US ERA ARCHIVE DOCUMENT

ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM NEAR COASTAL COMPONENT 1992 VIRGINIAN PROVINCE EFFORT

FIELD OPERATIONS and SAFETY MANUAL

by

D.R. Reifsteck and C.J. Strobel Science Applications International Corporation 27 Tarzwell Drive Narragansett, Rhode Island 02882

S.C. Schimmel
United States Environmental Protection Agency
Environmental Research Laboratory
27 Tarzwell Drive
Narragansett, RI 02882

Contract Number 68-C1-0005

Project Officer Patricia Gant

Environmental Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Narragansett, Rhode Island 02882

NOTICE

This document is a preliminary draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. It is being circulated for comments on its technical merit and policy implications.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This document is ERL-N contribution number xx

ABSTRACT

The Environmental Monitoring and Assessment Program (EMAP) is a Nation-wide program initiated by the Environmental Protection Agency (EPA) in 1990. The purpose of this program is to annually monitor the condition of all the Nation's major ecosystems. As a component of the Near-Coastal (EMAP-NC) Program, annual sampling will be conducted in the Virginian Province (Cape Cod, MA to Cape Henry, VA). The 1992 Field operations are scheduled to begin in July, 1992.

Three teams of field personnel will be required to complete data collection activities. Each team will be comprised of two 4-person crews, alternating on a six day cycle. Teams will be supplied with a 24 foot workboat on a trailer, a four wheel drive pick-up truck, a modified van (to serve as a mobile laboratory), and all sampling gear and supplies required to complete all activities. All field activities will be monitored and coordinated by the Field Operations Center at the Environmental Research Laboratory in Narragansett, RI (ERL-N).

Field crews will collect electronic data (temperature, salinity, dissolved oxygen, pH, transmission, fluorescence and Photosynthetically Active Radiation) as well as sediment and water samples, and fish. Data will be recorded on data sheets as well as in an on-board computer. All data entered into the computer in the field will be uploaded to the ERL-N VAX computer on a daily basis via modem communications.

This manual describes, in detail, all field collection methods, including Quality Assurance (QA) and safety. It will serve as a guide for field personnel and will be carried on the boats at all times. An effort has been made to anticipate problems and questions that may arise, and to include information on resolving them. All methods, as described in this manual, must be adhered to by all field personnel. Any changes in methods will be communicated to the field crews by the Field Coordinator or Project Manager. As [if] methods change, an updated version of the pertinent section[s] will be prepared and provided to the field crews.

In addition quick reference handbooks will be supplied to the Field crews for procedures and protocol for research vessel and mobile lab operations. Handbooks will be comprised of specific condensed chapters of the Field Manual.

ACKNOWLEDGMENTS

This document is a revision of the 1990 and 1991 Field Manuals, to which the following authors contributed: Craig Eller, Martin Friday, Jack Gurley, Melissa Hughes, Paul Kazyak, Kristi Killam, Kit Peres, Jill Schoenherr, Paul Selvitelli, Ray Valente, and Steve Weisberg. Elise Petrocelli, Matt Aitkenhead and Robert Wallace assisted in preparing sections of the current document. All of their contributions were invaluable.

A large number of people provided very useful comments in their review of this document. Our appreciation is extended to all of them, especially Steve Schimmel, John Scott, John Baker, Fred Holland, and Steve Weisberg.

Portions of this document were copied from other EMAP-NC documents (Holland, 1991; Schimmel, 1990; and Strobel, 1990).

CONTENTS

<u>SECTION</u>	<u>PAGE</u>
Notice	i
Abstract	ii
Acknowledgments	iii
List of Figures	ix
List of Tables	ix
1 - Introduction Introduction Near Coastal Program EMAP-Estuaries Virginian Province Sampling Effort	1 2 4
2 - Overview of Field Sampling Activities Sampling Period Sampling Design Indicators of Ecosystem Health Site Reconnaissance	1 1 4 5
3 - Description of Field Teams Personnel Station Assignments Equipment Chain-of-Command	1 3 3 8
4 - Safety Training Swimming Proficiency Requirement Priorities Accidents Personnel Emergency Information Operation of Equipment Safety Equipment Weather Conditions Responsibility for Safety Boat Itinerary Handling of Hazardous Materials Proper Handling of Potentially Hazardous Samples	1 1 1 2 2 2 2 3 3 3 4 4 4 5

SECTION	<u>PAGE</u>
5 - Training Crew Chief (Chief Scientist) Training	
Crew Training	1 1
6 - Land-Based Facilities Mobile Laboratories Base facilities	1 1
Base facilities	1
7 - Professionalism	
General Contact with the Public	1
Operation of Motor Vehicles	2
Operation of Boats	2 2 2
Radio Operation	2
Waste Disposal	2
8 - Vehicle Operation	
General Guidelines	1
Procedures Following an Accident v	2
Trailering Guidelines	4
Operation of Winch	5
Operation of the CB Radios	6
9 - Operation of the Boats	
Weather Conditions	1
Launching and Recovering Procedures	2
Mast Assembly and Antennae Set-Up	6
Gear Check-Out and Loading	7
Navigation System	8
General Policies Underway	8
Radio Operations	10
Radar Operation	13
Winch Operation	13
Emergencies/Accidents	16
Equipment Failure/Repair	16

<u>SECTION</u>	<u>PAGE</u>
10 - On-Board Computer System Data Acquisition System	1
11 - Navigation System Introduction GPS Initialization GPS Use and Status EDAS Calibration System Calibration Point Calibration	1 2 3 4 5 6
12 - Communications Electronic Transfer of Data Communication with the Field Operations Center Ship-to-Shore Communications Truck-to-Truck Communications	1 2 3 3
13 - Sampling Schedule and Station Types Sampling Schedule Station Types	1
14 - Dissolved Oxygen, Salinity and Temperature Sea-Bird Sealogger CTD. YSI Model 58. CTD Dockside QC Checks Obtaining a CTD Profile	1 1 6 8
15 - Sediment Collection Introduction	1
16 - Fish Trawls The EMAP Otter Trawl Trawl Preparation Net Deployment Trawling Net Retrieval Endangered Species Sample Processing	1 3 4 5 6 8

<u>SECTION</u>	PAGE
17 - Packaging and Shipping Samples	
Proper Packaging Methods	1
Benthic Species Composition and Biomass Samples	4
Grain Size Samples	4
Sediment Chemistry Samples	5
Sediment AVS Samples	6
Sediment Toxicity Samples	7
Fish Chemistry Samples	7
Fish Histopathology Samples	8
Fish QA Samples	8
Total Suspended Solids Samples	9
Field Computer Diskettes	9
18 - Contingency Plans	
Adverse Weather Conditions	1
Station Inaccessibility	1
Equipment Failure	2
19 - Maintenance	
GRiD Computers	1
Sea-Bird CTD	1
Boats, Motors, and Vehicles	1
20 - Quality Assurance	
Data Quality Objectives	1
QA Procedures	2
QA Flocedules	2
21 - Field Data Base Management	
Events Numbering	2
SAMPLEIDs and Sample Numbers	3
22 - Waste Disposal	
Routine Garbage	1
Detergent Washes	1
Formalin and Dietrich's Fixative	1
Fish Waste	2

|--|

23 - Contact Personnel	<u>PAGE</u>
24 - Lost Gear Recovery of a DataSonde Mooring Recovery of a CTD Recovery of a Grab Sampler	2
25 - References	

Appendices

A.	Equipment	List and	Daily	Checklists

- Hazardous Materials Safety and Handling Information Permit for the Operation of a Marine Band VHF Radio Performing Winkler Titrations using the Hach DO Kit
- B. C.
- D.
- E. Operation of the Hydrolab DataSonde 3 Data Logger
- F. Data Sheets

LIST OF FIGURES

NUM	<u>BER</u>	<u>Page</u>
3.1	Personnel Distribution for the Virginian Province Project	3-2
3.2	Project Management Scheme	3-10
9.1	Boat radio call signs and authorized frequencies	9-12
9.2	Hand signals used during winch operations	9-15
13.1	Flow Chart of Field Sampling Activities	13-3
14.1	Flow Chart for obtaining a CTD Profile	13-11
15.1	Criteria for accepting a sediment grab sample	15-3
15.2	Flow Chart of Sediment Collection	15-4
16.1	Flow Chart of Fish Collection	16-18
	LIST OF TABLES	
4.1	List of Contaminated Sites	4-7
8.1	Commonly Used 10-Codes	6-6
13.1	List of Sampling Stations	13-4
15.1	Directions for preparing stock solutions	15-7
16.1	Amount of Winch Cable to use During Trawling Activities	16-5
16.2	Endangered Species that could Possibly be Caught During Trawling	16-8
16.3	Prioritized Pathology Target Species List	16-12
16.4	Fish Target Species and Size	16-14
17.1	Sample Holding and Shipment Conditions	17-3

