US ERA ARCHIVE DOCUMENT

Presented at

# Great Rivers Reference Condition Workshop

January 10-11, Cincinnati, OH

Sponsored by

The U.S. Environmental Protection Agency and The Council of State Governments





# Why Might Zooplankton be a Useful Indicator Group for Great Rivers?

Ecological importance



### Filter-Feeding Fishes



Ictiobus cyprinellus (Bigmouth Buffalo)



Dorosoma cepedianum (Gizzard Shad)



# Why Might Zooplankton be a Useful Indicator Group for Great Rivers?

- Ecological importance
- Rapid turnover rate
- Mobile planktonic community/integrate conditions spatially

#### Summer 2004 EMAP Sampling Locations

#### Legend

- SAMP\_04\_83\_15N
- Up\_Miss\_83\_15N
- EMAP\_states\_83\_15N





# Why Might Zooplankton be a Useful Indicator Group for Great Rivers?

- Ecological importance
- Rapid turnover rate
- Mobile planktonic community/integrate conditions spatially
- Diverse, minimal zoogeographic issues
- Proven useful indicators of environmental degradation in lakes and wetlands

### Processing Update

What was collected?

#### Zooplankton - two groups

- Macrozooplankton Cladocerans, adult + juvenile Copepods
- Microzooplankton Rotifers, Copepod nauplii

Main channel sampling: depth and spatially integrated



#### At Each Point:

20 L for Macro

2 L for Micro

#### **Total Sample / Site:**

Macro – 180 L filtered through 63 µm mesh

Micro – 18 L filtered through 20 µm mesh

### **Processing Update**

What have we been doing?

- 3 Workshops Completed
  - Work out identification issues
  - Discuss statistical analyses
- QA/QC
  - Upper Miss and Missouri 2004 Complete
  - Issues with Ohio River being worked out
- 2004 ID and Counts
  - Upper Miss; complete, some macro samples will be recounted
  - Missouri River complete
  - Ohio River will be recounted to correct QA/QC issues
  - 2005 samples on going

#### Fortunate Accident

- Original Processing Scheme
  - Rotifers and copepod nauplii counted only in microzooplankton samples
  - -Crustacean zooplankton counted only in macrozooplankton samples
- 2004 Samples
  - -Rotifers and crustacean zooplankton were "accidentally" counted in all samples
- Allows for a test to see if the two sampling methods are really necessary

#### Expected Regression Plot Assuming Both Methods Are Equivalent











# Species Detection 2004 Samples Missouri River

- 23 Cladoceran species detected using incorrect counting method (i.e., counting rotifers and nauplii in macrozooplankton samples
- 39 Cladoceran species detected using correct counting method (i.e., only counting cladocerans and copepods in macrozooplankton samples
- An increase of 16 species!

## In Summary

- Original methods strongly supported
- Use of a 63 µm mesh underestimates the abundance of rotifers by two to three orders of magnitude
- The small volume sampled through the 20 µm mesh is not effective for sampling cladocerans and copepods
- Most studies of zooplankton likely substantially underestimate the abundance of Rotifers
- The Great Rivers EMAP is one of a minority of studies capable of accurately describing zooplankton community structure

### Other Cool Stuff

Large-scale spatial patterns





#### 2004 Macrozooplankton-Missouri River



#### 2004 Microzooplankton-Missouri River



### Other Cool Stuff

Large-scale spatial patterns

Correlations with land use patterns



Stress: 0.11





Channel constraint-63 µm

ANOSIM: Global R = 0.548, p = 0.010

## Where Are We Going?

Next Steps in Indicator Development

Links with chl-a and biogeochemical indicators

Correlations with other EMAP indicators

Correlations with channel complexity

