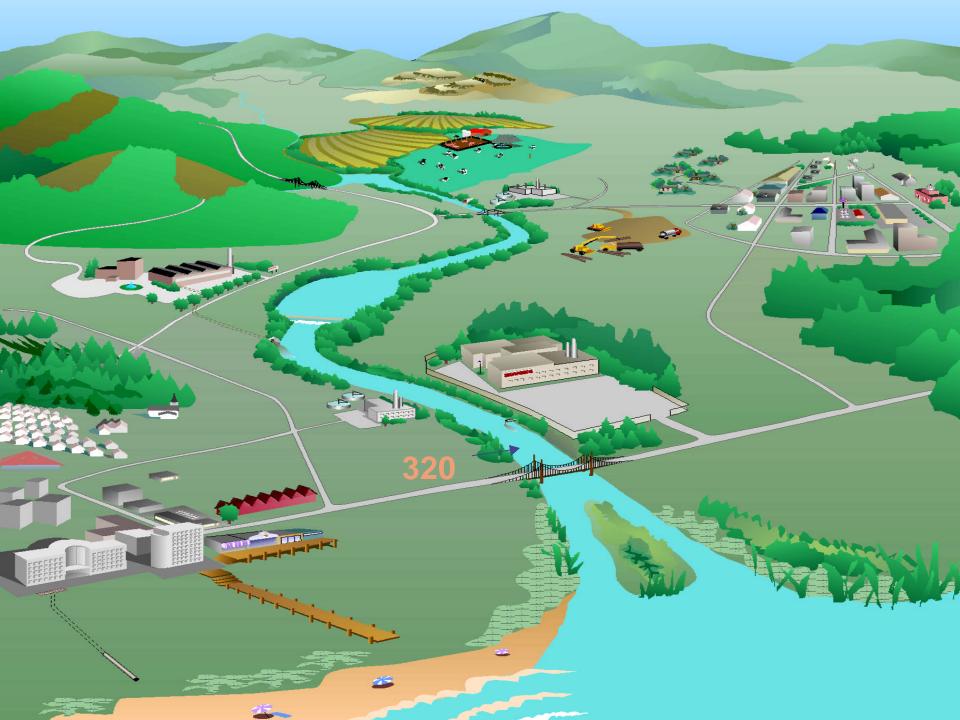
US ERA ARCHIVE DOCUMENT

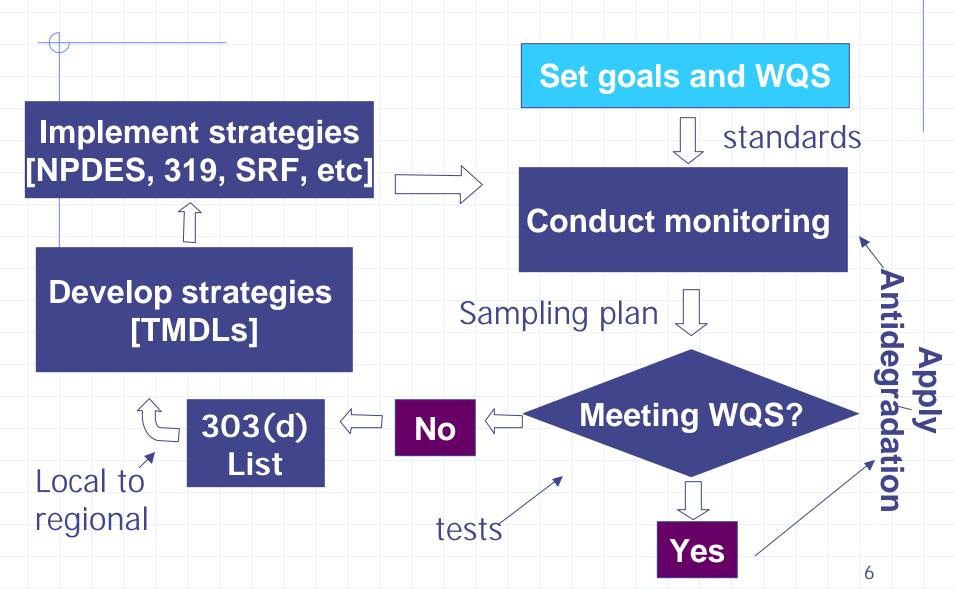
Evaluation of Standards data collected from probabilistic sampling programs

