624 MAKAY RIVER	31.24317	-81.4222	0.65	0.05 .10	2.995732 2.30258	5 1	1.538462	1	П
53 GA	00-0045	6.4008 HAMPTON RIVER	31.23917	-81.3245	2	0.05 .10	2.995732 2.30258	5 1	0.5	1	
54 GA	00-0046	3.59664 MAKAY RIVER	31.239	-81.422	0.6	0.05 .10	2.995732 2.30258	5 1	1.666667	1	П
55 GA	k00-0047	7.0104 ST. SIMEON SOUND	31.13805	-81.4212	0.75	0.05 .10	2.995732 2.30258		1.333333	1	
56 GA	00-0048	2.62128 JOINTER CREEK	31.0785	-81.5309	0.9	0.05 .10	2.995732 2.30258	5 1	1.111111	1	
57 GA	00-0049	1.76784 JEKYLL SOUND	31.01023	-81.4551	1.4	0.05 .10	2.995732 2.30258	5 1	0.714286	1	
58 GA	NOO-0050	2.77368 ST. MARYS RIVER	30.72582	-81.5067	0.8	0.05 .10	2.995732 2.30258	5 1	1 25	1	
59 NC	00-0001	1.79832 CORRITUCK SOUND	36.442	-75.9669	0.5	(0.1 .20)	2.302585 1.60943	B 1.4	(2.8	3)	П
30 NC	00-0002	3.6576 PERQUIMANS RIVER	36.11515	-76.3218	1.5	0.05 .10	2.995732 2.30258	5 1	0.666667	$\overline{}$	П
61 NO	00-0003	1.2192 BULL BAY	35.96442	-76.3012	1.1	0.05 .10	2.995732 2.30258	5 1	0.909091	1	1
32 NO	00-0004	1.524 LITTLE ALLIGATOR RIV	35.953	-76.0539	0.5	0.05 .10	2.995732 2.30258	5 1	2	1	T
3 NC	00-0005	1.03632 WEST BLUFF BAY	35.33278	-76.1762	0.9	0.05 .10	2.995732 2.30258		1.111111	1	T
34 NO	200-0006	0.39624 WEST BAY	34.982	-76.377	0.7	0.05 .10	2.995732 2.30258	5 0.39624	0.566057	1	T
65 NC	00-0007	0.4572 WEST BAY	34.96365	-76.4536	0.8	0.05 .10	2.995732 2.30258	5 0.4572	0.5715	1	
66 NC	200-0008	0.51816 NEUSE RIVER	34.88863	-76.8621	0.5	0.05 .10	2.995732 2.30258	5 0.51816	1.03632	1	1
	00-0009	0.33528 WHITE OAK RIVER	34.72935	-77.1035	0.6	0.05 .10	2.995732 2.30258	5 0.33528	0.5588	1	1
8 NC	00-0010	0.9144 NEW RIVER	34.62697	-77.3663	0.5	0.05 .10	2.995732 2.30258	5 0.9144	1.8288	1	1
69 NC	00-0011	1.524 ALLIGATOR RIVER	35.95948	-75.9504	0.75	0.05 .10	2.995732 2.30258	5 1	1.333333	1	1
70 NC	00-0012	3.5052 ALLIGATOR RIVER	35.76793	-76.0042	0.75	0.05 .10	2.995732 2.30258		1.333333	1	1
71 NC	00-0013	1.64592 PAMLICO RIVER	35.36983	-76.6032	1	0.1 .20	2.302585 1.60943	В 1.4	1.4	1	1
72 NC	00-0014	1,70688 PAMLICO RIVER	35.30047	-76.4317	1.2	0.1 .20	2.302585 1.60943	В 1.4	1.166667	1	1
73 NC	00-0015	1,43256 PAMLICO RIVER	35.34328	-76.5901	1	0.1 .20	2.302585 1.60943	В 1.4	1.4	1	1
74 NC	00-0016	1.85928 NEUSE RIVER	35.02123	-76.5423	1.3	0.1 .20	2.302585 1.60943	В 1.4	1.076923	1	1
75 NC	00-0017	1.73736 NEUSE RIVER	35.01768	-76.6194	1	0.1 .20	2.302585 1.60943	В 1.4	1.4	1	1
76 NC	00-0018	0.36576 CORE SOUND	34.93876	-76.2376	1.2	0.1 .20	2.302585 1.60943	0.36576	0.3048	1	1
77 NC	00-0019	1.3716 NEUSE RIVER	34.93855	-76.7504	1.3	0.1 .20	2.302585 1.60943	1.3716	1.055077	1	1
78 NC	00-0020	0.3048 CORE SOUND	34.77522	-76.4284	1	0.1 .20	2.302585 1.60943	0.3048	0.3048	1	1
79 NC	00-0022	5.57784 ALBERMARLE SOUND	36.08522	-75.9393	0.5	0.1 .20	2.302585 1.60943	В 1.4	2.8	3	1
30 NC	00-0023	5.69976 ALBERMARLE SOUND	36.07052	-76.0863	1	0.1 .20	2.302585 1.60943	В 1.4	1.4	1	1
81 NC	00-0024	6.2484 ALBERMARLE SOUND	36.01022	-76.3141	1.8	0.1 .20	2.302585 1.60943	В 1.4	0.777778	1	1
	00-0025	3.6576 ALBERMARLE SOUND	35.98807	-76.6713	1.5	0.1 .20	2.302585 1.60943	1.4	0.933333	1	
	Sheet1		05.00050	75.044		î (î	0.000505 4.00040		4 070000	1	ŀ
Ready	, Juccel								NUM		
cauy							, ,		INOM		