List of Tables (continued)

21.1	Sample Numbers	21-6
21.2	Event Numbers	21-8
19.1	Vehicle Maintenance Schedule	19-2

SECTION 1 INTRODUCTION

1.1 Introduction

The Environmental Monitoring and Assessment Program (EMAP) was designed to periodically assess the ecological condition and health of the Nation's ecological resources. As a regulatory agency, the U.S. Environmental Protection Agency (EPA) is charged with the mission to set environmental policy, obtain funds for research and development, and evaluate the efficacy of environmental regulations in preserving the Nation's natural resources. EMAP provides a strategy to identify and bound the extent, magnitude, and location of environmental degradation and improvement on a regional scale. As stated in the 1990 Near Coastal Program Plan (Holland, 1990), when fully implemented EMAP will answer the following questions:

- o What is the status, extent, and geographical distribution of the nation's important ecological resources?
- o What proportion of these resources are declining or improving? Where, and at what rate?
- o What are the factors that are likely to be contributing to declining condition?
- o Are control and mitigation programs achieving overall improvements in ecological conditions?
- o Which resources are at greatest risk to pollution impacts?

EMAP has been divided into several ecosystems including surface fresh waters, rangelands and deserts, forests, wetlands, agroecosystems, and near coastal waters (continental shelf, estuaries, and salt marshes). All the above goals and questions are relevant to each ecosystem, including near coastal waters.

The purpose of this document is provide detailed instructions on all field sampling methods. Two versions of this document will be available: the unabridged training version and an abbreviated version for use in the field which contains only the pertinent information needed to successfully complete sampling activities.

1.2 The Near Coastal Program

The Near Coastal portion of EMAP (EMAP-NC) is a joint EPA/National Oceanic and Atmospheric Administration (NOAA) Program that is designed to eventually monitor the waters, sediment, and biota from the head of tide to the Outer Continental Shelf. This program will complement and may eventually merge with NOAA's existing Status and Trends Program for Marine Environmental Quality to produce a single, cooperative, coastal and estuarine monitoring program.

The goals of EMAP-NC, as outlined in the 1990 Near Coastal Program Plan (Holland, 1990) are as follows:

- o Provide a quantitative assessment of the regional extent of coastal environmental problems by measuring pollution exposure and ecological condition,
- o Measure changes in the regional extent of environmental problems for the nation's estuarine and coastal ecosystems,
- o Identify and evaluate associations between the ecological condition of the nation's estuarine and coastal ecosystems and pollutant exposure, as well as other factors known to affect ecological condition (e.g., climatic conditions, land use patterns), and
- o Assess the effectiveness of pollution control actions and environmental policies on a regional scale (i.e., large estuaries like Chesapeake Bay, major coastal regions like the mid-Atlantic and Gulf Coasts) and nationally.

In addition to meeting the overall goals of EMAP, the estuaries component of the Near Coastal Program (EMAP-Estuaries) is addressing specific environmental problems. The problems specifically applicable to estuarine waters are: low dissolved oxygen (DO) concentrations, eutrophication, chemical and biological contamination, habitat modification, and cumulative impacts.

1.2.1 Low Dissolved Oxygen Concentrations

Well oxygenated water is critical to support a balanced aquatic community. Low dissolved oxygen concentrations in water may reduce or eliminate short- and long-living vertebrate and invertebrate species (e.g., reduced species composition and biomass) and allow for the existence of smaller, opportunistic species that may not be as compatible with ecosystem stability or human needs.

1.2.2 Eutrophication

The process of eutrophication - the over-enrichment of water bodies with nutrients and minerals that results in an excess in primary production - can cause severe reductions in the overall stability and productivity of that water body. Symptoms of stress associated with eutrophication may include (but are not limited to): widely fluctuating and often acutely toxic low DO concentrations; reduced water clarity; presence of nuisance algal blooms; alterations in benthic biomass, abundance, and species composition; and reduced acreage of submerged aquatic vegetation (SAV).

1.2.3 Contamination

The problem of contamination is manifested in several ways, including: (1) the chemical contamination (residues) of anthropogenic materials or excessive, naturally-occurring materials that result in unacceptable concentrations in marine sediments, water, and biota; (2) pathogen contamination of sediments, water, and biota generally through human waste; and (3) toxicity of water, sediment, and biota caused by excessive amounts of either chemicals or pathogens. The overall effect may be to reduce resource numbers, diversity, and to render marine resources unsuitable for human (or non-human) consumption.

1.2.4 Habitat Modification

The modification (and general loss) of specific habitats within the estuarine environment is a critical problem. Specifically, habitats such as wetlands and SAV have been significantly reduced, thereby depleting critical spawning and nursery areas for the production of living resources deemed important to man, including fish and shellfish. They also help improve water clarity by reducing soil erosion, and buffer coastlines from the direct effects of coastal storms.

1.2.5 Cumulative Impacts

The cumulative effects of the above stressors on the near coastal system is likely to elicit responses that result in decreases in overall productivity, or losses in diversity and resilience. These general effects may result in reductions in fish and shellfish recruitment, growth and survival, and increases in pathology (fin rot, cancers, and other lesions).

1.3 EMAP-Estuaries Virginian Province Sampling Effort

The EMAP-NC Virginian Province is the biogeographical region extending from Cape Cod, MA to Cape Hatteras, NC; however, the EMAP-Estuaries Virginian Province sampling effort (EMAP-VP) includes only those systems north of Cape Henry, VA. Albemarle Sound (NC) falls within the Virginian Province, but because it is a component of the larger Pamlico Sound system (which extends south of Cape Hatteras), it will be sampled as part of the Carolinian Province Program.

As a first step, a Demonstration Project (DP) was conducted in the Virginian Province in 1990 to address several issues prior to full implementation in 1991. The objectives of the DP were to:

- o Provide, on a pilot basis, an estimate of the extent of degraded estuarine resources in the Virginian Province to demonstrate the usefulness and ease of presentation of the data resulting from an EMAP design.
- o Evaluate the specificity, sensitivity, reliability, and repeatability of the responses of the selected indicators over a broad range of environmental conditions.
- o Identify and resolve, before the implementation phase (1991), logistical problems associated with the program design.
- o Develop, evaluate, and refine sampling methods for indicators of near coastal environmental quality.
- o Develop data handling, quality assurance, and statistical procedures for efficient analysis and reporting of the data.
- o Collect the information necessary to evaluate alternative sampling designs and to establish appropriate Data Quality Objectives (DQOs) for the Program.

The lessons learned and the data collected during the 1990 and 1991 field seasons were used in the development of the sampling plan described in this document.

SECTION 2 OVERVIEW OF FIELD SAMPLING ACTIVITIES

2.1 Sampling Period

The Index Period for Virginian Province sampling activities will be begin on July 27, 1992. An attempt will be made to complete all sampling prior to September 1, however, data generated during the Demonstration Project indicate that sampling throughout September would be acceptable. The Index Period was determined following an evaluation of the DP data. These data show the benthic organisms in Long Island Sound typically do not respond to low dissolved oxygen conditions until late in July.

2.2 Sampling Design

The EMAP-Estuaries sampling design combines the strengths of systematic and random sampling with our understanding of estuarine systems. It provides a design that will allow unbiased estimates of the status of the Nation's estuarine systems, the variability associated with that status, its spatial and temporal components, and the temporal trends associated with changes in these systems.

The objective of the sampling design is to provide a statistically defensible strategy to collect information concerning the Near Coastal indicators and their variability. The design will remain flexible to alternative future uses and yet is logistically reasonable and implementable.

In developing the sampling design, a list frame was used to represent the population of estuaries in the United States. This list frame was subdivided to represent all estuarine systems within the Virginian Province with a surface area greater than 1.0 square mile. The Virginian Province list frame was subdivided into three sampling sub-populations representing small estuaries and tidal rivers, large tidal rivers, and large estuaries. The EMAP-Estuaries sampling design is based on a single, annual sampling season (i.e., index period) of each of these classes. Addition information on the sampling design can be found in the NCPP (Holland, 1990).

2.2.1 Regionalization

The Near Coastal sampling frame represents coastal entities spanning the

entire coastal extent of the United States (i.e., tidal estuaries, embayments, tidal wetlands) as well as offshore coastal waters to a distance of 100 miles (i.e., all offshore regions within U.S. territorial waters with depths less than 200 m). EMAP- Estuaries is concerned with estuaries, embayments, sounds, tidal rivers. The large number and often broad expanse of the Near Coastal sampling units makes straightforward sampling of the entire sampling frame annually or in multi-year cycles impractical. The large number of potential sampling sites across the Nation requires that a regionalization scheme be developed in order to subdivide these sites into manageable sampling units.