Eric P. Smith
Y. Duan, Z. Li, K. Ye
Statistics Dept., Virginia Tech


Sponsor

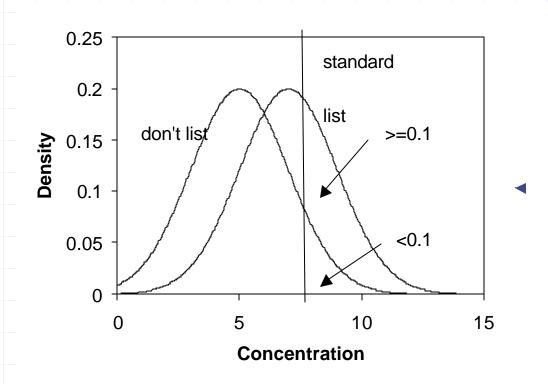
This talk was not subjected to USEPA review. The conclusion and opinions are soley those of the authors and not the views of the Agency.

Outline


- Background
 - Standards assessments
- Single site analysis
- Regional analysis
 - Mixed model approach
 - Bayesian approach
- Upshot: need models that allow for additional information to be used in assessments

Standards assessment - 303d

- Clean Water Act section 303d mandates states in US to monitor and assess condition of streams
- Site impaired list site, start TMDL process (Total Max Daily Loading)
- Impaired means site does not meet usability criteria


Linkages in 303(d)

Impaired sites

- Site impaired if standards not met
- Standards defined through numerical criteria
 - Involve frequency, duration, magnitude
- Old method
 - Site impaired if >10% of samples exceed criteria
 - Implicit statistical decision process- error rates

Test of impairment

Newer approach to evaluation

- Frequency:
 - Binomial method
 - Test p<0.1
- Magnitude
 - Acceptance sampling by variables
 - Tolerance interval on percentile
 - Test criteria by computing mean for the distribution of measurements and comparing with what is expected given the percentile criteria

Problems

- Approach is local
 - Limited sampling budget; many stations means small sample sizes per station
 - Impairment may occur over a region
 - Modeling must be relatively simple (hard to account for seasonality, temporal effects)
 - Does not complement current approaches to sampling
 - Site history is ignored
 - Not linked to TMDL analysis (regional) and 305 reporting

Probabilistic sampling schemes

- Rotating panel surveys
 - Some sites sampled at all possible times
 - Other sites sampled on rotational basis
 - Sites in second group may be randomly selected

Making the assessment regional

Y = mean + site Y = mean + time + site

$$y = X\beta + Zu + e$$

- X defines fixed effects (time), Z defines random ones (site, location), β, u are parameters
- Covariances

$$e \sim MVN(0,\Gamma)$$

 $u \sim MVN(0,G)$

$$V(y) = ZGZ' + \Gamma$$

Regional Mixed Model

- Allows for covariates
- Allows for a variety of error structures
 - Temporal, spatial, both
- Does not require equal sample sizes etc
- Allows estimation of means for sites with small sample sizes
 - Improves estimation by borrowing information from other sites

Simple model

$$y_{ij} = \mathbf{m} + \mathbf{a}_i + \mathbf{e}_{ij}$$

Error term allows for modeling of temporal or spatial correlation

Random site effect

- Testing is based on estimate and variance of mean for site i (μ_i)
- Can also test for regional impairment using distribution of grand mean

Error and stochastic components

$$y_{ij} = \mathbf{m} + \mathbf{a}_i + \mathbf{e}_{ij}$$

Error term allows for modeling of temporal or spatial correlation

Random site effect

Covariance Structure without correlation (one random effect model)

