

Making Decisions Based on Single Samples

Richard Eskin Maryland Department of the Environment

Acknowledgements

For slides, technical expertise, innovation and general assistance to the Biocriteria Advisory Committee: Jon Helge Vølstad Nancy Roth Ginny Mercurio, and Mark Southerland Versar, Inc. ESM Operations Dr. Raymond Morgan, Committee Chair Ron Klauda and Paul Massicot, MDNR

Issue: Transition a Biocriteria Assessment Method to a Regulatory Decision-making Tool

- Needed to develop method for next 303(d)
 List.
- Needed to start with existing biocriteria methodology.
- Needed to get "buy-in" from many different stakeholders.
- * Confidence in decision a critical criterion.

Process

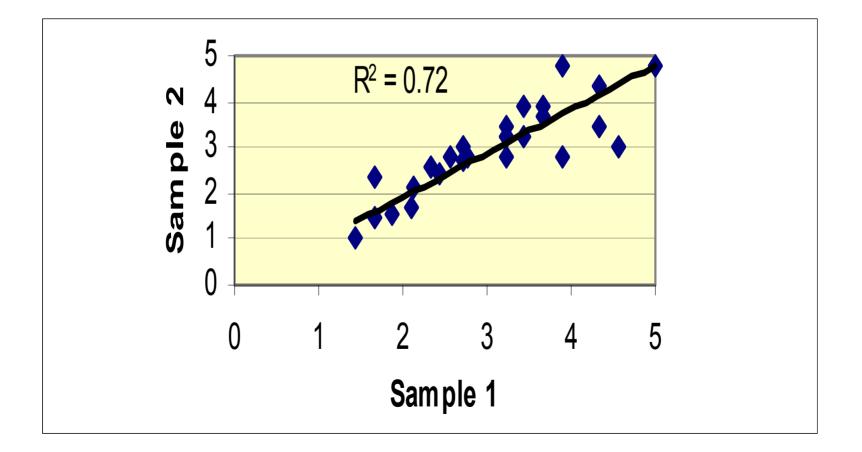
- Assemble an advisory committee with all sectors represented.
- * Chair from an academic institution.
- Examine the existing methodology and simultaneously educate the Committee members.
- * Lay out key issues for resolution.

Key Issues

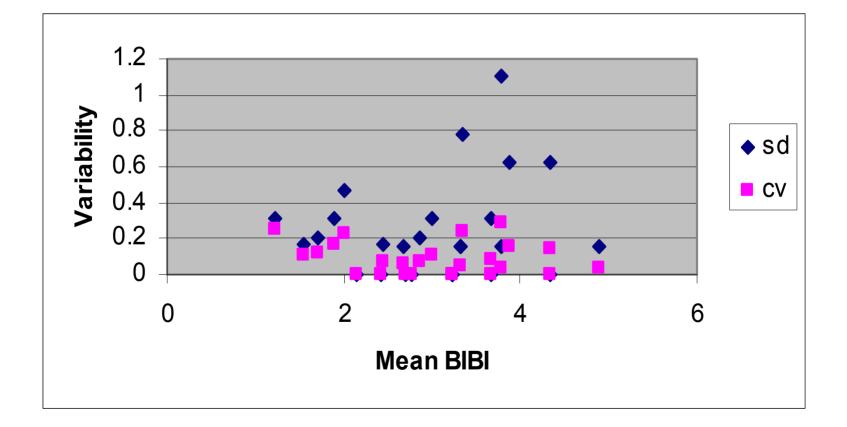
- Confidence in the method?
- * How many samples to make a decision?
- Spatial scale?
- * When a probabilistic sample in a stream segment indicates a possible impairment, but resources are not available to assure a return sampling, how do you address that site with respect to 303(d)?

Issue Resolution

- Confidence in the method?
- * How many samples to make a decision?
- * Spatial scale?
 - Parts of the same question.
 - Decided on a confidence interval approach that incorporated number of samples but allowed for decisions in segments with single samples.
 - Default confidence limit in where n < 10.
 - Site-specific confidence limit where n > 10.


Issue

- In the interim framework it was recognized that the application of a default .75 standard deviation was a temporary solution that had several problems:
 - Considering that the IBI scale is only 4 units, this indicates considerable uncertainty.


ISSUE (continued)

- It was possible that with re-analysis the size of that confidence interval could be reduced.
- The one-sided aspect for impairment only was not consistent.
- It was not consistent with the 8-digit watershed approach.
- Better methods were possible.

MBSS 1995-1997 BIBI for duplicate samples

MBSS 1995-1997 replicates within stream segments – variability versus mean BIBI score

Use model to estimate precision for single scores

- Estimate mean s and cv based on MBSS 1995-1997 duplicate samples (n=27)
- Plug value into formula for SE or RSE
 n=1 for single scores

BIBI for replicate sampling within stream segments, MBSS 1995-1997

		Stream order			
Metric	Statistic	1	2	3	All
	п	10	8	9	27
BIBI	\overline{x}	2.60	3.39	3.13	3.01
	\overline{S}	0.12	0.25	0.35	0.24
	$C\overline{V}$	0.06	0.08	0.11	0.08

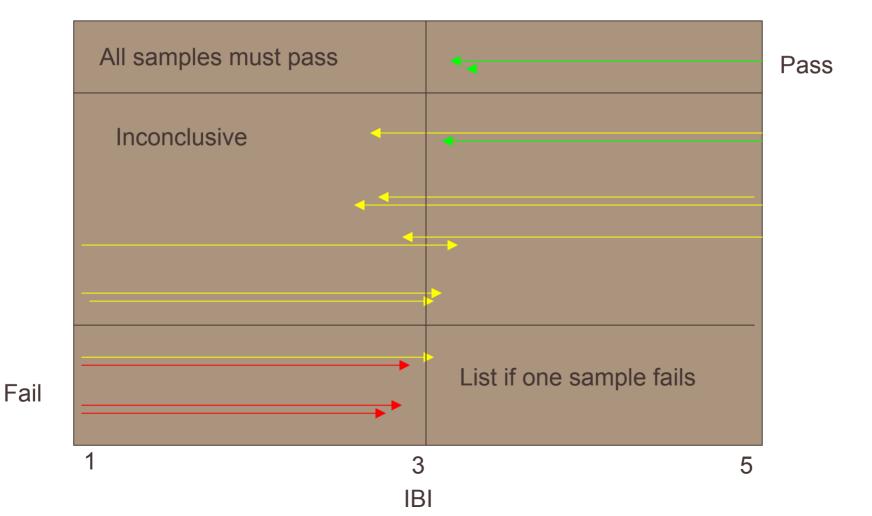
Estimation of standard errors

 $SE = \frac{S}{\sqrt{n}}$

or

 $SE = IBI \times \frac{cv}{\sqrt{n}}$

How do we use this information?


Construct confidence intervals for IBI scores

$$\hat{\overline{X}}_L = \overline{x} - t \times SE, \quad \hat{\overline{X}}_U = \overline{x} + t \times SE$$

Some options for calculating confidence limits

- 90% or 95% confidence limits
- One-sided or two sided
- * Use mean standard deviation or *cv*
- * By stream order, or overall

Listing framework, using one-sided 90% confidence intervals and cv of 8% for BIBI and FIBI.

Outcome

- Approximately 175 new 303(D) listings based on biological assessments.
- The majority are sub-watersheds within larger watersheds already impaired for nutrients or sediments.
- TMDL development low-priority under assumption that correcting sediment impairments will significantly improve stream quality.