The objective of the EMAP-NC regionalization scheme is to formulate a hierarchical structure for partitioning the coastal ecosystems of the United States based on the physical characteristics of those areas (primarily climatic and oceanographic). The regionalization is based on physical criteria rather than biotic criteria because the objective is to define whole ecosystems, which are constrained by their physical components and boundaries, rather than to define the distributional aspects of one or a few species.

The Near Coastal regionalization serves two purposes. It provides a data collection structure for organizing the storage of data and for demonstrating areas where data indicate wide-spread ecological problems. Second, it delineates geographical zones about which predictions on the status and trends of environmental conditions may be made at various levels of resolution. The regionalization scheme proposed for EMAP-NC is analogous to that adopted by NOAA and the U.S. Fish and Wildlife Service. (See Figure 2.1, taken from the NCPP [Holland, 1990]).

The Near Coastal regionalization is based on two primary factors: major climatic zones and prevailing oceanic currents. Both of these physical characteristics have numerous underlying physical and geological components that could be specifically enumerated. However, the composite of these characteristics results in the climatic zones and ocean current locations. The climatic zones are based on Beasley and Biggs (1987) conceptualization, and the ocean current delineation is based on Terrell (1979).

The regionalization consists of seven coastal regions within the continental United States; six additional regions encompassing Alaska, Hawaii, and the Pacific territories; and the Great Lakes (Figure 2.1). In its initial phases, EMAP Near Coastal will monitor estuarine status and trends in the seven regions of the continental United States. The first to be monitored was the estuaries of the Virginian Province.

Figure 2.1. EMAP-NC Biogeographical Provinces

The Virginian Province includes the wide expanse of irregular coastline from Cape Cod, MA to Cape Hatteras, NC and includes a number of large estuarine systems (e.g., Long Island Sound, Hudson River/ Raritan Bay, Delaware Bay, Chesapeake Bay).

2.2.2 Classification Scheme

Virginian Province estuarine waters were classified into three size categories: large estuaries, large tidal rivers, and small estuarine systems. (See the NCPP [Holland, 1990] for further details). These three classes represent estuarine systems with different behavior in relation to potential stressors. Moderate and small systems would be more similar within class than across classes once they are adjusted for major physicochemical variability (e.g., salinity, sediments). In addition, it makes sense to monitor the estuarine status of a particular size range in terms of potential management consequences. The large size category was expected to be rather small in number and thus adequate samples would be expected to fall within each large estuarine system to permit rough status estimates of these individual large estuaries (e.g., Chesapeake Bay, Long Island Sound). The size classification uses the following associative criteria:

- Large Estuaries: Surface area > 260 km² and aspect (Length/Average Width) < 20; 12 systems included. Examples: Chesapeake Bay, Long Island Sound, Buzzards Bay.
- Large Tidal Rivers: Surface area > 260 km² and aspect > 20; 5 systems included. This class includes the Hudson River, Potomac River, James River, Delaware River, and the Rappahannock River.
- Small Estuarine Systems: All remaining estuarine systems within the Virginian Province with surface areas > 2.6 km² and < 260 km²; 132 systems included. Examples: Barnegat Bay, Mystic River, Maurice River, Baltimore Harbor.

2.3 Indicators of Ecosystem Health

The primary goal of EMAP is to provide an assessment of overall ecosystem

health. To accomplish this goal for the near coastal ecosystem, a number of "indicators" of ecosystem health have been proposed. These indicators have been classified as core, developmental, or research indicators.

Core indicators are those for which there presently exists sufficient data to define the sensitivity and reliability of responses to stress with a high degree of confidence. The variability of core indicators over the Index Period is expected to be small. Core indicators for the EMAP-NC 1992 Virginian Project effort are:

- sediment contaminant concentrations,
- sediment toxicity,
- benthic species composition and biomass,
- salinity,
- sediment characteristics (grain size, organic carbon content, percent water), and
- water depth.

Developmental indicators are those indicators for which the sampling methods are not well refined, or for which only limited data are available on their reliability or sensitivity. In addition, the variability of these indicators over the Index Period is unknown. One important goal of the Project is to provide the information needed to assess the reliability, sensitivity, and variability of these indicators, and to develop appropriate sampling methods. Developmental indicators are:

- dissolved oxygen concentration,
- contaminants in fish flesh,
- gross pathology of fish, and
- fish community composition.

Research indicators have the potential to eventually become incorporated into the program as core indicators after much additional investigation. Sampling methods

are only partially developed and the reliability, sensitivity, and variability of these indicators are unknown.

2.4 Site Reconnaissance

Prior to the start of field activities, a thorough reconnaissance of the Virginian Province will be performed. This includes determining the locations of boat ramps, hotels, and dry ice suppliers; visiting any stations that may fall in water too shallow for boats; and attempting to identify any potential problems that the field crews may face during the Index Period.

SECTION 3 DESCRIPTION OF FIELD TEAMS

3.1 Personnel

Three teams of field personnel are required to accomplish all sampling activities. Each of these teams is comprised of two 4-person crews. Each crew is made up of a Crew Chief, Chief Scientist, and crew members. One of the Crew Chiefs also serves as the Team Leader, who is ultimately responsible for all equipment and activities assigned to his/her team. This design is outlined in Figure 3.1.

All Crew Chiefs are contract workers, employed by Science Applications International Corporation (SAIC) or Versar, Inc. SAIC personnel are based in Rhode Island, and Versar personnel in Maryland. Crew members this year will be supplied by Cooperative Agreement with the University of Rhode Island. The two crews comprising a team, work alternating schedules, six consecutive days on and six days off.

Team Leaders are responsible for the overall operation of their teams, including tracking equipment and supplies, maintenance, and progress made in sampling activities. Chief scientists are responsible for assuring the quality of the data collected and for the daily communications with the EMAP-NC Command Center (including the transfer of electronic data - see Section 12). Crew Chiefs are responsible for the day-to-day operation of all field gear and for safety. In most cases the Crew Chief will also serve as the Chief Scientist, therefore no distinction will be made in this document unless necessary. When the Crew Chief and Chief Scientist are the same person, the Crew Chief will generally delegate many of the day-to-day activities to a senior member of his/her crew.

During the transfer of crews, it is the responsibility of the Team Leader to assure that all pertinent information be transferred from the crew leaving for home to the crew coming on duty. This includes the stations sampled by the crew going off duty, any problems or suggestions, the status of any samples in the mobile lab that may need to be shipped by the crew starting their shift, a list of supplies that are running low, and any other information that might be needed or helpful to the crew coming on duty.

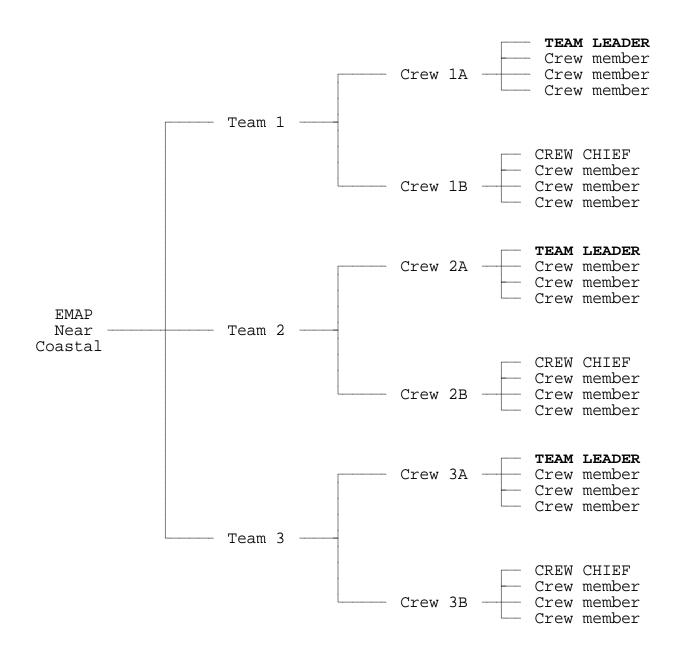


Figure 3.1. Manpower distribution for the Virginian Province Project.