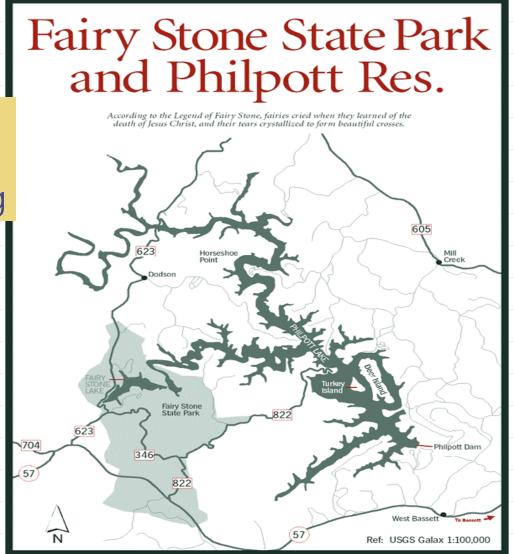
$$oldsymbol{e}_{ii} \sim N(0, oldsymbol{s}^2)$$

(one random effect model)
$$e_{ij} \sim N(0, \mathbf{s}^{2})$$

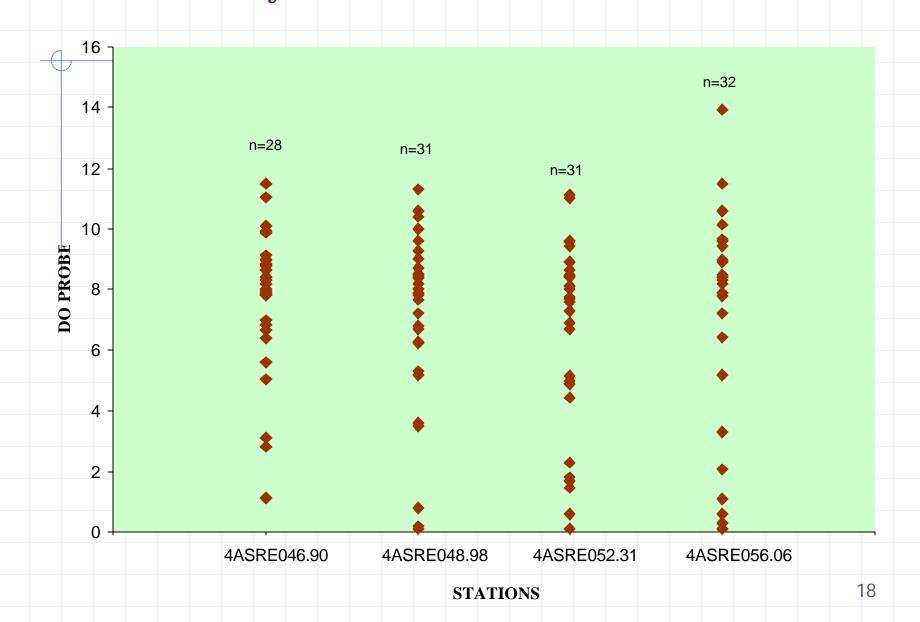
$$\text{Spatial Covariance Structure}$$

$$Var(\mathbf{e}) = \sigma^{2} \begin{bmatrix} 1 & \rho^{d_{12}} & \rho^{d_{13}} & \rho^{d_{14}} \\ \rho^{d_{21}} & 1 & \rho^{d_{23}} & \rho^{d_{24}} \\ \rho^{d_{31}} & \rho^{d_{32}} & 1 & \rho^{d_{34}} \\ \rho^{d_{41}} & \rho^{d_{42}} & \rho^{d_{43}} & 1 \end{bmatrix}$$

Test based on OLS estimations for each site i


$$\frac{\overline{y}_i - baseline}{\hat{\mathbf{S}} / \sqrt{n_i}} \sim t_{df, \mathbf{d}}$$

where \overline{y}_i and \hat{s} are OLS estimates of m and s;


$$df = n_i - 1$$
, $\mathbf{d} = noncentrality$

- Baseline is the standard. For DO, we use 5, and for PH 6.
- Model based: same idea but mean and variance are estimated from model

Located in SW Virginia Good bass fishing

DO data collected at four stations of PHILPOTT RESERVOIR (years 2000, 2001 & 2002)

Evaluation based on Do data of PHILPOTT RESERVIOR (2000-2002)

	4ASRE046.90	Model based	4ASRE052.31	4ASRE056.06
n	28		31	32
Sample mean	7.55		6.66	6.67
Sample variance	5.81		9.56	16.15
% exceeding Binomial p-value	11 .5406		26 .0096	28 .0033
Test statistic	5.6	4.27	2.99	2.35
critical value	4.75	5.05	5.19	5.2
conclusion	Fail to reject	reject	reject	reject

