US ERA ARCHIVE DOCUMENT

Presentation Highlights

- Present results of landscape modeling efforts where ecological field data are integrated with measures of landscape conditions at multiple scales.
 - Nitrogen export to streams
 - Breeding birds
 - Integrated bird/nutrient export assessment
- Describe different statistical approaches used to integrate data
- Examples primarily from the mid-Atlantic

Primary Objectives Related to EMAP

- Evaluate potential causes/factors influencing the condition of ecological resources at a range of scales
- Extend EMAP probability estimates to spatial continuous surfaces and areas not sampled

Models

- Empirical
 - Multiple regression
 - Logistics regression
 - Classification and Regression Tree (CART)
- Baysian
- Combination ... rule-based/empirical (integrated assessment of breeding bird habitat suitability and nutrient export

General Approach

- Select specific endpoint of interest
 - Two examples in our studies
 - Nutrients/Sediment in streams as they affect water quality
 - Breeding bird habitats
- Collect/acquire field samples
- Filter data based on selection criteria
- Assemble spatial data at various scales on various units (functional and arbitrary)
- Generate metrics and or measures ... pair metrics with individual samples sites in a SAS database
- Conduct statistical analyses

USGS Loading Sample Sites and Associated Watersheds

Location of Example Watershed

100

Example Watershed

Landscape Metrics

Mean Riparian agriculture **Riparian forest Forest fragmentation Road density Forest land cover Agricultural land cover Agricultural land cover** on steep slopes **Nitrate deposition Potential soil loss Roads near streams Slope gradient** Slope gradient range Slope gradient variance **Urban land cover** Wetland land cover **Barren land cover**

Multiple Regression

R² = .86 % Ag Nitrate Dep Roads x Streams % Urban Riparian Ag

R² = .83 Riparian Forest Nitrate Dep

 $R^2 = .65$ Road Density Riparian Forest

Logistics Regression

- Uses threshold values and provides crossvalidation and probabilities of exceeding a threshold (yes/no relative to a dependent variable) based on a set of independent variables (landscape and biophysical variables)
- Useful for evaluating probability of exceeding a TMDL threshold/condition threshold

Logistic Regression Results with Test Points

Classification and Regression Tree Study

CART Analysis – N concentration in MAIA Streams

Baysian Landscape Models

Nitrogen Export kg/ha/yr

Forest	Urban	Agriculture			
0.1	5.0	3.2			
0.1	5.0	4.8			
0.2	5.0	5.0			
0.7	5.1	5.0			
2.2	5.4	5.8			
2.5	6.7	9.1			
2.5	7.9	9.6			
2.6	9.6	9.8			
3.0	9.6	11.9			
3.7	12.0	14.0			
4.4	16.3	20.0			
7.6	18.0	20.6			
12.2	28.0	22.3			
		23.5			
1991, 20:717)		33.3			

Source: Frink (JEQ,

Land- Cover	WS (ha)	N/P	# of Obs.	Min	Q ₂₅	Q ₅₀	Q ₇₅	Max
Agriculture	40-8000	N	30	2.1	6.6	11.1	20.3	53.2
Urban	4-4800	N	19	1.5	4.0	6.5	12.8	38.5
Forest	7-47000	N	21	1.4	1.9	2.5	3.3	7.3
Agriculture	40-8000	Р	27	0.08	0.49	0.91	1.34	5.40
Urban	4-4800	Р	24	0.19	0.69	1.10	3.39	6.23
Forest	7-47000	Р	62	0.01	0.04	0.08	0.22	0.83

$$N, P = \sum_{i}^{n} (C_i * A_i)$$
 Threshold 7.0 0.8

Risk: # of iterations / 10000 >= 7.0 or 0.8

MAIA BBS Study

- Compare landscape metrics to breeding bird guild structure based on O'Connell et al
- 182 BBS transects
- Center point of route
- Circular support area at three different scales
- Bird data from BBS routes of highest quality

Results of MAIA BBS Study

- Generalists
 - Forest edge (30% of variation)
 - Forest fragmentation (2% of variation)
 - Only one guild > 40% of variation
 - Exotic (46%)
- Specialists
 - Forest edge (44% of variation)
 - Forest @ 3 scales (2% of variation)
 - Two guilds > 40% of variation
 - Interior forest obligate (53%)

Specialists (B)

Bird Community Integrity

Decreasing bird community integrity

Percent Land Cover Type by BCI Grouping

CROSS-VALUE INTEGRATION

An example related to landscape change

Mid-Atlantic Integrated Assessment (MAIA) Study Area Land Cover (1970's)

Mid-Atlantic Landscape Change (1970s-1990s)

Using Relationship Functions to **Evaluate Watershed Condition**

