

Presented at

Great Rivers Reference Condition Workshop January 10-11, Cincinnati, OH

Sponsored by

The U.S. Environmental Protection Agency and The Council of State Governments

Environmental Monitoring and Assessment Program

EPA ARCHIVE DOCUMENT

S

The EMAP-GRE approach to reference conditions

Ted Angradi and David Bolgrien US EPA Office of Research and Development Mid-Continent Ecology Division National Health and Environmental Effects Research Laboratory Duluth, MN

GIS programmers: Tatiana Nawrocki, Roger Meyer, Matt Starry, and James Quinn Computer Science Corporation

RESEARCH & DEVELOPMENT

Assumptions

- No reach of any of the 3 Great River of the CB (MO,MS,OH) is in pristine condition, but there is variation in condition along each river that provides the current scope for empirical bioassessment based on internal reference condition.
- EMAP-GRE assessment is based on least disturbed (least impaired) conditions (LDC) by default. Other thresholds based on minimallydisturbed condition will be incorporated as available.

RESEARCH & DEVELOPMENT

US EPA ARCHIVE DOCUMENT

Internal Reference Condition

Advantages

- Representative of the assessment unit
- All indicators are available because same methods
- Can extract reference sites from the probability sample
- All reaches and rivers can be treated the same
- Challenges
 - Perception that least disturbed condition sets a toolow bar for Great River assessment
 - Sites are not independent (all sites but 1 on each river are downriver from other sites)

3-phased approach to reference

- I. Identification and sampling of internal reaches likely to be in LDC using "local proximity" model
- II. Use abiotic filters to find sites actually in LDC from among <u>all</u> sampled sites
- III. Verify reference set using biotic indicators

RESEARCH & DEVELOPMENT

EMAP-GRE GIS "Local Proximity" Model

- Scores large number of potential sites based on proximity to human disturbances
- Complete small-watershed-scale landscape analysis deemed not cost-efficient
- We treat all small tributaries as if they were NPDES permits (i.e., bad)
- So its conservative.
- Lots of subjective decisions were made (scoring thresholds, weights) during the build. The result is a really GIS-model-assisted BPJ approach to identifying potential reference reaches.

RESEARCH & DEVELOPMENT

Rationale for "local proximity"

- Most EMAP-GRE biotic metrics are measured in shallow nearshore habitat (the exception is plankton).
- Human disturbance: tributaries, NPDES permitted outfalls, crossings, etc. most strongly influence the immediate downriver near-shore condition (sediment contamination, water chemistry, sediment particle size, temperature).
- Cumulative effects of thalweg (non-local) WQ and habitat ignored in our model.
- This gradient is dealt with during filtering (Phase II).

Base points

Points were generated for each river at 500-m intervals starting from the downriver end using the National Hydrograpic Database linework. These points serve as a base layer for all proximity analyses.

RESEARCH & DEVELOPMENT

14 variables calculated in the GIS Proximity Model

No	Variable	Description
1	DMUP	Route distance to nearest upriver dam
2	DMDN	Route distance to nearest downriver dam
3	RDRLUP	Route distance to nearest upriver road or railroad crossing
4	NPDESUP	Route distance to nearest upriver permitted discharge (NPDES)
5	UBPODIST	Population/distance ratios for urban polygons
6A	PROTPER	Protected land in a site neighborhood (% in 5-km radius)
6B	PLAREADIST	Population/distance ratios for protected area polygons
7	PTRBAD	Route distance to nearest upriver primary tributary weighted proportionally to runoff from developed and cultivated watershed area
8	PTRGOOD	Route distance to nearest upriver primary tributary weighted proportionally to runoff from undeveloped watershed area
9	STRIBUP	Route distance to nearest upstream secondary tributary
10	CULPER	Cultivated land in site neighborhood (% in 5-km radius)
11	FORWETPER	Forest and wetland in site neighborhood (% in 5-km radius)
12	STRIBDEN	Density of upriver secondary tributaries (number/10 km)
13	NPDESDEN	Density of upriver NPDES permits (number/10km)
14	IMPERVPER	Impervious surface in site neighborhood (% in 5-km radius)

RESEARCH & DEVELOPMENT

Railroad and road crossings

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions Attributing points with land use (forest, cultivated land, impervious surface). 5 km radius.