Single site analysis

Bayesian approach

$$y_{ij} = \boldsymbol{m} + a_i + \boldsymbol{e}_{ij}$$

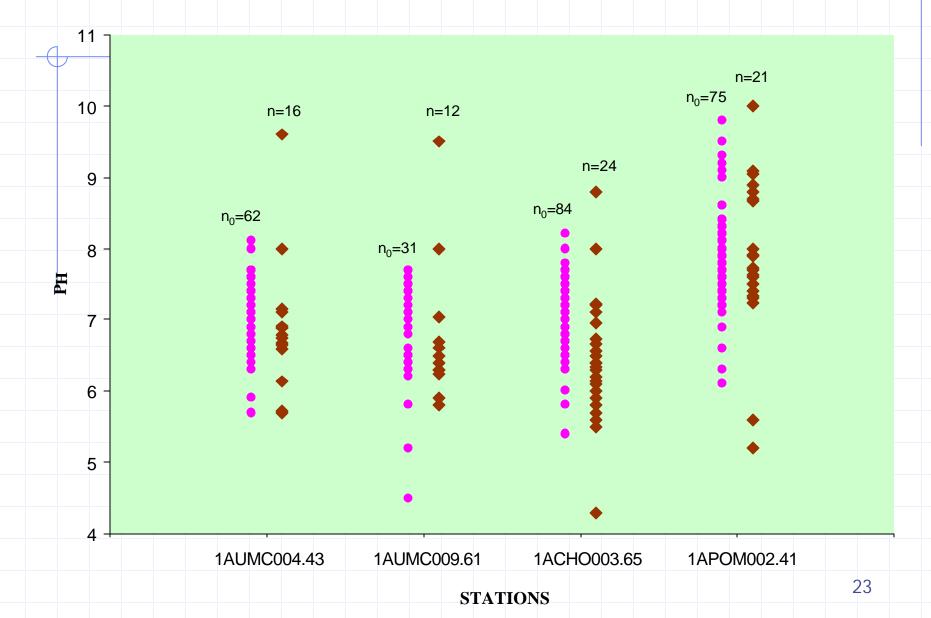
- a is a random site effect
- Error term may include temporal correlation or spatial
- Priors on parameters
 - Mean –uniform
 - a is normal (random effect) variance has prior

$$p(\mathbf{s}^2,\mathbf{s}_a^2) \propto \frac{1}{\mathbf{s}^2} \frac{1}{\mathbf{s}^2 + \mathbf{s}_a^2}$$

Alternative: Using historical data

- Power prior Chen, Ibrahim, Shao 2000
- Use likelihood from the previous assessment (D₀). Basic idea: weight new data by prior data
- Power term, **d**, determines influence of historical data.
- Modification to work with Winbugs

Incorporate Historical Data using Power Priors


• Make d random, and assign a prior p(d) = Beta(a, b) on it. The joint posterior of (q, d) becomes

$$\boldsymbol{p}(\boldsymbol{q},\boldsymbol{d} \mid D_0, D) \propto \frac{L(\boldsymbol{q} \mid D)(L(\boldsymbol{q} \mid D_0))^d \boldsymbol{p}(\boldsymbol{q}) \boldsymbol{p}(\boldsymbol{d})}{\int (L(\boldsymbol{q} \mid D_0))^d \boldsymbol{p}(\boldsymbol{q}) d\boldsymbol{q}} I_A(\boldsymbol{d})$$

where D is current data and D₀ is past data $A = \left\{ d : 0 < \int p(q) (L(q \mid D_0))^d dq < \infty \right\}$

Advantage: Improve the precision of estimates.

