Integration of Probabilistic Surveys, Intensive Watershed Designs, and Targeted Sampling for Monitoring and Assessing Surface Waters in Minnesota

John Genet
MN Pollution Control Agency (MPCA)
St. Paul, MN

EMAP 2007 Symposium
April 10-11th 2007
Washington, DC
Overview

- Summarize various approaches used to monitor MN Lakes, Streams, and Wetlands [Condition Monitoring]
- Integration/coordination of the various designs in Minnesota
- Discuss partnership opportunities with National Surveys
Lake Water Quality Assessment Program

10 Year Monitoring Strategy

<table>
<thead>
<tr>
<th>Area (acres)</th>
<th>#</th>
<th>Monitoring Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 500</td>
<td>~800</td>
<td>Census</td>
</tr>
<tr>
<td>100 - 500</td>
<td>~4000</td>
<td>Targeted; selection based on Citizen Monitoring, Remote Sensing, and/or Local Interest</td>
</tr>
<tr>
<td>< 100</td>
<td>~7000</td>
<td></td>
</tr>
</tbody>
</table>

- Monitor ~100 Lakes/Year
- Assess swimmable use (primary contact)
- Indicators: TP, Chl-a, Secchi Depth
- 305(b) report/303(d) list
Other Lake Assessment Programs

<table>
<thead>
<tr>
<th></th>
<th>Monitoring Design</th>
<th>Indicators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citizen Lake Monitoring (CLMP)</td>
<td>Fixed-Station</td>
<td>Secchi Depth</td>
<td>Status & Trends (individual lakes)</td>
</tr>
<tr>
<td>CLMP+</td>
<td>Fixed-Station</td>
<td>TP, Chl-a, DO, Secchi, Temp</td>
<td>Supplement CLMP dataset</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>Census (lakes > 20 acres)</td>
<td>Water Clarity</td>
<td>Statewide Status & Trends</td>
</tr>
</tbody>
</table>
National Lakes Assessment Project: MN

- Probabilistic Survey Design
- Enhance regional/national scale results with additional random sites to support state scale surveys
- Sample collection during summer of 2007 using standardized protocols
- Indicators measured represent biological condition, recreational use, and trophic status
- MN Contributors: Pollution Control Agency, Dept. of Natural Resources, US Forest Service
• 41 lakes ranging from 10 to 16,314 acres (Cass Lake)
• Added 9 lakes to gain statewide estimates of condition (±10% with 95% confidence)
• Good regional coverage across 4 ecoregions with 98% of MN lakes;
Stream Biological Monitoring Program

1990 – 1994 - Red and Minnesota Assessments (Fish IBI): Targeted Site Selection

1996 - Initiated rotating basin assessments (Fish & Invert IBIs): Probabilistic & Targeted

2005 - Collected data from all 10 major river basins

2006 - Repeated probabilistic survey in initial basin (St. Croix)
 - Initiated Intensive Watershed design (Snake River): Targeted/Systematic Site Selection

2007 - Phase II of Snake R. survey; Initiate Phase I of intensive design in two new watersheds

Future - Continue basin assessments: Probabilistic
 - Continue intensive watershed surveys
Stream Biological Monitoring 1990-2006

- Rotating Basin Design
- Wadeable streams and large rivers
- St. Croix and Upper Miss. reports completed
- St. Croix re-sampled 2006
- Assessments used for both 305(b) and 303(d)
Snake River Intensive Watershed Pilot: Phase I

- Biological monitoring for determination of aquatic life use support (n=58)
- Monitoring for determination of aquatic recreation and aquatic life use support (n=11)
- Monitoring for determination of aquatic consumption, aquatic recreation, and aquatic life use support (n=1)

305(b) Reporting & 303(d) Listing
National Stream and River Assessments

MN Participation

- Site reconnaissance
- Methods/Assessment Comparability (Fish & Inverts)
 - WSA vs. MN Methods
- Provided Reference (Least-impacted) sites for ecoregion expectations

Large & Great Rivers Assessments

- Large River Method Comparison (Fish & Inverts)
- Great River Method Comparison (Fish only) – planned for 2007
Wetland Biological Monitoring Program

1992 – 2006 - Monitoring efforts focused on indicator development: Targeted Site Selection

2003 - First wetland probabilistic survey conducted: Redwood River Watershed

2007 - Indicators developed statewide for depressional marshes: Plant and Invertebrate IBIs
 - Initiate first phase of statewide wetland probabilistic survey

Future - Develop condition indicators for other wetland types: Targeted Site Selection
 - Monitor set of sites in each ecoregion to assess condition trends: Fixed-Station
Probabilistic Statewide Wetland Survey Design: Status & Trends of Wetland Quantity & Quality

3-Panel Interpenetrating Design
Plot Selection: GRTS Survey Design (Areal Resource)

Year (Panel) 1
1580 1 mi² plots
+ 250 Common Plots Sampled each year

Year (Panel) 2
1580 1 mi² plots

Year (Panel) 3
1580 1 mi² plots
Panel 1: 2006 Wetland Quantity Status
2007 Wetland Quality Status

2006
Panel 1 (black) and
Common plots (red)
National Wetland Condition Assessment

- Scheduled for 2011
- MN participating in National Wetlands Monitoring Workgroup discussions
 - Communicating with National Wetland Assessment Team
- Collaboration on Method/Indicator Development??
MN Condition Monitoring Design Matrix

<table>
<thead>
<tr>
<th>Design</th>
<th>Lakes</th>
<th>Streams</th>
<th>Wetlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Census</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Probabilistic</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fixed-Station</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intensive Watershed</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Conclusions

- Probabilistic designs support some programs better than others
- Alternative designs needed to better support other program needs (e.g., TMDL)
- Integration of designs will result in most efficient use of monitoring resources
Conclusions

- Integration with National Surveys depends on whether a statewide probabilistic design already exists for the resource:

 - If one exists → comparable assessment endpoints may allow results of State survey to be used supplement National survey, and vice versa

 - If not → supplementing National survey with additional sites is an efficient way to obtain statistically valid statewide estimates of condition.
Questions?

Minnesota Pollution Control Agency