3.2 Station Assignments

As stated above, three teams are needed to sample all stations during the Project. Team 1 is responsible for all stations from Cape Cod west to the Hudson River, excluding those stations in New York Harbor. Team 2 has been assigned those stations in New York Harbor, all stations in New Jersey and Pennsylvania, all stations in Delaware, those stations along the Delmarva Peninsula, and stations in the Maryland portion of the Chesapeake Bay north of the Potomac River. Stations in the remainder of the Chesapeake Bay and all tributaries south of the Potomac River (inclusive), and along the Delmarva Peninsula have been assigned to Team 3. A listing of stations, by team, can be found in Section 13.

3.3 Equipment

Each team is provided with all the equipment and supplies required to perform all sampling activities. This includes a 24-foot boat on a trailer, a four-wheel drive (4WD) pick-up truck to tow the boat, a 15-foot parcel van to serve as a mobile laboratory, a mini-van, two field computers, marine-band VHF radios, a cellular telephone, one Sea-Bird CTD profiling instrument, one benthic grab sampler, two *Go-Flo* water sampling bottles, two trawl nets, 2 Hydrolab DataSonde 3 dataloggers, and all additional supplies necessary to successfully complete sampling for all indicators. A complete list of equipment is provided in Appendix A.

Whereas all equipment required for obtaining samples is carried by the teams at all times, supplies (e.g., sampling bottles, floppy disks, etc.) are stored at one of two Base Facilities (see Section 6) and brought to the team by returning off-duty crews as required. Supplies can also be restocked on days when it is convenient for the on-duty crew to stop at their Base.

3.3.1 Boats

Each team is supplied with a 24-foot Romarine "Chesapeake"-style work boat equipped with two 155 Hp commercial Johnson outboard engines, a mast and boom assembly, a hydraulic winch, and a self-contained power supply to run the hydraulics. The on-board navigation system consists of a Loran C unit and a Global Positioning System (GPS) unit interfaced with computerized navigation software contained on a GRiD laptop computer. In addition, each boat is equipped with radar, two marine VHF radios, a compass, a depth finder, a video echo sounder, a tool kit,

and all required and suggested safety equipment. One completely outfitted spare

boat is stored at ERL-N, and will be transported overnight to any team who needs a replacement.

3.3.2 Boat Trailers

Each boat is transported on a heavy-duty, dual-axle trailer (each axle equipped with inertial brakes), and equipped with a power winch, a spare tire, and spare rollers.

3.3.3 Four-Wheel Drive (4WD) Pickup Trucks

A one-ton 4WD pickup truck is used to tow the boat. One spare is located at ERL-N as a backup, and to tow the spare boat. Trucks are equipped with a CB radio, camper shell (to allow for stowage of field gear), bed liner, front bumper winch, and a heavy-duty towing package. Four-wheel drive vehicles were chosen to assure that the boat can be pulled up steep, wet ramps.

3.3.4 Mobile Laboratory

Each team is equipped with a "mobile laboratory" (a 15-foot "parcel van") equipped with a CB radio, a marine band VHF radio (to communicate with the boat), a portable telephone, a GRiD laptop computer, shelves, and a work bench. This vehicle serves as a communications center as well as a staging area for calibrating instruments and processing and packaging samples for shipment.

3.3.5 CTD

Each team is equipped with one Sea-Bird, model SBE 25 "Sealogger" CTD unit. This unit is equipped to measure temperature, salinity, depth, dissolved oxygen, pH, transmissivity, fluorescence (chlorophyll *a*) and photosynthetically active radiation (PAR). Spare probes and an entire spare unit are stored at ERL-N. Data from this unit are uploaded directly to the on-board GRiD computer.

3.3.6 Trawl Nets

Each team is provided with three 16-meter, high-rise trawl nets, and one smaller net that can be used in congested areas.

3.3.7 Water Sampling Bottles

Each team is supplied with two General Oceanics 5 liter, Teflon-lined "*Go-Flo*" water sampling bottles. An additional two bottles are stored at ERL-N. Each team

also has a supply of spare parts for these units.

3.3.8 Grab Sampler

Each team is equipped with two stainless steel, Young-modified Van Veen grab samplers. This gear has a hinged top to allow for the removal of surficial sediments from the sample.

3.3.9 Laptop Computers

Each team is supplied with two GRiD model 1530 laptop computers. These computers contain an 80386 processor and are equipped with 2 MB RAM, a 40 MB hard drive, a 1.4 MB disk drive, a rechargeable battery, an external power cable for running off of the boat's battery, three serial ports, a VGA-LCD screen (no glare screen), a external modem with adjustable baud rate, an 80387 math coprocessor, a battery-operated printer, a bar code reader and a carrying case. Each computer contains navigation, communications, data management and word processing software. Three backup computers are stored at ERL-N.

3.4 Chain-of-Command

To avoid confusion and to establish a proper flow of instructions, it is important that a proper chain-of-command be in place. This order is outlined in Figure 3.2 and below. The names and phone numbers of appropriate personnel are listed in Section 23.

- 1. The Crew Chief is directly responsible for all field activities conducted by his/her crew. If the Crew Chief and Chief Scientist are different people, the Crew Chief is solely responsible for safety, maintenance, and boat operations; and the Chief Scientist for the collection of data.
- 2. ALL CHANGES IN THE SAMPLING PLAN THAT ARE OUTSIDE THE JURISDICTION OF THE CHIEF SCIENTIST ARE COMMUNICATED TO THE TEAM BY THE FIELD COORDINATOR (FC) OR THE PROJECT MANAGER. (See Section 18 for a description of allowable changes.) The teams accept technical direction from no other persons.
- 3. All technical matters, i.e., equipment problems, questions regarding station locations, sampling schedules, etc. should be addressed to the FC by the Chief Scientist AS SOON AS POSSIBLE.

4. If the FC cannot resolve the problem (e.g., determine how a station may be relocated), he then takes the matter to the Project Manager, the Technical Director, or other appropriate personnel.

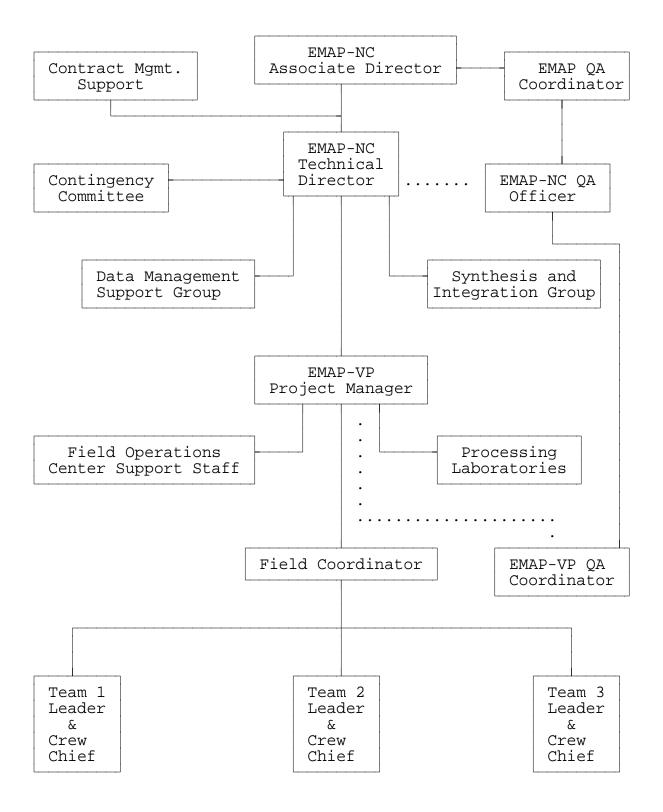


Figure 3.2. EMAP-NC Virginian Province Project management scheme for field activities.

SECTION 4 SAFETY

Field sampling endeavors are inherently dangerous. Operation of boats and sampling equipment even under ideal conditions carry a high degree of risk. This danger is greatly compounded in bad weather. Safety of the crews and equipment is of paramount importance throughout the Project.

4.1 Training

All field personnel are required to participate in an extensive training program (see Section 5). An important component of this training is related to safety procedures and precautions. All field personnel must demonstrate to the instructors that they are aware of all safety protocols and are capable of operating all gear in a safe manner. Training includes rules of the road for marine vessels, first aid, hazardous material handling techniques, and basic marine fire fighting. Cardiopulmonary resuscitation (CPR) certification is required as part of training.

4.2 Swimming Proficiency Requirement

Since a large portion of each crew member's time is spent in a small boat, all field personnel are required to demonstrate swimming proficiency. Although flotation gear is worn whenever sampling gear is being operated, there is always the potential for someone to fall overboard without a flotation yest.

4.3 Priorities

The safety of personnel is, at all times, the Crew Chief's number one priority. At no time should the crew take unreasonable risks to obtain a sample.