PH data collected at four stations: use past information to build prior

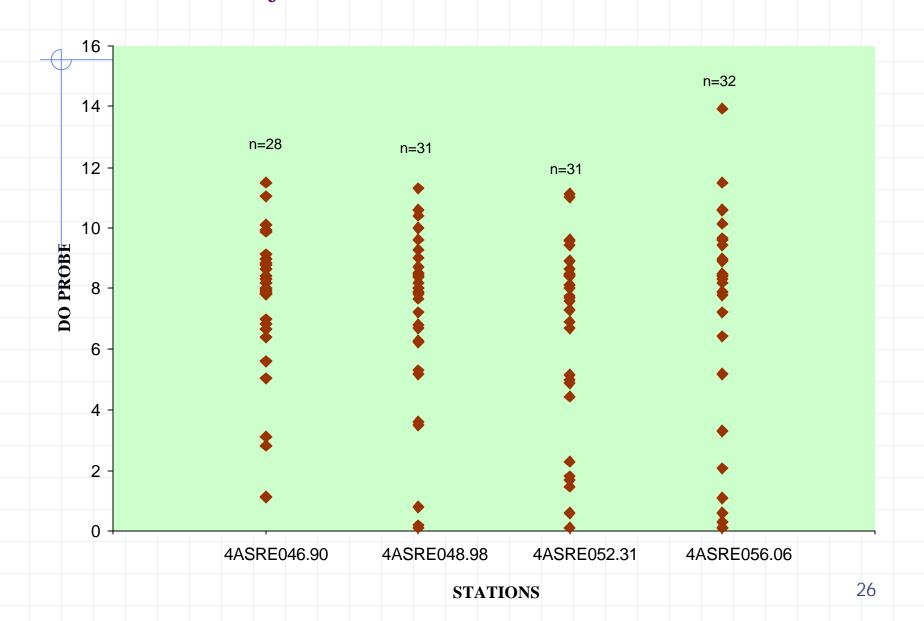
Evaluate site impairment based on PH data with power priors

Station of interest	1AUMC004.43	1AUMC009.61	1Acho003.65	1APOM002.41
n	16 (yr.99-02)	12 (yr.99-01)	24 (yr.99-01)	21 (yr.99-00)
No. obs <6	2	2	6	2
sample mean	6.91	6.78	6.43	7.87
sample variance	0.82	1.06	0.78	1.23
n_0	62 (yr.90-98)	31 (yr.90-98)	84 (yr.90-98)	75 (yr.90-98)
sample mean of D ₀	7.05	6.73	6.95	7.88
Percent exceed the EPA standard	0.13	0.17	0.25	0.10
P-value of Binomial test	0.4853	0.3410	0.0277	0.6353
$(H_0: p=0.1 H_a: p>0.1)$				
Bayesian test. (H ₀ : L=6	H _a : L<6), L is the	lower 10th perc	entile of PH	
With Reference Prior:				
$P(H_0)$	0.1663	0.0502	0.0003	0.8673
posterior s.d. of ?	0.3399	0.4708	0.262	0.3564
With Power Prior:				
P(H ₀)	0.4868	0.03525	0.0017	0.9831
posterior s.d. of ?	0.2566	0.2562	0.2381	0.2477

Power Priors with Multiple Historical Data Sets

If multiple historical data sets are available, assign a different d_j for each historical data set.

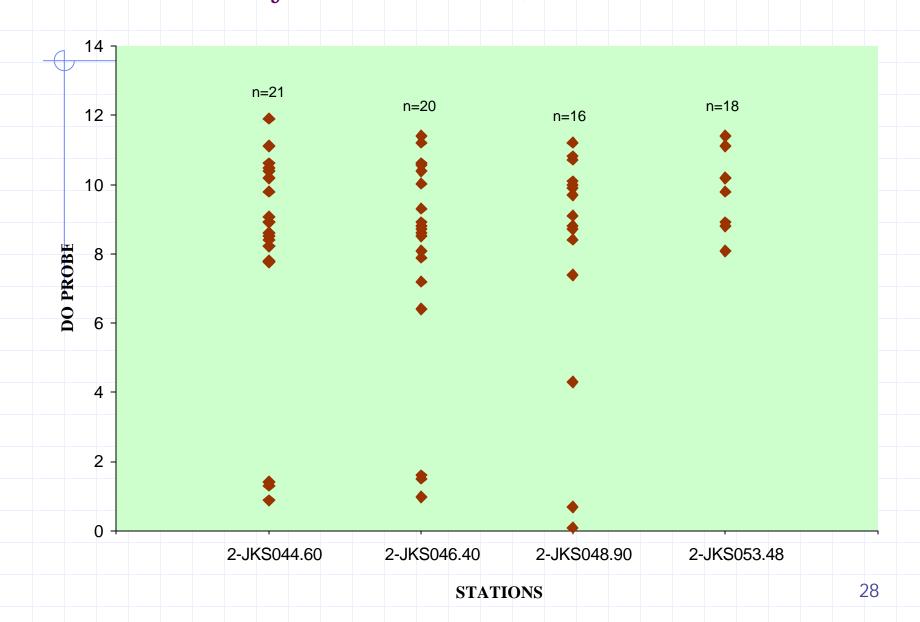
$$L(\boldsymbol{q} \mid D) \left(\prod_{j=1}^{m} (L(\boldsymbol{q} \mid D_{0j}))^{d_{j}} \boldsymbol{p}(\boldsymbol{d}_{j}) \right) \boldsymbol{p}(\boldsymbol{q})$$


