REGIONAL COASTAL ASSESSMENT PROGRAM
(Formerly known as the Coastal Bend Bays Project)

A Proactive Approach in Coastal Monitoring for South Texas

Brien A. Nicolau
Alex X. Nuñez
Erin M. Albert
Jennifer Pearce
Jefferson N. Childs

Dr. Paul N. Boothe
Albion Environmental
College Station, TX

Center for Coastal Studies
TAMU-CC
Corpus Christi, TX
PARTNERS

• Coastal Bend Bays & Estuaries Program, Inc.
• Port Industries of Corpus Christi
• Texas Commission on Environmental Quality
 – Houston Analytical Laboratory (Year 1)
• Texas General Land Office
 – Coastal Coordination Council - Coastal Management Program
• National Oceanic and Atmospheric Administration
 – Coastal Zone Management Program
• U.S. Environmental Protection Agency
 – Region 6
 – National Health and Environmental Effects Research Laboratory - Gulf Ecology Division
CBBEP Region

- 3 of the 7 major Texas systems
 - Mission - Aransas, Nueces, and Upper Laguna Madre
 - 600 square miles
 - ~ 30% of the Texas Coastline

- Connected yet biogeographically distinct

- Salinity increases north to south
 - Laguna Madre one of a few hypersaline lagoons in the world

- Semi-arid, sub-tropical climate
 - Average rainfall 25 to 38 inches
 - highly variable
 - Tropical Storms / Hurricanes
BACKGROUND AND PROJECT JUSTIFICATION

- CBBEP region historically under sampled for water quality parameters
 - Decline in temporally and spatially intense monitoring since the mid-1970s
 - Sufficient monitoring of Copano and Aransas Bays is lacking
 - No consistent historical monitoring of specific parameters within the expansive Coastal Bend Bay System
BACKGROUND AND PROJECT JUSTIFICATION

• Historical data raised numerous Water Quality concerns within the CBBEP System
 – Chlorophyll-a, DO, salinity (lack of freshwater inflows)
 – Priority pollutant metals including cadmium, copper, chromium, lead, mercury, nickel, and zinc
 – Portions of CBBEP Region placed on Texas 303 (d) list of impaired waters for elevated zinc in oyster tissue. TMDL currently being conducted
 • Most listed for fecal coliforms (Oso Bay and ULM for DO)
 • Nearly listed for copper (d) (Station 13407 – Marker 62 in CC Bay)

• Stakeholder Concern (TMDL)

• Proactive Approach (Bottom-Up rather than Top-Down)
PROJECT OBJECTIVES

• Conduct an intensive, targeted monitoring study to adequately characterize CBBEP Water Quality conditions:
 – Produce scientifically sound Water Quality data
 • QAPP (but of course)
 • “Ultra - Clean” Sampling and Laboratory Techniques
 • Utilizing Improved Analysis Methods
 – Produce sufficient data to describe spatial and temporal Water Quality trends in the CBBEP region
 • Superior quality compared to historical monitoring data
 • Address areas and parameters of historic concern
 – Produce a extensive, reliable, and powerful data set
 • Solid basis for future management decisions
 • Accurate data that allows for precise localization of anthropogenic influences
30 “EMAP” Stations (n = 120)
 - One Per Hexagon Per Quarter
 - Field, RC, TM, and Bio
 - Sediment for 1 Quarter

6 “Targeted” Stations (n = 36)
 - Bi-monthly sampling
 - Field, RC and TM
 - TCEQ Established Stations

4 Inner Harbor Stations (n = 16)
 - Quarterly Sampling
 - Field, RC, TM
 - TCEQ Established Stations

4 Oso Creek and 4 Oso Bay (n = 16)
 - First 2 Quarters
 - Field, RC, and TM
 - TCEQ Established Stations

31 “EMAP” Stations (n = 124)
 - One Per Hexagon Per Quarter
 - Field, RC, TM, and Bio
 - Sediment for 1 Quarter
Monitoring Parameters