The safety of the general public is included in this top priority. At no time should the crew operate any vehicle or equipment in any way that might endanger the public. In addition, sampling activities must cease immediately if the crew is in a position to render assistance in life or limb threatening situations.

The second priority is the safety of major equipment. Loss of a boat, pickup truck, or CTD could jeopardize the program. Activities that represent an unreasonable risk to this equipment must not be attempted. It is up to the discretion of the Crew

Chief to determine what risks are unreasonable.

4.4 Accidents

Exact procedures to follow in the event of an accident are described along with the operation of the vehicles and boats (sections 8 and 9). As described in Section 4.3, the number one priority in the event of an accident is to assure the safety and well-being of crew members and the general public. This is followed by the safety of major pieces of equipment, the samples, and then minor, replaceable equipment.

4.5 Personnel Emergency Information

All field personnel are issued identification cards that carry their name and emergency information. This information includes medical problems, allergies, and the names and phone numbers of persons to be contacted in the event of an emergency. The EMAP telephone number is included on this card.

In addition, emergency information for all crew members is stored in each field computer, and at the Field Operations Center. Emergency information on the field computers can be accessed from the main menu.

Each Crew Chief must be aware of any medical problems his/her crew members may have. He/she must also be aware of any medication (including seasickness medication) taken be any crew member, as this could impair the reactions of that person.

4.6 Operation of Equipment

All EMAP equipment must be operated in a safe manner. Safety procedures for each piece of equipment are described in the sections describing the operation of that gear.

At no time should anyone operate heavy gear (such as the hydraulic winch or boat) while under the influence of any prescription drugs that could impair reactions. Likewise, CONSUMPTION OF ALCOHOLIC BEVERAGES DURING, OR IMMEDIATELY PRIOR TO, FIELD ACTIVITIES IS ABSOLUTELY PROHIBITED.

4.7 Safety Equipment

Each boat is equipped with required and recommended safety equipment. Each boat contains hard hats for all personnel, appropriate personal flotation devices (PFDs) and survival suits, a Type IV life ring, a "life sling" man overboard rescue device, fire extinguishers, flares, a portable spotlight (works off of cigarette lighter), a heavy-duty flashlight, a Class A Emergency Position Indicator Radio Beacon (EPIRB), an eyewash kit, and an extensive first aid kit. In addition, each boat is equipped with a main and backup radio, and radar.

Each mobile lab is equipped with a fire extinguisher, heavy-duty flashlight, eyewash kit, and first aid kit, in addition to a mobile telephone that can be used to call for assistance.

4.9 Weather Conditions

Since all sampling operations are conducted from small boats, weather conditions and sea state are important safety considerations. In no case should sampling be attempted in large, open systems when the Coast Guard has issued small craft warnings. Likewise, seas in excess of two feet may also require a delay of field activities. The crews should monitor one of the marine-band weather channels prior to departing from the dock each morning. It is the responsibility of the Crew Chief to assess weather conditions and the locations of the stations to be sampled, and make a decision as to whether or not sampling activities can be safely accomplished.

Even if weather conditions are not severe enough to force the cancellation of sampling activities, the Crew Chief may elect to return to shore if crew members become severely seasick and are unable to function in a safe manner, or if the quality of data collection becomes questionable.

4.10 Responsibility for Safety

Although each crew member is responsible for his/her safety and for operating all gear in a safe and responsible manner, it is the responsibility of the Crew Chief to assure the safety of his/her crew.

4.11 Boat Itinerary

Each time the boat crew departs from the dock, the boat Crew Chief provides the crew member remaining on shore with an itinerary. This includes the areas in which the boat will be operating and the time they expect to return to the dock. Any changes in this schedule must be transmitted by radio to the lab. If the boat is overdue by more than one hour, the land-based crew member should attempt to contact the boat by radio. Attempts should continue until the boat is contacted.

If the crew has not returned within four hours of the expected arrival time, and no contact has been made, the lab crew member should notify the Coast Guard by phone that a boat is overdue. He/she should inform them of the area in which the boat was working, a description and name of the boat, the number of people on board, and that the boat is a U.S. government vessel on official business. The Coast Guard should also be informed that the caller (the lab) will be monitoring Channel 16, and can be contacted by a Coast Guard vessel on that channel.

It is the responsibility of the Crew Chief to inform the lab crew member of any changes in the boat's itinerary. If the boat crew cannot reach the lab by radio directly, and the boat will be more than four hours late returning to dock, they should attempt to contact the lab via the marine operator, trying to reach it both on the lab's radio and cellular telephone.

If the boat crew has been unable to contact the lab and their estimated time of arrival at the dock is greater than four hours past their original projection, the boat crew should notify the Coast Guard, who, in turn, can pass this information to the lab crew member when he/she attempts to notify the Coast Guard of the overdue boat.

4.12 Handling of Hazardous Materials

Some hazardous materials are carried on board each boat. In addition to gasoline, boats are carrying small quantities of formalin and Dietrich's fixative (formalin, acetic acid, and alcohol). All of these compounds present some form of health hazard. In no case should containers be opened in the cabin; use of any of these materials requires adequate ventilation. Gasoline is very volatile, therefore, **SMOKING ON BOARD THE BOATS IS ABSOLUTELY PROHIBITED.** Solvents should always be stored on deck in the shade away from any equipment that could generate a spark.

Care should be taken when using any hazardous material. Protective clothing (gloves, boots, safety glasses) must be worn when using these materials.

Material Safety Data Sheets (MSDSs) for the hazardous materials to be carried on board are included in Appendix B. First aid information is listed on these sheets. The appropriate MSDS should be read before handling any hazardous material.

Dry ice is carried in the bed of the pickup truck. Care must be exercised when handling dry ice or samples frozen on dry ice. Under no circumstances should dry ice, or samples frozen on dry ice, be handled without insulated gloves. Doing so could result in severe damage to the skin and tissue that comes in contact with it. In addition, as dry ice warms and sublimes it releases carbon dioxide gas. Although the danger of suffocation is small, it still exists. Therefore, large quantities of dry ice should not be stored in the mobile lab. Dry ice should only be stored outside, or in the back of the pickup truck. A greater danger from suffocation exists during the process of loading or unloading samples from the dry ice chest. As a result of sublimation, most of the oxygen in the chest is displaced by heavier carbon dioxide. Crew members must avoid breathing in this gas.

4.13 Proper Handling of Potentially Hazardous Samples

Several of the stations to be sampled during the Project are located in contaminated systems. Sediments, organisms, and water collected at these stations may present a health hazard to field personnel if proper precautions are not followed. Many compounds can be absorbed through the skin; therefore, protective clothing is required when sampling at these sites. Stations representing a known or suspected health hazard are listed in Table 4.1. In addition, any station in or around an urban environment should be treated as a potentially contaminated site.

The following precautions should be taken when sampling at potentially contaminated stations:

- 1. Always wear protective rubber or Viton gloves along with rubber boots. Eye protection or face shields may also be appropriate, as are boots and protective coveralls or foul weather gear.
- 2. Avoid touching "clean" surfaces such as the steering wheel while wearing gloves that have been in contact with contaminated materials.
- 3. During trawling and benthic sampling, wear foul weather gear and boots to

minimize the possibility of contaminated material contacting the skin.

- 4. As sample containers are handled on-site and are therefore contaminated on the outside, place these containers in clean plastic bags and seal them. Do not handle the bags with contaminated gloves.
- 5. When removing sediment from grabs it is often necessary to have your face close to the sample. In this case, surgical masks should be worn to reduce the possibility of inhalation of particulates.
- 7. Following the completion of sampling, the boat and all gear should be thoroughly rinsed to remove any contaminated sediment. As soon as possible (back at the dock, enroute to an uncontaminated station, etc.), the boat and all gear should be scrubbed with detergent and rinsed with CLEAN seawater or fresh water. Nets can be towed (mid-water) at a clean site with the cod end open to rinse them.
- **8.** All personnel should wash their hands with detergent and clean water following removal of the gloves or contact with any contaminated surface.
- 9. In the event that bare skin comes into contact with contaminated sediments, the sediment should be washed off of the skin with detergent and clean water as soon as possible. If clean water is not available, ambient water can be used since the level of contamination in the water is always significantly lower than that of the sediment.
- 10. As a general rule at all stations, food should always be protected from coming in contact with boat surfaces. When working at contaminates sites, the crew should elect to refrain from eating lunch until they can return to the dock and wash their hands.

Table 4.1. EMAP-NC sites where contamination is known or suspected. Crews should take precautions to prevent skin contact with sediments collected at these sites. Stations marked by an asterisk (*) are known to be highly contaminated. In addition, all stations in urbanized areas should be treated as potentially contaminated sites.