RESEARCH & DEVELOPMENT

Tributary		Q km3	% Developed % AG		DEVAG m3	Other m3	PTRBAD weight	PTRGOOD weight
١	Visconsin	8.2	1	40	3355987817	4829348323	0.54	0.90
l	Jpper Mississippi	7.5	2	38	3017002041	4525503061	0.48	0.84
(Chippewa	6.7	1	35	2402930812	4271876998	0.37	0.79
S	St. Croix	4.9	1	33	1682119164	3265290143	0.25	0.60
Ν	Meramec	2.6	3	25	735156518	1890402475	0.09	0.35
E	Black	1.5	1	40	598153812	860757925	0.06	0.15

Model refinement: distance from primary tributaries was split into 2 variables: *PTRBAD* distance weighted by a normalized proportion of runoff from AG+DEV LULC *PTRGOOD* distance weighted by a normalized proportion of runoff from other LULC

Тигкеу	0.9	2	72	677205740	237937152	0.08	0.03
Root	0.8	1	76	619320287	184991773	0.07	0.02
South Fabius	0.8	1	67	564337637	265570652	0.06	0.04
Zumbro	0.6	2	88	525891189	58432354	0.05	0.00
Cannon	0.6	2	82	495958759	94468335	0.04	0.01
Cuivre	0.7	1	70	469772108	191878748	0.04	0.03
Upper Iowa	0.5	1	74	393016896	131005633	0.03	0.01
		PE	SEARCH	2 DEVELOPME	NT		

RESEARCH & DEVELOPMENT

St Croix River Only 34% of catchment is Ag + Developed PTRBAD (close is bad) W= 0.25 PTRGOOD (close is good) W= 0.6

For a site 10 km below confluence:

PTRBAD = distance * (1-W) = 10*0.75 = 7.5 km = makes site score a little worse

PTRGOOD = 10 *0.4 = 4 km = makes site score a lot better

Net effect is that sites below St Croix River score better than they would if there were no St. Croix.

Iowa River

•87% of catchment is Ag + Developed
•PTRBAD (close is bad) W= 0.88
•PTRGOOD (close is good) W= 0.14

For a site 10 km below confluence:

PTRBAD = distance * (1-W) = 10*0.12 = 1.2 km = makes site score a lot worse

PTRGOOD = 10 *0.86 = 8.6 km = makes site score a little better

Net effect is that sites below Iowa River score worse than they would if there were no Iowa River

DOCUMENT EPA ARCHIVE

Yellowstone River: Turbid but "clean"

RESEARCH & DEVELOPMENT

Subjectivity: variable weights and scoring thresholds

No	Variable	Missis	sippi	Ohi	0	Missouri		
		Weight	Threshold	Weight	Threshold	Weight	Threshold	
1	DMUP	1.0	10 km	1.0	10 km	2	40 km	
2	DMDN	0.5	5 km	0.5	5 km	0.5	5 km	
3	Score doesn't ge	et any better b	eyond 2 km	downriver from	n permit locat	0.5	2 km	
4	NPDESUP	2.0	2 km	2.0	2 km	2.0	2 km	
5	UBPODI	Emphasize	as the local	effect because	all of the	1.0	NA	
6A	PROTPE varia	utfall NA	NA					
6B	PLAREADIST	NA	NA	0.5	NA	0.5	NA	
7	PTRBAD	2.0	40 km	2.0	40 km	2.0	20–40 km	
8	PTRGOOD	2.0 NA 2.0 NA		NA	2.0	NA		
9	STRIBUP	IBUP 1.0		1.0	5 km	1.0	5 km	
10	CULPER	0.5 NA 0.5 NA		NA	0.5	NA		
11	FORWETPER	0.5	NA	0.5	0.5 NA		NA	
12	STRIBDEN	1.0	.0 2 1.0 2		2	1.0	2	
13	NPDESDEN	1.0	2	1.0	2	1.0	2	
14	IMPERVPER	0.5	NA	0.5	NA	0.5	NA	

RESEARCH & DEVELOPMENT

What the model actually does for each river:

- Scores all points 1-6 for each of 14 metrics
- Scores all points based on an additive index based on summed and weighted metric scores
- Each site gets a normalized score of 1-10 where 1s and 2s are least likely to be in LDC and 10s and 9s are most likely to be in LDC:

Model output – raw weighted sums of metric scores for every point

RESEARCH & DEVELOPMENT

Model output – normalized scores

RESEARCH & DEVELOPMENT

Model output – reference reaches

RESEARCH & DEVELOPMENT

Goal of model is not to definitively find the very best sites out there but to increase the probability that our 2006-2007 sample will include a higher proportion of well dispersed LDC sites than a straight probability sample would.

- 500-Meter Sample Points [every 10th shown]
- × 2004-2005 "X" Sites
- NPDES Permitted Discharge
- Road & Rail Bridges
- Dams
- Secondary Tributary Point
- Primary Tributary Point
 - Protected Lands
 - Freeway System

Next steps

- Review reference reaches with our partners
 - Identify counterintuitive results
 - Add back in known good reaches
 - Clip known impaired reaches
 - Adjust and re-run model
- Build a new probability design based on these reaches and draw sites.
- Sample sites in July-September 2006-07.
- Use BPJ to pick some additional "off-frame" LDC, tributary and "trashed" sites?

All GIS input data are public domain. Model is available to anybody who wants it.

EMAP-GRE's 3-phased approach to reference

- I. Identification of sites (internal reaches) likely to be in LDC using "local proximity" model
- II. Use abiotic filters to find sites actually in LDC from among <u>all</u> sampled sites

III. Verify reference set using biotic indicators

RESEARCH & DEVELOPMENT

Example of site-scale screening for wadeable streams

For EMAP/REMAP wadeable stream datasets, the reference sites are generally screened on various chemistry and physical habitat variables with criteria and screens varying by region.

Agg.Region	Corrected CI	Total P	Total N	Sulfate	Turbidity	рН	% Fines	Rip. Disturbance	Canopy Density
Southwest Mtns	<300 ueq/L	<50 ug/L	<750 ug/L			<9.0	<15%	<0.5	>50 %
Northwest Mtns.	<1000 ueq/L	<50 ug/L	<4500 ug/L	<2000 ueq/L	<50 PCU	<9.0	<50 %	<1.5	>50 %
So. Rockies	< 200 ueq/L	<25 ug/L	<750 ug/L	<200 ueq/L		<9.0	<15%	<1.0	<50 %
No. Rockies	< 200 ueq/L	<25 ug/L	<750 ug/L	<200 ueq/L		<9.0	<15%	<1.0	<50 %
Plains	<1000 ueq/L	<150 ug/L	<4500 ug/L		<50 PCU	<9.0	<90 %	<2.0	>25%
Xeric	<1000 ueq/L	<50 ug/L	<1500 ug/L		<25 PCU		<50 %	<1.5	>50 %

It works for wadeable streams but its hard to apply to GRE data

RESEARCH & DEVELOPMENT

EMAP-GRE Variation: "multi-metric natural gradient approach"

- Assign a score to each sampled site while explicitly considering a natural gradient for each river.
- Allows different expectations for different parts of the gradient.
- Basic idea is from Thom Whittier, Dynamac, Corvallis, OR and co-authors.

RESEARCH & DEVELOPMENT

The concept

Natural gradient

RESEARCH & DEVELOPMENT

Natural gradient

RESEARCH & DEVELOPMENT

Natural gradient

RESEARCH & DEVELOPMENT

Assignments

- LDC (green) or HDC (red) assigned to sites based on distribution of sites relative to natural gradient (graphical approach in this example)
- Working rule of thumb: try to get 10-20% of total sites into LDC for each metric
- But you don't need the same % for each metric
- If there is no natural gradient for a metric, use river-wide or strata-wide criteria to assign
- Gets easier with more sites because total variation increases

RESEARCH & DEVELOPMENT

DOCUMENT ARCHIVE EPA S

River mile above confluence is an adequate (and free) surrogate for watershed area for every sampled point

