US ERA ARCHIVE DOCUMENT

Presented at

Great Rivers Reference Condition Workshop January 10-11, Cincinnati, OH

Sponsored by The U.S. Environmental Protection Agency and The Council of State Governments

Evaluation of reference conditions for contaminants and fish health indicators in Great Rivers of the U.S.

Jo Ellen Hinck and Donald E. Tillitt

Columbia Environmental Research Center U.S. Geological Survey – Biological Resources Division 4200 New Haven Rd., Columbia, MO, USA 65201

U.S. Department of the Interior U.S. Geological Survey

Biomonitoring of Environmental Status and Trends (BEST) Program: Large River Monitoring Network (LRMN)

Identify, monitor, and assess environmental contaminants and their effects in fish

Endpoints

- Fish health indicators (somatic indices, health assessment)
- Histopathology (general health, gonad)
- Reproductive biomarkers (vitellogenin, steroid hormones)
- Contaminant concentrations (organochlorine pesticides, metals)
- Hepatic ethoxyresorufin O-deethylase (EROD) activity

BEST-LRMN Program

Many endpoint responses are species specific; therefore the program targets certain fish species

Endpoint data may be limited for certain species

LRMN Dataset

Sites: +100

Fish: +3200

Site Selection
Random
Historical (NCBP)

Endpoints used by LRMN

Factors to consider	Rating	Field
Cost		Lebwatery
Historical data		Spatial Time
Collection method		Species Faming
Analytical method		Preservation
Interpretation		Eximati ise Influencing fa

ncing factors

Green = good/easy Red = bad/difficult

Collection logistics of LRMN

Live fish
Equipment
Min. 2 person crew

Hepatic microsomal ethoxyresorufin *O*-deethylase (EROD)

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Frequency distribution of EROD

EROD activity in green area are reference or background

Influencing factors:
Species
Gender
Reproductive stage

Plasma vitellogenin and steroid hormones

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Frequency distribution of Vtg concentrations

Conc. < detection limit: 13% of females 87% of males

Conc. >0.01 mg/mL in males is anomalous

Steroid hormones in female carp

- Reference condition difficult to determine
- Samples collected Aug-Oct to minimize stage effects
- 17β –estradiol conc. differed among sites – delayed maturation (as determined by histopathology) at 323, 324, and 325
- 11-ketotestosterone conc. also relatively low at 323 and 324
- Compare hormone ratios

Histopathology

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Much of histopathology is qualitative analysis. However, quantitative measurements can be made.

Frequency distribution of splenic macrophage aggregates

Fish Health Assessment Index (HAI)

External anomalies

Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Rating

Factors to consider

Internal anomalies

HAI scores and species differences

Age, length, weight, somatic indices

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Frequency distribution of hepatosomatic index in all LRMN fish

HSI = liver weight/(total body weight – gonad weight)*100

Pesticides and inorganic contaminant concentrations

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Mercury concentrations in LRMN fish

Wildlife at risk to mercury in LRMN fish

Contaminant concentrations

Pesticides and inorganics		
Factors to consider	Rating	
Cost		
Historical data		
Collection method		
Analytical method		
Interpretation		

New generation chemicals		
Factors to consider	Rating	
Cost		
Historical data		
Collection method		
Analytical method		
Interpretation		

DDT, toxaphene, Hg, Se, As

Pharmaceuticals, perchlorate

Emphasizes the importance of examining biological endpoints

Summary of endpoint use in fish health assessment

Endpoint	Method	Interpretation	Overall Use
Age, length, weight, somatic indices			
Health Assessment Index			
EROD			
Vitellogenin			
Steroid hormones			
Pesticides, Inorganic contaminants			
New generation contaminants			
Histopathology			

Overall use of LRMN endpoints in fish health and ecosystem assessment

Short term effects

Molecular effects (gene expression, EROD)

Organismal effects (tumors, somatic indices)

Population effects (reduced/absence population)

Long term effects

Sensitivity

Ecological Relevance

Acknowledgements

USGS Columbia Environmental Research Center: K. Echols, S. Finger, T. May, D. Nicks, C. Orazio, C. Schmitt

USGS Leetown Science Center: V. Blazer

USGS Florida Integrated Science Center: T. Gross

USGS BEST Program: J. Coyle, P. Anderson

University of Florida – Gainesville: N. Denslow

For more information on BEST-LRMN:

Contact me: jhinck@usgs.gov

Related publications (in pdf): www.cerc.usgs.gov/pubs/pubs.htm

Fish health database: www.cerc.usgs.gov/data/best/search.htm