Station #	Location	Hazard

SECTION 5 TRAINING

Proper training of all laboratory and field personnel in their respective duties is an important aspect of the project. Training can be segregated into three sets of activities: Crew Chief/Chief Scientist training, formal crew training (classroom and structured demonstrations) and dry runs. All training for the project falls under the general jurisdiction of the Project Manager; specific training in select technical areas is delegated to those responsible for indicators and/or specific activities.

5.1 Crew Chief (Chief Scientist) Training

Intensive training of Crew Chiefs and Chief Scientists will be conducted at ERL-N from May 25 to May 30, 1992. This will include navigation, computer operation, operation and maintenance of the electronic instruments, sampling and shipping procedures, and an overview of the scientific principles behind the sampling. Greater emphasis will be placed this year on CTD and Hydrolab cast quality assurance. Crew Chief training will include classroom, laboratory, and field activities. Crew Chief training will be conducted by EPA, SAIC, CSC, and external consultants as needed.

5.2 Crew Training

Formal crew training will begin on June 15, 1992 and continue through July 25 at ERL-N. CPR certification will be required during crew training. Formal training will include all other aspects of safety (including first aid), sampling and shipping procedures, boat operation, navigation, and maintenance. Training will be conducted by EPA, SAIC, CSC, Versar and external consultants as needed. Training will consist of classroom, laboratory, and field activities.

Crews will participate in at least five days of "dry runs" following the completion of formal training. The "A" crews will practice the week of July 8, and the "B" crews the following week. Teams 1 and 2 will work in Narragansett Bay, and Team 3 in the Chesapeake Bay. The purpose of the dry runs is to provide the crews the opportunity to integrate activities and practice full sampling days, including boat, mobile laboratory, and shipping activities. The Chief Scientists will serve as the primary instructors during this phase.

The Field Coordinator, VP QA Coordinator, or the EMAP-NC QA Coordinator

will visit each crew during dry runs to conduct QA audits. This exercise will be used to "certify" crews as being ready to conduct sampling activities according to sampling procedures, safety standards and QA protocols.

Following the completion of dry runs, the crews will return to their respective base location for a review and critique of that week's activities.

SECTION 6 LAND-BASED FACILITIES

All sampling activities are conducted on the water from small boats. It is necessary to have a network of land-based support facilities to assure efficient operation of the sampling effort. This network consists of three tiers.

6.1 Mobile Laboratories

The foundation of the network is the mobile laboratory. Each team is equipped with a 15-foot parcel van to serve as this facility. This is used for storing supplies and equipment, and as a staging area, communications center, and packaging and shipping center. Boat personnel must maintain contact with the crew member manning the mobile lab, and all contact from the Field Operations Center will be to this lab via cellular telephone.

6.2 Base Facilities

Base Facilities can also be categorized as resupply depots. All extra supplies, such as sample bottles, are stored at these facilities for transport to the teams as needed. The EPA's Environmental Research Laboratory in Narragansett, Rhode Island (ERL-N) serves as the Base for Team 1. The Base for Team 3 is Versar, Inc. in Columbia, MD. Team 2 is serviced by both these facilities. These sites also serve as a place for crew members to park their personal vehicles, and therefore, as a rendezvous point for crews returning to duty.

6.3 Field Operations Center

All field operations are coordinated from the Field Operations Center (FOC) located at ERL-N. The Data Base Management Team, VAX computer, Field Coordinator, and Project Manager are all located at this facility. ERL-N also serves as the main base for storing back-up equipment such as boats, trucks, CTDs, etc. During non-sampling periods, all equipment is stored at ERL-N.

SECTION 7 PROFESSIONALISM

During field operations, crews will be driving vehicles identified by their license plates as U.S. government vehicles, and operating and towing boats clearly labeled "United States Environmental Protection Agency." This puts the field crews in the public eye, and makes it imperative that they act professionally at all times.

7.1 General Contact with the Public

As representatives of the U.S. EPA, field crews should deal with the general public in a courteous manner at all times. Field personnel should take the time to answer questions regarding EMAP, and provide a copy of the Information Pamphlet, pointing out the Toll-Free number they can call for additional information.

The field crews must also remember that what they say about the program directly impacts public perception of EMAP and the EPA. Negative statements about the program, methods employed, or the gear used will not be tolerated. It is the responsibility of the Crew Chiefs and Team Leaders to assure that all contact with the general public results in a positive portrayal of the program.

It is especially important to take the time to properly describe the goals of the program to any fisherman that expresses an interest. A fisherman's livelihood is totally dependent on his/her ability to operate successfully in local waters. The sight of a U.S. government research vessel sampling in those waters may instill a fear that the researchers will determine that the water is polluted, thereby closing them to fishing. The result would be putting the fisherman out of business. Field crews are the "front line" in terms of correctly communicating the goals of EMAP. The manner in which the crews interact with the fishermen is critical in allaying their fears and gaining their trust and assistance. Along the same line, whenever a fisherman's gear (lobster or crab pots) are caught in a trawl, every attempt should be made to return it to the same area from which it was snagged.

When possible, the field crew should render assistance to other boaters in need of help. ALL FIELD OPERATIONS MUST CEASE IMMEDIATELY WHEN THE CREW IS IN A POSITION TO RENDER ASSISTANCE IN LIFE OR LIMB THREATENING EMERGENCIES. The crew should use their resources, such as the portable telephone, to assist in any emergency, whether EMAP personnel are directly involved or not.

7.2 Operation of Motor Vehicles

Any time a person is operating a U.S. government vehicle, he/she must realize that "the public is watching them." Many people would not hesitate to complain to the Agency if they felt that a government vehicle was being operated improperly. Therefore, all traffic laws, especially speed limits, must be carefully observed. The driver must operate the vehicle in a responsible manner, acting courteously to other drivers and pedestrians.

7.3 Operation of Boats

As with motor vehicles, field crews must operate the EMAP boats in a professional manner at all times. At no time should the boats be operated in a discourteous, reckless, or unsafe manner. These are work boats; therefore, water skiing (between stations), fishing, or any other activity that could be perceived by the general public as a "waste of their tax dollars" is prohibited. It is the responsibility of the Crew Chief to assure this.

7.4 Radio Operation

Radio operations are an important part of daily activities. Radio communications are frequently monitored by the Coast Guard and the general public, therefore, it is imperative that proper procedures be followed in a professional manner. Call signs and the name of the boat must always be used, profanity is prohibited, and all communications must be restricted to the proper channels. Details on the operation of radios are included in Section 9. The working channel assigned to EMAP by the FCC (Channel 82A) is shared by other U.S. government operations, therefore all communications should be as concise as possible and communications should be restricted to official business. It is the responsibility of the Crew Chief to assure that proper procedures are followed.

7.5 Waste Disposal

Garbage generated by the field crews must be disposed of properly. At no time should anything that did not come out of the trawl or dredge be thrown into the water. Boats and mobile labs are equipped with garbage pails which is where all trash generated should be placed for proper disposal on shore (in a <u>public</u> trash receptacle). At no time may trash be disposed of in <u>private</u> receptacles.

Hazardous wastes generated, such as waste formalin, must be disposed of properly as described in Section 22.

Following trawling operations, a potentially large quantity of dead fish or fish parts will need to be disposed of. The contents of a trawl should be returned to the water, however, and the Crew Chief should be considerate of other boaters and choose a location away from pleasure boats, public beaches, or docks to perform this processing. Dead carcasses should be disposed of at sea in open areas. Disposal on land should be avoided.

SECTION 8 VEHICLE OPERATIONS

During field operations, crews must drive considerable distances over roads of varying quality. It is important that all crew members be capable of operating all vehicles in a safe manner.

8.1 General Guidelines

There are a number of general "common sense" guidelines that field personnel should follow regardless of which vehicle they are operating:

- 1. Observe all posted speed limits.
- 2. Reduce speed during rain or reduced visibility.
- 3. Never follow too closely, even if following another EMAP vehicle. The old rule of one car length per 10 mph should be observed, and this should be doubled on slippery pavement or when trailering the boat.
- 4. Avoid driving on or near the center yellow line. The width of the boat significantly exceeds that of the towing vehicle, therefore, although the truck is on the right side of the road, the trailer may be straddling the center line.
- 5. Be aware of road regulations. The mobile lab and boat trailer are not permitted on Parkways and other roads on which commercial vehicles are excluded.
- 6. Be aware of the minimum overhead clearance for the vehicle being driven. When towing the boat the clearance is 11 feet.
- 7. Always act courteously towards other drivers.
- 8. Never drive in a reckless manner.
- 9. NEVER DRIVE AFTER DRINKING ANY ALCOHOLIC BEVERAGES.

