US ERA ARCHIVE DOCUMENT

Environmental Monitoring and Assessment Program Great River Ecosystems (Great Rivers EMAP)

David Bolgrien

Ted Angradi, Brian Hill, Jack Kelly, Janet Keough, Billy Schweiger

EPA Office of Research & Development Mid-Continent Ecology Division

Duluth, MN

Building a scientific foundation for sound environmental decisions

We can change a river.

Sometimes it changes back

Changes make Great Rivers the epitome of multiuse resources.

Uses

- Power production
- Navigation
- Irrigation
- Water supply
- Water quality
- Flood control
- Recreation
- Wildlife
- Commercial harvests

Impacts

- Flows reduced & shifted later in season.
- More clear and cool water.
- Static channels.
- Static riverbed.
- Disconnected & developed floodplains.
- Disconnected reaches.
- Altered food chains.

Multiple uses means responsibility to manage.

Building a scientific foundation for sound environmental decisions

Management needs data. DaData begets informed management.

- Census
 - Maybe point-sources or dischargers
 - NPDES
- Rotations
 - Dense/ targeted coverage
 - NAWQA
- Reactionary
 - Specific to site, time, parameters
 - Spill response
- Fixed stations
 - Loading & trends
 - NASWQAN
- Probability
 - Flexible, defined coverage
 - LTRMP, ORSANCO, EMAP
- Models

RESEARCH & DEVELOPMENT

Building a scientific foundation

for sound

decisions

environmental

Lessons learned from managing Great Rivers.

- Endangered Species Act, restoration, and conservation drive information needs.
- Site-specific targeting of individual chemical, conditions, or species is big driver.
- States not able to describe water quality or use impairments as required by the Clean Water Act.
- It is difficult to determine impact of management actions because data are not coherent.
- It is difficult to analyze patterns because data can not be aggregated in space or time.
- Stakeholders must be identified and involved.
- Approaches must work across boundaries.
 - Focusing on the boundaries of environmental problems helps identify the science and interests that should participate and facilitate solutions. Interstate strategies are important (Mike Leavitt – EPA Administrator)

EPA's Environmental Monitoring and Assessment Program (EMAP) is a response to these lessons.

- Develop & demonstrate the science needed for state-based monitoring frameworks to determine condition and detect trends in condition for Great River ecosystems.
- Transfer this technology in a useable form so it adoptable to States, Tribes, and regions.
 - EMAP is not EPA's monitoring program.
- EMAP surveys infer conditions from sample.
 - Demonstrations yield baseline assessments.
 - Surveys through time = monitoring.
- Great Rivers EMAP is a step towards completing a national stream assessment strategy.
 - Supports CWA with biological focus supported with water quality, physical and chemical data.
 - Field sampling 2004-2005.
 - Analyses (including more sampling) 2005-2007.

Building a scientific foundation for sound environmental decisions

EMAP Q&A

What % (±error) of [resource] in [unit] is in [condition] as indicated by [indicator]?

Resource	Unit	Condition	Indicator
River-mile	State	Good	Biotic integrity
Reservoir area	Ecoregion	Bad	Water Quality
Wetland area	Watershed	Marginal	Stressors
Backwater	County	Poor	Habitat Integrity
area	Reach	Threatened	
Floodplain	River	Impaired	
area	Pool	Whacked	
Shoreline-mile	Reservoir		
Sandbars	EPA Region		
	Water district		
	Reservation		
	United States		

Using this format is new for Great Rivers.

Geography of Great Rivers EMAP

Scope is big.
Boundaries are many.

1 Interstate agency

3 EPA Regions

6 Reservoirs

8 River reaches

8 ACOE Districts

12 Ecoregions

15 States

WY

CO

36 Locks/Dams & Pools

ND

SD

NE

KS

WI

MO

AR

Fort Peck to Pittsburgh - St. Paul to Cairo

Ecosystem & management concerns are complex, dynamic, and political.

Building a
scientific
foundation
for sound
environmental
decisions

Metrics and Indicators

Water Quality

- Dissolved oxygen
- Dissolved N (NOx, ammonia)
- Conductivity
- pH
- Metals (As, Pb, Se, CU, Fe, Ni, Zn, not Hg)
- Temperature
- Anions & Cations
- Turbidity, Suspended matter
- Alkalinity
- Total & Dissolved P, N, & C
- Silica
- Elemental particle analysis
- Particulate stable isotopes

Sediment

- Enzyme activity
- Toxicity
- Grain size
- Total and volatile matter
- Chemistry (organics, inorganics)

Biotic Assemblages

- Fish
 - Tissue contaminants
- Invertebrates
 - Shoreline kicks
 - Snags
- Zooplankton
- Phytoplankton
- Periphyton
- Submersed aquatic vegetation

Habitat

- Littoral
 - Vegetation cover
 - Substrate (fish cover)
 - Depth
 - Velocity
 - Woody debris
- Riparian
 - Vegetation cover
 - Development
 - Invasive/exotic species

Main Flow channel Right Left Bank bank NHD centerline Primary shore transect (500-m other samples) Sample point (WQ, plankton) Sample point (WQ, plankton) Sample point (WQ, Secondary plankton) shore transect (500-m Fish only)

Sample Design

- Probability Design
 - Based on National Hydrologic Data.
 - Sample sites are coordinates on centerlines using Generalized Random Tessellation Stratified (GRTS) survey design for a linear resource with reverse hierarchical ordering (www.epa.gov/nheerl/arm/).
 - Selects bank to sample.
 - Stratified by river.
 - Assign minimum sample size is 30 per state.
 - Except some Ohio River valley states and MT and ND.
 - Data may be aggregated.
 - Programs inter- and intra-annual revisit schedule at rate of 20%.
 - Dossiers for each site.
 - Rules for site replacement and layout adjustments.