Provides a single gradient for all three rivers

RESEARCH & DEVELOPMENT

Filtering metrics in this example

- Total P
- Total N
- NH₄
- SO₄
- Chloride
- DO
- Large woody debris density
- Riparian development score
- Human disturbance score
- % Canopy density at river's edge
- Riparian vegetation coverage score
- Sediment toxicity (% survival of *H. azteca*)
- Distance to upriver NPDES permit (GIS model output)
- Weighted distance to upriver primary tributary (GIS model output)
- Distance to upriver secondary tributary (GIS model output)
- Will add dissolved metals (data not available yet)

RESEARCH & DEVELOPMENT

2004 sample data: DO on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: TN on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: NH₄ on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: TP on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Chloride on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Sulfate on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Riparian development on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Human disturbance on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: LWD on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Sediment toxicity on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Riparian canopy on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Riparian vegetation score on Missouri River

RESEARCH & DEVELOPMENT

2004 sample data: Distance from upriver NPDES Permit

RESEARCH & DEVELOPMENT

2004 sample data: Weighted (PTRBAD) distance to upriver primary tributary

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

DOCUMENT ARCHIVE 10 S

2004 sample data: Distance to upriver secondary tributary

RESEARCH & DEVELOPMENT

	Die Fait Tierr	1.12010	. <u>o</u>	Toolo Para 1											
1	💕 🛃 👌 🎒	🛕 💞	X 🗸	🗈 🖺 • 🟈	19 - (°1 -	😫 Σ - Α/Ζ	🗼 🖸 🛣	🏨 🛷 🔞 🛄	🚆 MS Sans S	5erif • 12 •	B <i>I</i> <u>U</u> ≡	≣ ⊒ ⊡ \$	% , .00	•00 🛊 🛊 🖽 🗸	<u> - A</u> -
	CR100 🔹 🏂 =CP100-CQ100														
	A	В	D	K	L	М	BP	BQ	BR	CI	CK	CP	CQ	CR	CT 🔺
1	Site_ID	B	RM	TP	TP LDC	TP MDC	DEV	DEV LDC	DEV MDC	SEDTOX (%)	Sedtox MDC	sum LDC	sum MDC	Net Score	
55	GRW04449-565	Mo	263	0.35			2			67.5	1	0	5	-5	
56	GRW04449-567	Mo	300	0.23			3			87.5		3	2	1	
57	GRW04449-575	Mo	353	0.20			2			88.8		1	3	-2	
58	GRW04449-579	Mo	374	0.18			3			91.3		1	5	-4	
59	GRW04449-559	Mo	379	0.16			2			91.3		2	0	2	
60	GRW04449-563	Mo	388	0.37		1	3			98.8		0	3	-3	
61	GRW04449-595	Mo	394	0.21			4	1		91.3		3	4	-1	
62	GRW04449-611	Mo	403	0.78		1	4	1		96.3		3	5	-2	
63	GRW04449-603	Mo	412	0.37		1	3			95.0		1	2	-1	
64	GRW04449-555	Mo	417	0.19			3			76.3		0	3	-3	
65	GRW04449-587	Mo	424	0.17			4	1		53.8	1	4	5	-1	
66	GRW04449-591	Mo	432	0.17			4	1		72.5		4	0	4	

For each site, take the difference in number 71 72 73 of metrics in LDC and the number in HDC to get 74 a net score ranging from 15 to -15 75 76

77	unw04443-330	mυ	303	V.22				30.0		-	-	v	
78	GRW04449-583	Mo	577	0.17		2		85.0		1	3	-2	
79	GRW04449-571	Mo	605	0.11		3		96.3		5	0	5	
80	GRW04449-619	Mo	609	0.09		2		100.0		3	0	3	
81	GRW04449-605	Mo	622	0.11		3		100.0		2	3	-1	
82	GRW04449-589	Mo	632	0.11		2		75.0		1	0	1	
83	GRW04449-597	Mo	642	0.08		3		76.3		3	0	3	
84	GRW04449-613	Mo	645	0.08		3		93.8		0	1	-1	
85	GRW04449-553	Mo	664	0.07		3		81.3		2	1	1	
86	GRW04449-581	Mo	672	0.05		3		82.5		3	0	3	
87	GRW04449-585	Mo	683	0.05		3		96.3		1	1	0	
88	GRW04449-609	Mo	712	0.06		4	1	95.0		5	0	5	
89	GRW04449-593	Mo	718	0.06		2		96.3		1	0	1	
90	GRW04449-601	Mo	728	0.07		2		92.5		1	2	-1	
91	GRW04449-588	Mo	759	0.00	1	4	1	95.0		6	0	6	
92	GRW04449-568	Mo	778	0.04		4	1	98.8		9	0	9	
93	GRW04449-584	Mo	805	0.03		2		91.3		0	3	-3	
						and the second se	and the second	 and the second se	the second s				