- 10. Never drive when overly tired. Following a long day on the water it is more appropriate to stay in a motel and drive the following morning rather than that evening.
- 11. Never drive when on prescription drugs that might impair your reactions.
- 12. If an accident is observed, and you are in a position to render assistance (if it is needed), do so. Make sure that your vehicle is out of the way and will not hamper emergency vehicles or traffic flow around the scene. Use the portable telephone in the mobile laboratory to call for assistance. REMEMBER YOUR FIRST AID!!! UNLESS THE VEHICLE IS IN DANGER OF CATCHING FIRE, AN INJURED OCCUPANT SHOULD NEVER BE MOVED FROM THE VEHICLE UNLESS HE/SHE HAS BEEN PROPERLY ATTENDED TO BY QUALIFIED MEDICAL PERSONNEL!!!! If you are qualified to treat a patient, and begin treatment, you are OBLIGATED BY LAW to remain with that patient until he/she is turned over to someone of equal or higher qualification.
- 13. Be careful where you park the vehicles. Try to avoid parking in high crime areas and always make sure all valuable gear is stored in a secure area.
- 14. Prior to moving any vehicle check around it to make sure everything is clear. THIS IS ESPECIALLY IMPORTANT WITH THE MOBILE LAB. MAKE SURE THE VHF ANTENNA IS DOWN PRIOR TO MOVING THE MOBILE LAB!!!!!

8.2 Procedures Following an Accident

If one of the EMAP vehicles is involved in an accident, the following procedures must be followed:

- 1. All vehicles in the convoy should stop. Vehicles other than the one involved in the accident should pull off to the side of the road.
- 2. The portable telephone should be used to call for assistance. Inform the emergency operator of the following information:
 - a. the exact location of the accident;
 - b. the approximate severity of the accident (fender bender, rollover, etc.);

- c. whether there are any obvious injuries (e.g., two serious injuries);
- d. any other information needed.
- 3. The person making the call MUST stay on the line with the emergency operator until the operator hangs up. THE FIELD PERSON SHOULD NEVER HANG UP THE PHONE UNTIL THE EMERGENCY OPERATOR TELLS HIM/HER TO. The person making the call should provide the operator with the telephone number (including access code) so the operator can call back if necessary.
- 4. THE FIRST PRIORITY IS ALWAYS THE SAFETY OF THE FIELD CREW AND THE GENERAL PUBLIC. Injuries must be attended to immediately.
- 5. REMEMBER YOUR FIRST AID!!! UNLESS THE VEHICLE IS IN DANGER OF CATCHING FIRE, AN INJURED OCCUPANT SHOULD NEVER BE MOVED FROM THE VEHICLE UNLESS HE/SHE HAS BEEN PROPERLY ATTENDED TO BY QUALIFIED MEDICAL PERSONNEL!!!! If you are qualified to treat a patient, and begin treatment, you are OBLIGATED BY LAW to remain with that patient until he/she is turned over to someone of equal or higher qualification.
- 6. When the police arrive, complete an accident report, providing any documentation required. Insurance information should be provided, in advance, by the SAIC or VERSAR personnel coordinator.

NOTE:

Vehicles carrying U.S. government license plates (pickup truck and boat trailer) do not carry vehicle registration. The police officer should be informed of this, and that the vehicle is officially registered to:

United States Environmental Protection Agency Environmental Monitoring and Assessment Program 27 Tarzwell Drive Narragansett, RI 02882 1-(800)-732-2305 or (401) 782-3000

- 7. Emergency information for each crew member will be on file in all field computers, as well as at the FOC and with the Field Coordinator
- 8. Notify the Field Coordinator AS SOON AS POSSIBLE of any accidents.

Depending on the severity, operations may be postponed, or replacement equipment and/or personnel sent to the team.

8.3 Trailering Guidelines

Although the boat itself is only 24-feet long, adding in the outboard engines and brackets, and the trailer tongue brings the trailer package to over 30 feet. Attached to the pickup truck, the entire package is over 50-feet long. Operators must keep this in mind, both when changing lanes on the highway and when maneuvering around corners. The following guidelines should be noted:

- 1. Whenever changing lanes or turning corners, observe the side view mirrors to assure that the back of the trailer has clearance.
- 2. Each day, and each time the trailer is disconnected and then reconnected to the truck, a check of the trailer lighting system must be performed. This includes checking taillights, directional signals, and brake lights. Each time the crew departs for a new location, the security of the hitch and weight distributing bars must be checked. This involves checking the hitch locking mechanism, the padlock, safety chains, boat tie down, and that all gear in the boat (especially the mast and boom assembly) is properly secured. Appropriate checklists are included in Appendix A.
- 3. Observe posted speed limits at all times.
- 4. Remember that the trailer is wider than the truck. Make sure there is sufficient lateral clearance in parking lots.
- 5. Note the required overhead clearance for the boat (11 feet posted in the truck over the driver's sun visor). Care must be exercised when driving down back roads with overhanging trees.
- 6. Whenever the trailer is being backed up, one of the crew members must act as a spotter to direct the driver. The spotter must stand in a position to see the back of the trailer and must be visible to the driver.
- 7. When backing up the trailer, remember that it turns in the OPPOSITE direction from the truck. A simple rule for backing up is to turn the steering wheel in the direction opposite to the direction you wish the

trailer to go.

8. To assure proper functioning of the trailer, it should be washed down with fresh water (particularly the brakes) as frequently as possible. This could be done at a self-service car wash, AS LONG AS THE OVERHEAD CLEARANCE IS SUFFICIENT TO ACCOMMODATE THE BOAT. As of 1992 the trailers will be supplied with a "Brake Bath" system, which provides a hose-hookup and will automatically rinse the brakes when properly connected to a fresh water source. Maintenance, as described in Section 19, must also be followed.

8.4 Operation of Winch

Each pickup truck is equipped with a front bumper-mounted winch. This winch is used to pull the truck and boat up ramps that are too steep and slippery for four- wheel drive alone. If the winch is needed, the following procedures should be followed (more detailed instructions can be found in the owners manual located in the truck's glove compartment):

- 1. Connect the remote control unit to the winch.
- 2. Release the winch brake and pull out the needed amount of cable.
- 3. Attach the end of the winch cable to an appropriate object as close to ground level as possible. This should be something strong enough to remain fixed in place. A large tree or cement post would be appropriate. The cable should not be wrapped around the object. Use a chain (e.g. anchor chain), and then connect the cable to the chain.
- 4. If an appropriate object is not available for connecting the winch cable to, the mobile lab can be used. Back the lab to just above the top of the ramp. Place the transmission in Park, engage the parking brake, and place chocks behind all four wheels. Attach the winch cable to the trailer hitch or frame on the mobile lab.
- 5. Take up slack in the cable (maintaining tension whenever the winch is pulling cable in).
- 6. With the winch operator standing clear of the cable, start taking up on the winch. At the same time, place the pickup truck in Low gear.

Between 4WD/low range and the winch, the boat should be pulled up the ramp.

- 7. When the winch is no longer needed, take up the remaining cable. Maintain tension on the cable during this process and make sure that it spools properly.
- 8. Disconnect the remote control from the winch and place it in the glove compartment.

8.5 Operation of the Citizens Band (CB) Radios

Each truck and mobile laboratory are equipped with CB radios to provide for communications between the crew members in those vehicles. As with vessel radio operations, crews are expected to conduct themselves in a professional manner when using the CB radios. Operators not familiar with the operation of these units or the proper protocols for using them should consult the owners manual. CB radios operate on channels 1-40. Channel 9 is reserved for emergencies and should be used only for that purpose. As all channels are shared, communications should be kept as concise as possible. Channel 19 is generally reserved for traffic information. Only information regarding traffic (accidents, backups, etc.) should be transmitted on this channel. EMAP vehicles should routinely monitor 19 to determine the best travel routes. CB radio operators have adopted the "10-code' for standard communications (Table 8.1). To initiate communications, wait for a pause in transmissions and request a break. Transmit messages in a professional manner and always act courteously to other users. Priority must always be given to emergency transmissions. These radios should aide crews during land travel between staging locations.