Field Measurements

Routine Water Chemistry

Sediments

Total & Dissolved Metals

Biological
Field Measurements

- **Field Data**
 - Weather
 - Wind Conditions
 - Sea State
 - Water Clarity

- **Hydrolab**
 - Water Temperature
 - Dissolved Oxygen
 - Conductivity / Salinity
 - pH
Routine Water Chemistry
TCEQ CONVENTIONALS

- Alkalinity
- Ammonia - Nitrogen
- Nitrate + Nitrite - Nitrogen
- Total Kjeldahl Nitrogen
- Chloride
- Sulfate
- Total Organic Carbon
- Total Dissolved Solids
- Total Suspended Solids
- Volatile Suspended Solids
- Total Phosphorus
- Ortho – phosphorous
- Chlorophyll – a
- Pheophytin – a

✓ Water quality criteria for nutrients and chlorophyll a in water have not been developed……yet.

✓ Screening levels used by TCEQ to identify secondary concerns.

✓ Currently based on a 10– sample minimum.
Ammonia Nitrogen (mg/l)

- <0.020
- 0.021 - 0.040
- 0.041 - 0.060
- 0.061 - 0.080
- 0.081 - 0.100
- > 0.100 (SLE 2000)

Spring 2000

Summer 2000

Fall 2000

Winter 2001
Ammonia Nitrogen

Ammonia Nitrogen (mg/l)
- <0.020
- 0.021 - 0.040
- 0.041 - 0.060
- 0.061 - 0.080
- 0.081 - 0.100
- > 0.100 (SLE 2000)

Kilometers

Spring 2002
Summer 2001
Fall 2001
Winter 2002
Spring 2002
Total Phosphorus

Total Phosphorus (mg/l)
- **< 0.040**
- **0.040 - 0.054**
- **0.055 - 0.109**
- **0.110 - 0.164**
- **0.165 - 0.219**
- **> 0.220 (SLE 2000)**

Seasons:
- Spring 2000
- Summer 2000
- Fall 2000
- Winter 2001
Total Phosphorus

Total Phosphorus (mg/l)
- < 0.040
- 0.040 - 0.054
- 0.055 - 0.109
- 0.110 - 0.164
- 0.165 - 0.219
- > 0.220 (SLE 2000)

Kilometers

Spring 2002
Summer 2001
Fall 2001
Winter 2002
Spring 2002
Chlorophyll a

Chlorophyll a (ug/l)
- < 1.00
- 1.00 - 2.87
- 2.88 - 5.74
- 5.75 - 8.63
- 8.64 - 11.49
- > 11.50 (SLE 2000)

Spring 2000

Summer 2000

Fall 2000

Winter 2001
Chlorophyll a

- Chlorophyll a (ug/l)
 - < 1.00
 - 1.00 - 2.87
 - 2.88 - 5.74
 - 5.75 - 8.63
 - 8.64 - 11.49
 - > 11.50 (SLE 2000)

Kilometers

- Spring 2002
- Summer 2001
- Fall 2001
- Winter 2002
- Spring 2002
Sediments

Trace Metals
Total Organic Carbon
Sediment Grain Size

- Sediment criteria developed by the EPA for only a few parameters, but not adopted.
- Screening levels (PEL’s and 85th percentile) used by TCEQ to identify secondary concerns.
- Currently based on a 10 – sample minimum.
Copper in Sediment (mg/kg)
- < 4.70
- 4.70 - 9.40
- 9.41 - 18.69
- 18.70 - 63.44 (TEL)
- 63.45 - 108.20
- > 108.20 (PEL)

Winter (March) 2001
Summer (August) 2001
Lead in Sediment (mg/kg)
- < 7.56
- 7.56 - 15.11
- 15.12 - 30.23
- 30.24 - 71.20 (TEL)
- 71.21 - 112.18
- > 112.81 (PEL)

Winter (March) 2001
Summer (August) 2001
0 5 10 15
Kilometers
Zinc in Sediment (mg/kg)
- < 31.00
- 31.00 - 61.99
- 62.00 - 123.99
- 124.00 - 197.49 (TEL)
- 197.50 - 271.00
- > 271.00 (PEL)

Winter (March) 2001
Summer (August) 2001
Mercury

Mercury in Sediment (mg/kg)
- < 0.033
- 0.033 - 0.064
- 0.065 - 0.129
- 0.130 - 0.409 (TEL)
- 0.410 - 0.696
- > 0.696 (PEL)