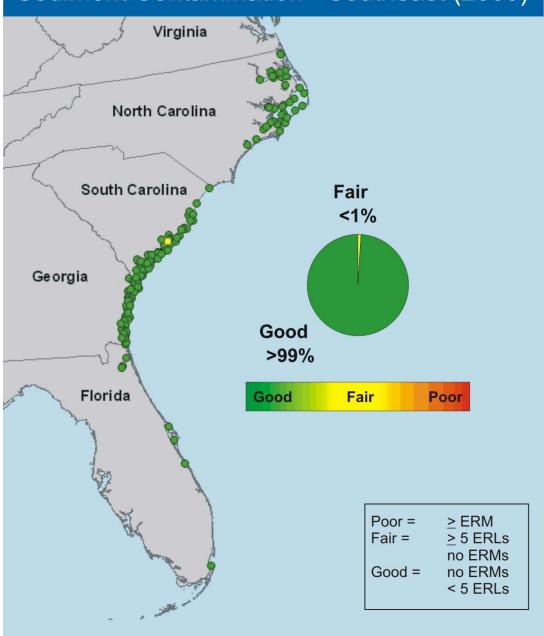




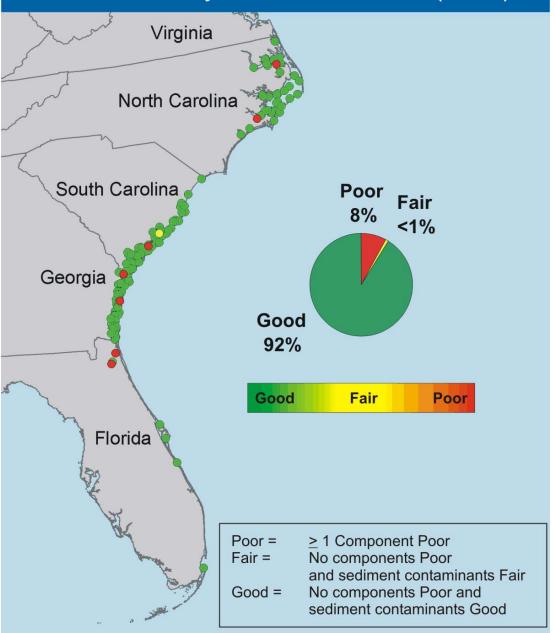


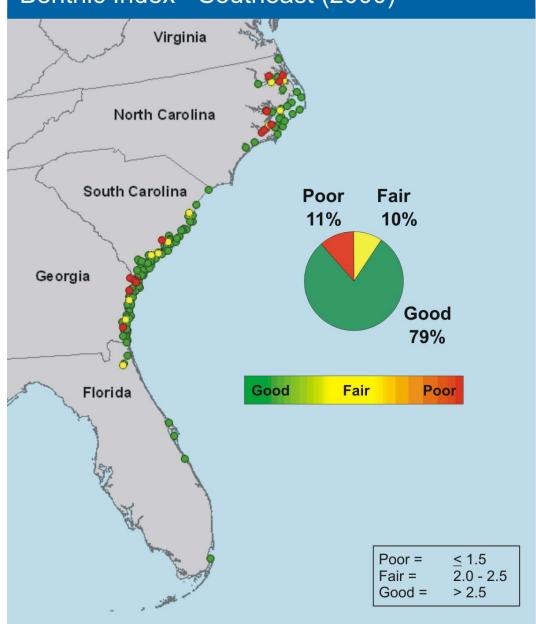


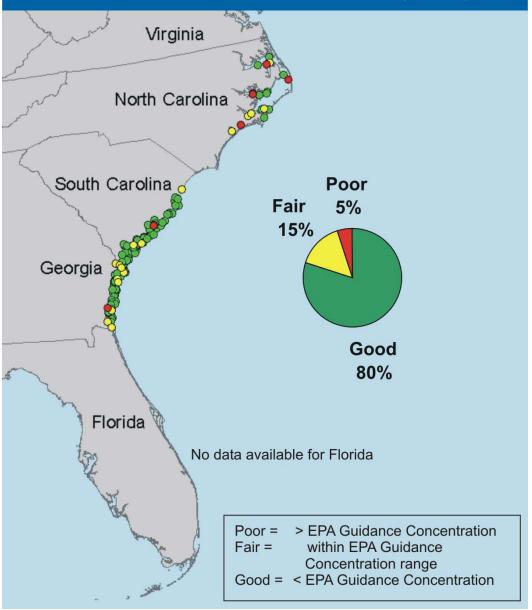


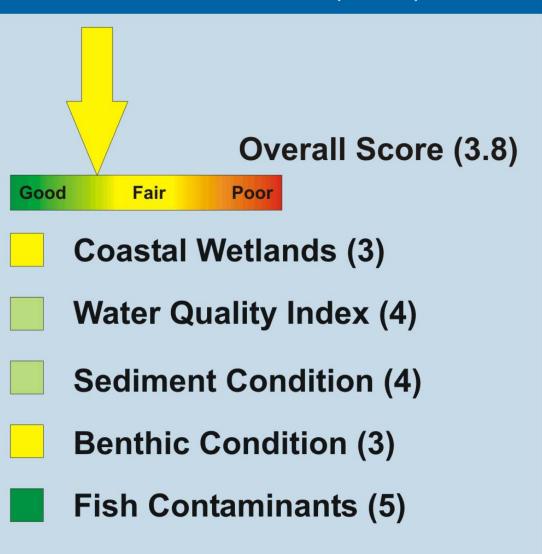


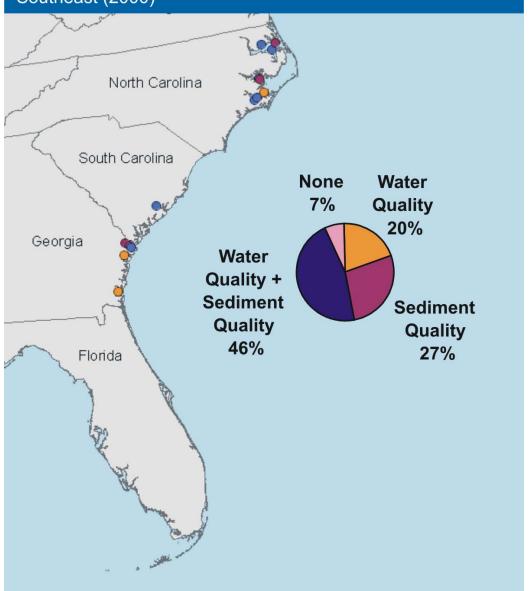
Sediment Contamination - Southeast (2000)









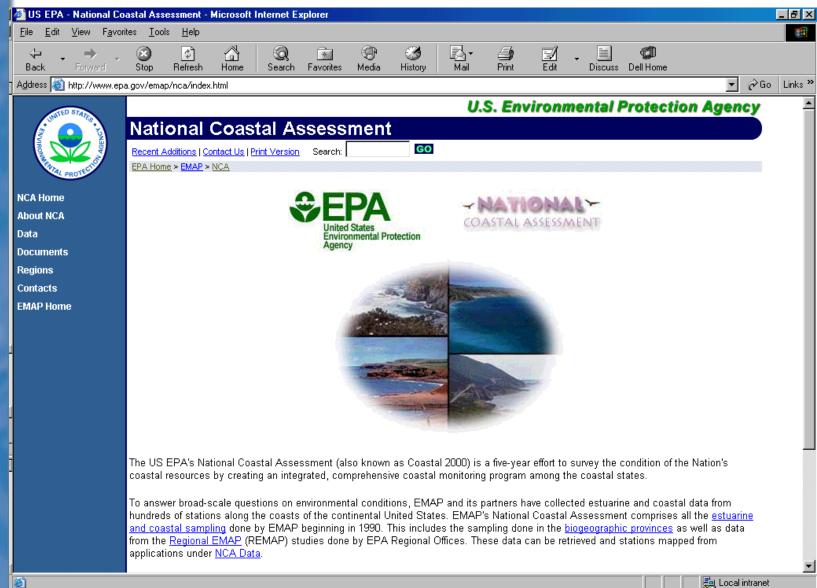


Overall Condition - Southeast (2000)

Poor Water/Sediment Quality Indicators that Co-Occur with Low Benthic Diversity Southeast (2000)

Summary

- Overall condition is fair to good
- Less than 5% of the area of SE estuaries is in poor condition, based on DO, sediment toxicity, and sediment chemical contamination.
- Water quality index is a potential concern with 52% of the area rated as fair or poor.


Summary

Benthic index rated 11% area as poor.

 Although only 2% and 12% of SE were rated in poor condition for Chla and phosphorus, 80% and 28% were rated as fair, respectively.

Thank you