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

67

68 69 70

These sites are used to validate approach

Weighting "robust" metrics spreads data out more

RESEARCH & DEVELOPMENT

2004 sample data: TP on Missouri River

RESEARCH & DEVELOPMENT

Discharge and WQ

2004 MR discharge at Rulo, NE

ARCHIVE DOCUMENT US EPA

RESEARCH & DEVELOPMENT

Multi-metric natural gradient approach:

- Reveals human disturbance masked by natural variation along river
- Essential for some abiotic variables besides WQ.
- Avoids arbitrary "hard" criteria for single metrics.
- Can be used in conjunction with other methods (e.g., pass/fall).
- Its integrative because it includes, WQ, habitat, stressor, and landscape metrics.

RESEARCH & DEVELOPMENT

Multi-metric natural gradient approach:

- Its robust because its "multimetric" A few event-driven, bad, or missing classifications won't effect results much.
- But, water chemistry may not be very useful for filtering
- Avoids "bipolar" sites in reference set
- Forces reference sites down the gradient
- Intuitive but untested on large rivers.

RESEARCH & DEVELOPMENT

Alternative approach

The same data can be explicitly stratified into upper, middle and lower MO and filtered using a series of hard filters (fail 1 filter = not LDC; pass all = LDC).

We will do both and figure out which one gives us the best set of reference sites.

Its research.

RESEARCH & DEVELOPMENT

Validation of approach: least vs. most disturbed for a variety of filter options DOCUMENT Taxa richness Ohio Mississippi Missouri 100 Number of taxa 40 80 MMI score 30 ARCHIVE 60 20 40 10 20 0 EPA 0 Least Most Least Most Least Most

Multimetric index

Not real data

RESEARCH & DEVELOPMENT

Geographic stratification?

RESEARCH & DEVELOPMENT

Geographic stratification: different reference expectations for different reaches of the same river

With stratification:

- Expectations more realistic for each strata (=reach)
- Fewer political problems: "don't assess my state with your reference conditions"
- Requires well dispersed reference sites.

Without stratification:

- Less complicated (only 1 LDC for each river)
- Much higher variation in condition between states
- Reduced credibility of assessment given realities of BAC?

RESEARCH & DEVELOPMENT

Revetment vs natural shoreline

Should we treat revetment as a substrate-coarsening stress or as a habitat Strata for this assessment so that we can detect other stress?

If we treat it as a human disturbance causing stress:

- Most of the Lower Missouri will automatically be impaired
- Revetment effects will probably swamp out other stressors for benthos at least
- Sets higher but maybe unattainable bar for LDC

If we treat it as a habitat strata:

- Will allow correction for substrate to detect other stressor effects.
- Sets low bar for current system, but we can report the extent of rip rap and, if we restore a shoreline, we can switch to the other reference expectation
- Requires more sites (3 geog strata * 2 hab strata = 6 expectations for Missouri)

Some pending issues

- Should we stratify habitat for revetted vs. natural shorelines? (yes)
- Which variables from GIS model should we add to the filter? (NPDES, tribs, dams)
- Should we downweight or eliminate WQ metrics from filter because of the thalweg bias and discharge effect? (eliminate most)
- What is sufficient sample size? (lots more)

RESEARCH & DEVELOPMENT

JS EPA ARCHIVE DOCUMENT

Conclusions

• We are going to try GIS-based proximity model plus multi-metric filtering to find least disturbed sites.

 Least disturbed condition from internal reference sites will give us an assessment starting point for all our indicators on all 3 rivers, but we will use whatever other thresholds are out there.

 Priority for 06-07 is sampling as many likely LDC sites as possible!