Winter (March) 2001
Summer (August) 2001

Kilometers
TRACE METALS IN SEAWATER: AN ANALYTICAL CHALLENGE

• Estuaries and coastal oceans ecologically important receiving waters

• Trace metal levels can be low (sub-ppb)

• Ultra-clean methods required

• Analytically difficult matrix
 – Not well covered in EPA 1600’s methods
 – Extraction / pre-concentration required to obtain accurate data
FACTORS AFFECTING TRACE METALS DATA QUALITY

• Sample collection (Field)
 – Must be representative of the region
 – Minimize contamination during collection and post collection sample handling
 – Carefully cleaned plastic ware and equipment
 – Clean hands & dirty hands approach
 – On-site filtration for dissolved measurements
 – Low detection limits require low blanks
 • Blanks taken at start and end of sampling day
CLEAN METALS CHEMISTRY

- **Laboratory Sample Analysis**
 - Comprehensive QA procedures
 - Minimize contamination during preparation & analysis
 - Clean, sensitive analytical methods
 - Control matrix interferences (from seawater)
 - Avoid inaccurate data- false positives or false negatives

- **Focus on data accuracy!**
Trace Metals

- Aluminum
- Arsenic
- Cadmium
- Chromium
- Copper
- Lead
- Nickel
- Mercury
- Selenium
- Silver
- Zinc
Dissolved Copper

Dissolved Copper (ppb)
- < 0.500
- 0.501 - 0.900
- 0.901 - 1.800
- 1.801 - 2.700
- 2.701 - 3.600
- > 3.600 (TWC 2000)

Spring 2000
Summer 2000
Fall 2000
Winter 2001

Kilometers
Dissolved Copper

- < 0.500
- 0.500 - 0.900
- 0.901 - 1.800
- 1.801 - 2.700
- 2.701 - 3.600
- > 3.60 (TWC 2000)

Spring 2002

Summer 2001

Fall 2001

Winter 2002

Spring 2002

Kilometers
DISSOLVED COPPER - STATION 13407

TCEQ Chronic Marine WQS

Copper (ppb)

Mar-00 Apr-00 May-00 Jun-00 Jul-00 Aug-00 Sep-00 Oct-00 Nov-00 Dec-00 Jan-01 Feb-01 Mar-01 Apr-01 May-01
Total Mercury

Total Mercury (ppb)
- < 0.0005
- 0.0005 - 0.0135
- 0.0136 - 0.0270
- 0.0271 - 0.0406
- 0.0407 - 0.0541
- > 1.10 (TWC 2000)

Spring 2000

Summer 2000

Fall 2000

Winter 2001
Total Mercury

<table>
<thead>
<tr>
<th>Total Mercury (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0005</td>
</tr>
<tr>
<td>0.0005 - 0.0135</td>
</tr>
<tr>
<td>0.0136 - 0.0270</td>
</tr>
<tr>
<td>0.0271 - 0.0406</td>
</tr>
<tr>
<td>0.0407 - 0.0541</td>
</tr>
<tr>
<td>> 1.10 (TWC 2000)</td>
</tr>
</tbody>
</table>

- Spring 2002
- Summer 2001
- Fall 2001
- Winter 2002
- Spring 2002
Comparison of Nueces Bay Stations
Total Recoverable Mercury vs. Dissolved Mercury

Q2 Total Q3 Total Q4 Total Q4 Dissolved

µg l⁻¹

Human Health WQS 0.025

Q2 Total Q3 Total Q4 Total Q4 Dissolved

0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600
Dissolved Arsenic

Dissolved Arsenic (ppb)

- < 0.500
- 0.500 - 3.250
- 3.251 - 6.500
- 6.501 - 9.750
- 9.751 - 13.000
- > 78.00 (TWC 2000)

Spring 2000
Summer 2000
Fall 2000
Winter 2001
Dissolved Arsenic

Dissolved Arsenic (ppb)
- < 0.500
- 0.500 - 4.875
- 4.876 - 9.750
- 9.751 - 11.446
- 11.447 - 19.500
- > 78.000 (TWC 2000)