Building a scientific foundation for sound environmental decisions

Great Rivers EMAP Sites

Great Rivers EMAP Sites for 2004-2005

RE DE\ Developed shorelines BuSCI for for #01 de

Problems with reality

Site Dossiers

- Navigation information
- Preliminary site layout
- Potential hazards

SITE LAYOUT LEGEND River Condection Main Charmed Shoreline Main Charmed Shoreline Main Charmed Shoreline

Medified Channel Shouther
 Cross-Channel Bullymetry Transect

Stie X S Sin Y S Sin Z

15 & 25 Transet Point
Cross-Channel Transet/MCS Interactions
Primary & Secondary Main-Channel Shoreline Transet
Primary & Secondary Main-Channel Shoreline Transeth

MAGGINY MITADATA
Joseph 100,000
Jose

and discretize transact art: thete information.

Stay Scale: 1:09,066

15
275
500
U.S. Et A. Mild Constant Energy De-Mild Collegion Bird Collegio

EMAP-GRE Sto Dessie - GR Wester-212, Page 2 of 2.

EMAP-GRE Site Dossier GRW04449-282

River Thalweg Shoreline Transect Points Lines: Attribute Information

NAME	SECTION		CLOSEST RIVER MILE		POOL/REACH	NED ELEVATION
Mississippi River	Hinos lows	Left	372	1	Pool 19	155

DETAIL	TRAN	ID	LON_DD	LAT_DD	OR_AZ	SB_DIST	NSB_DIST	CH_WIDTH
X-Site	X	A00	-91,3656	40.5043	2 8	0.00	-	
1/3 Point	X	#02	-91.3613	40.5048	. tt - 5/		(C.+)	
3/3 Point	X	#03	-91.3699	40.5037	1	(=)	-	277
Cross Channel Transact/MCS Int.	X	#04	-91,3570	40.5054	- A 3	-	-	3 2
Cross Channel Transact/MCS Int.	X	#05	-91.3742	40.5032	40 A 3	(-E)	+	5
Transact X	Y	A05 A07	-91.3661	40.5065	257.47	736.27	731.81	1468.06
250m Site								
500m Site	Z	A08	-91,3669	40.5086	# 3	-	-	9 92
Primary 500m Upstream MCS Transect	X	A09	-91,3580	40.5097	3 2 8	520	20140	32
Secondary 500m Downstown MCS Transact	X	#10	-91.3558	40.5010	. H .		000 mm 1	3 300

DATA DICTIONARY DETAIL - Description

TRAN = Transect
ID = ID number from doesist page 2
LON DD = Longitude in docimal degrees
LAT DD = Longitude in docimal degrees
OR AZ = Orthogonal azimath (degrees doclaries from north)
SB DEST = Distance to sample bank (maters)
NSB DIST = Dustance to non-sample bank (maters)

CH WIDTH - Total width of channel [metate]

**NED Elevation value is in meters.

**All distance values are in motors.

**All animath values see in degrees.

**All coordinate values were derived using: Protection: Geographic

Datum: NADES Spheroid: ORS1900 Units: Degrees

DE EPA, Mid-Continue Restagy Division CRE Congdon Blod Delufs, NOV 20000

May layout produced under the Ex.EU.E Constact to Wide-Atto Task Coder 2014

EMAP-CIRE Site Dosnier

GRW04449-282

Building a scientific foundation for sound environmental decisions

Site Activities

Site layout

Electrofish Two 500 m segments (single pass; single gear)

Submersed aquatic vegetation (raking 3 plots at 6 sites)

Data Flow in Great Rivers EMAP

Data Analysis (remember the format?)

What % of [resource] in [unit] is in [condition] as indicated by [indicator] ?

	Sample-based	Design-based
Mean (m)	13.54	18.47
Std Dev	13.34	2.35
Inference	unknown	precise & accurate

GR EMAP will estimate the proportion of area or length of resources in a condition.

Indicators may not be well developed. Metrics may not inform management decisions.

AND

Assessing condition as good or bad depends on reference conditions or standards that may not be well developed.

Building a scientific foundation for sound environmental decisions

Program Outcomes

Evaluate sample framework and indicators.

Establish partnerships.

Assessment sampling.

Reference condition sampling.

Report on design and methods.

Initial condition report.

Initial stressors report.

Support transfer approach to partners.

Assist indicator development.

Assist criteria development.

National design, methods, and indicators for Great River assessments.

Integrate Great River assessments into national assessment framework.

2003	2004	2005	2006	2007	2008	 •••	•••	

Building a scientific foundation for sound environmental decisions