$$\boldsymbol{p}(\boldsymbol{q}, \underline{\boldsymbol{d}} \mid D_{0}, D) \propto \frac{1}{\int_{j=1}^{m} (L(\boldsymbol{q} \mid D_{0j}))^{d_{j}} \boldsymbol{p}(\boldsymbol{q}) d\boldsymbol{q}} I_{B}(\underline{\boldsymbol{d}})$$

where

$$B = \left\{ (\boldsymbol{d}_{1}, ..., \boldsymbol{d}_{m}) : 0 < \int \left(\prod_{j=1}^{m} \left(L(\boldsymbol{q} \mid D_{0j}) \right)^{\boldsymbol{d}_{j}} \right) \boldsymbol{p}(\boldsymbol{q}) d\boldsymbol{q} < \infty \right\}$$

Data collected at adjacent stations could be used as "historical" data.


DO data collected at four stations of PHILPOTT RESERVOIR (years 2000, 2001 & 2002)

Evaluate site impairment based on DO data collected at four stations of PHILPOTT RESERVOIR (years 2000, 2001 & 2002)

Station of interest	4ASRE046.90	4ASRE048.98	4ASRE052.31	4ASRE056.06
n	28	31	31	32
No. obs <5	3	5	8	9
sample mean	7.55	7.10	6.66	6.67
sample variance	5.81	8.28	9.56	16.15
Percent exceed the EPA standard	0.11	0.16	0.26	0.28
P-value of Binomial test	0.5406	0.1932	0.0096	0.0033
$(H_0: p=0.1 H_a: p>0.1)$				
Bayesian test. (H ₀ : L=5	H _a : L<5), L is the	e lower 10th perc	entile of DO	
With Reference Prior:				
P(H ₀)	0.1640	0.0038	0	0
posterior s.d. of ?	0.6514	0.7325	0.7875	1.008
With Power Prior:				
$P(H_0)$	0	0	0	0
posterior s.d. of?	0.5485	0.5371	0.5439	0.6162

DO data collected at four stations of MOOMAW RESERVOIR (years 2000 & 2001)

Evaluate site impairment based on DO data collected at four stations of MOOMAW RESERVOIR (years 2000 & 2001)

Station of interest	2-JKS044.60	2-JKS046.40	2-JKS048.90	2-JKS053.48
n	21	20	16	8
No. obs <5	3	3	3	0
sample mean	8.16	8.06	8.19	9.81
sample variance	9.73	10.07	12.14	1.32
Percent exceed the EPA standard	0.14	0.15	0.19	0.00
P-value of Binomial test $(H_0: p=0.1 H_a: p>0.1)$	0.3516	0.3231	0.2108	1.0000
, ,	 H _a : L<5), L is the	e lower 10th perc	centile of DO	
With Reference Prior:	0.4.407	0.4440	0.4000	0.000
$P(H_0)$	0.1497	0.1149	0.1022	0.9968
posterior s.d. of ? With Power Prior:	1.0030	1.0500	1.3110	0.7219
$P(H_0)$	0.1338	0.1206	0.1163	0.3301
posterior s.d. of ?	0.6698	0.6832	0.7132	0.7469

Comments

- Advantages
 - Greater flexibility in modeling
 - Allows for site history to be included
 - Can include spatial and temporal components
 - Can better connect to TMDL analysis and probabilistic sampling
- Disadvantage
 - Requires more commitment to the modeling process
 - Greater emphasis on the distributional assumptions