Summer 2001

Fall 2001

Winter 2002

Spring 2002

Kilometers
Dissolved Lead

[Dissolved Lead (ppb)]
- <0.020
- 0.020 - 0.155
- 0.156 - 0.310
- 0.311 - 0.466
- 0.467 - 0.622
- > 5.300 (TWC 2000)

Kilometers

Spring 2000
Summer 2000
Fall 2000
Winter 2001
Dissolved Lead

Dissolved Lead (ppb)
- <0.020
- 0.020 - 0.155
- 0.156 - 0.310
- 0.311 - 0.466
- 0.467 - 0.622
- > 5.300 (TWC 2000)

Spring 2002
Summer 2001
Fall 2001
Winter 2002

0 5 10 15 Kilometers
Dissolved Nickel

Dissolved Nickel (ppb)
- < 0.500
- 0.500 - 3.275
- 3.276 - 6.550
- 6.551 - 9.825
- 9.826 - 13.100
- > 13.000 (TWC 2000)

Kilometers

Spring 2000
Summer 2000
Fall 2000
Winter 2001
Dissolved Nickel

- Dissolved Nickel (ppb):
 - < 0.500
 - 0.500 - 3.275
 - 3.276 - 6.550
 - 6.551 - 9.825
 - 9.826 - 13.100
 - > 13.100 (TWC 2000)

Maps for:
- Summer 2001
- Fall 2001
- Winter 2002
- Spring 2002
Dissolved Zinc

- Dissolved Zinc (ppb)
 - < 0.200
 - 0.200 - 5.375
 - 5.376 - 10.750
 - 10.751 - 16.125
 - 16.126 - 21.500
 - > 84.200 (TWC 2000)

Maps for different seasons:
- Spring 2000
- Summer 2000
- Fall 2000
- Winter 2001

Kilometers
Dissolved Zinc

- **Spring 2002**
- **Summer 2001**
- **Fall 2001**
- **Winter 2002**

Dissolved Zinc (ppb)
- < 0.200
- 0.200 - 5.375
- 5.376 - 10.750
- 10.751 - 16.125
- 16.126 - 21.500
- > 84.200 (TWC 2000)

Kilometers

US EPA ARCHIVE DOCUMENT
HISTORICAL vs. CLEAN METALS DATA

Source of historical data: Ward and Armstrong (1997)
CONCLUSIONS

• Ambitious, extensive monitoring study

• RCAP accomplished primary objectives
 – Scientifically sound, extensive Water Quality data set
 – Superior quality compared to historical monitoring data
 – Provided data missing from under sampled areas

• Precise localization of anthropogenic influences
Conclusions

• Water and sediment quality concerns identified

 – DO in Oso Creek / Oso Bay (currently listed / studies in progress)
 – Ammonia in Oso Bay (OWWTP), Inner Harbor, Baffin Bay Complex
 – Total Phosphorus in Oso Creek, Oso Bay, Nueces Bay, and Baffin Bay Complex
 – Chlorophyll a in Oso Creek (GWWTP), Inner Harbor, Baffin Bay Complex, and some parts of Upper Laguna Madre
 – Copper, Lead, Zinc, and Mercury in sediment at Station 21
 – Elevated levels of Mercury in Nueces Bay (TSS related)
Conclusions

• Clean aqueous metals data an important addition to sediment contaminants data
 – Aqueous data may be a better integrated index of WQ
 – Clear spatial trends for most metals
 – Even zinc exhibits consistent trend
 – Recurrent monitoring could identify future trends in toxic metals pollution in the region

• Remaining data gap is to obtain accurate clean metals measurements for permitted discharges into the system
What does it all mean and what can we do?

- Development and progress are inevitable
- Quality of our resources concerns everyone
- Cooperation is essential
- Partnerships are fundamental
Partnerships and Commitment

National Coastal Assessment

• EPA and TPWD
 • 50 Stations in Texas
 • Averaged 10 – 15 CBBEP
 • 100 Stations in Texas

• CBBEP
 • RCAP 2002 – 50 Stations
 • RCAP 2003 – 32 Stations
 • RCAP 2004 – 32 Stations
The benefits of sampling in the early morning!