Table 8.1. Commonly used 10-codes

Code	Meaning	Code	Meaning
10-1	Receiving poorly	10-13	Advise on road/weather
10-2	Receiving well		conditions
10-3	Stop transmitting	10-20	What is your location?
10-4	OK	10-21	Call by telephone
10-7	Out of service	10-33	Emergency traffic
10-8	In service	10-36	Correct time
10-9	Repeat	10-41	Switch to channel
10-10	Standing by	10-62	Cannot understand

SECTION 9 OPERATION OF BOATS

9.1 Weather Conditions

Local weather conditions will be a factor influencing whether or not to sample on a given day, at a particular site. If a small craft advisory has been issued by the Coast Guard, sampling may be canceled until the advisory has been lifted. However, there are some stations located in sheltered areas which may be sampled during high wind conditions. If conditions are deemed unsuitable by the Crew Chief, sampling will be postponed until conditions improve. The primary concern at all times is the safety of the crew and equipment. In the event that distant sites within a sampling region are inaccessible due to local weather conditions, a more sheltered site may be chosen for sampling providing the safety of the crew and equipment is assured, and the site is within the scheduled sampling region. The following information is provided as a general guideline for determining the safety of sampling on a given day.

Before launching:

- 1. Obtain the latest weather forecast from local and NOAA Weather broadcasts (see below for more information regarding NOAA broadcasts).
- 2. Note any warning signals at local Coast Guard stations.
- 3. Remain on shore unless the boat can be safely navigated under the expected weather conditions.
- 4. If conditions are acceptable for safe boat operation, leave instructions with the mobile unit on shore to contact the boat with the marine radio or cellular phone in the event of an oncoming storm.
- 5. Notify the Field Coordinator (FC) of any changes in schedule during the morning call-in (see Section 12).

While underway:

1. Keep an eye out for changing conditions. These would include: darkness, fog, threatening clouds (thunderstorm or squall), steady

increases in wind velocity or wave height, or sudden changes in wind direction.

- 2. Continue to monitor NOAA weather broadcasts.
- 3. If caught in a thunderstorm, retreat to cabin, avoid touching ungrounded metal objects or more than one grounded object at the same time, and be sure all crew members have PFDs securely fastened.
- 4. If severe weather is approaching or conditions begin to deteriorate, discontinue sampling and head for port. If there is time to safely reach the launch site, do so, otherwise proceed to the nearest safe harbor.
- 5. Notify the Field Coordinator of any changes to the sampling schedule.

NOAA Weather Radio broadcasts continuously on VHF-FM stations. Forecasts are normally updated every three to six hours. During situations when weather conditions are changing rapidly, forecasts are updated more frequently. Broadcasts include the weather patterns for the region, marine forecasts and warnings for coastal waters, special bulletins in the event of severe weather, and reports on tidal conditions.

9.2 Launching and Recovering Procedures

Launching and recovering the boat are procedures with which all crew members must be familiar. It is important to follow a set routine to avoid lost sampling time which may result from injuries or damaged equipment. The following procedures outline the basic steps for launching and recovering the boat. Checklists are included in Appendix A.

9.2.1 Launching:

- 1. Check the boat ramp to be sure there are no obstacles, such as other boaters, people, or debris.
- 2. Check all drainage plugs and tighten as necessary. Drainage plugs are located at the bottom apex of the transom and on the bottom of the outboard bracket.
- 3. Check the scupper plugs, and screw to close as necessary. Scupper

plugs should not be tightened!

- 4. Raise the motors if they are not already in the full-tilt position. Release the safety latch so the motor is supported in the tilt position by the hydraulic trim unit.
- 5. Remove the tie-down strap.
- 6. Assemble the mast and boom as described in Section 9.3.
- 7. Disconnect the trailer lights to minimize the chance of an electrical short in case saltwater leaks into one of the lights, or in case there is a cut in a wire.
- 8. Engage 4WD if the ramp is steep or slippery, or if traction is in any way uncertain.
- 9. Locate the end of the ramp to avoid backing the trailer over the edge.
- 10. Slowly back down the ramp until the boat can safely be launched. One crew member must act as a spotter for the driver. He/she must be in a position to watch the back of the trailer, and must be visible to the driver.
- 11. Remove the safety chain connecting the boat to the trailer.
- 12. Have two crew members hold the bow and stern lines to guide the boat when it is lowered into the water.
- 13. Carefully lower the boat into the water by slowly releasing the winch brake. No power supply is needed; the weight of the boat should be enough to slide the boat into the water.
- 14. Secure the boat to the dock in a place which will not interfere with other boat traffic.
- 15. Park the vehicle with the trailer in an appropriate parking space.
- 16. Check the gas level in the boat.

9.2.2 Recovering:

- 1. Secure the boat to the dock and unload sampling equipment.
- 2. If there are any overhead obstacles (e.g., low power lines), lower the mast and boom assembly prior to recovering the boat. If the area over the ramp is clear, the mast assembly can be left up during the recovery process. Also determine where the rig can be parked during the process of lowering the mast. Make sure there is adequate overhead clearance between the ramp and the "de-rigging" area.
- 3. Empty the bilge of any accumulated water.
- 4. Engage 4WD low range on the truck.
- 5. Locate the end of the ramp to avoid backing the trailer over the edge. When clear, back the trailer down the ramp and connect power supply to winch.
- 6. Have one or two crew members guide the boat with bow and stern lines.
- 7. Have the third crew member drive the boat into position at the rear of the trailer. The driver should keep the boat in gear at low speed (one motor in gear, one idling in neutral) to maintain position until the winch cable can be attached. It is important to keep the boat running to maintain position, particularly when there are strong or gusty winds, or strong currents. Once the cable is attached and the winch engaged, stop the motors and raise them to full tilt position.
- 8. Pull the boat onto the trailer with the winch. Keep clear of the cable to prevent injury in the event of cable or hardware failure. **NOTE:** The electric winch, if used should always be used in the double pull mode. An emergency hand winch is provided in case of failure of the electric winch. This winch provides for two gear settings, as well as a free-spool setting.

NOTE: To eliminate unnecessary winch operation the vessels may be powered up the trailer with the

outboard engines tilted up. This operation should only be attempted with the discretion of the crew chief. Care should be taken to assure personal safety during this maneuver.

- 9. Continue to guide the rear of the boat with the stern line.
- 10. Once the boat is in position on the trailer, secure it with the safety chain.
- 11. Drive slowly up the ramp to remove boat and trailer from the water. On very steep or slippery ramps, even four-wheel drive may not be sufficient to pull the boat up the ramp. In such a case, use the winch mounted on the front bumper of the truck to help. See Section 8.4 for details.
- 12. Use the winch to snug the boat into final position for trailering.
- 13. Lower and secure the mast assembly and antennae if this procedure has not yet been done. Refer to Section 9.3 for details on lowering the mast assembly.
- 14. Secure the tie-down strap.
- 15. Reconnect and check the trailer lighting system.
- 16. Check the trailer safety and brake chains.
- 17. Inspect the boat. Check for any hull damage. Remove or secure any loose objects on the deck or in the cabin. Be sure the mast assembly is securely lashed to the boat and that all antennae are either tied down or locked in the lowered position. Make sure all electronics are secured.
- 18. Engage the engine safety latch and lower the engines until they are resting on the latch and not on the power trim cylinder.
- 19. Store any remaining gear in the vehicles.
- 20. Disengage 4WD. First shift out of 4WD then disengage the front hubs.
- 21. The boat should now be ready for transport to the next site.
- 22. CHECK TO MAKE SURE THE MOBILE LAB VHF ANTENNA IS

DOWN.

23. Check oil and gas levels to plan for the next fuel stop. (When possible, defer filling the tank until near the next site to avoid trailering a full tank of gas.)

9.3 Mast Assembly and Antenna Set-Up

The mast assembly consists of a mast with a boom, five stays, three lines leading off the boom and a radar antenna dome. Set-up and take-down of the mast assembly are most easily accomplished while the boat is on land; however, at some ramps limited overhead clearance (trees or power lines) may make it necessary to raise the mast after the boat has been launched. The mast should always be raised and securely fastened with stays during the launching and hauling of the vessel to minimize stress on the aluminum mast. The set-up and take-down procedures for the mast assembly are described below.

9.3.1 Mast assembly set-up:

- 1. Remove all tie-down straps.
- 2. Remove the retaining bolt from the mast support bracket on the cabin roof.
- 3. Pull slack from the center line which runs from the mast to the boom.
- 4. Slowly raise the mast and boom into an upright position. Be particularly mindful that the hydraulic lines are not pinched, and that the turnbuckles (attached to the stays) are not damaged as the mast is raised into position.
- 5. Once the mast is upright, bolt it into position in the support bracket on the cabin roof.
- 6. Secure the three forward mast stays to the bow and forward corners of the cabin using shackles and turnbuckles. Secure the side support stays using shackles and tighten turnbuckles until all cables are taut. Forward turnbuckles should be tightened before those for the side support stays. THE BOAT SHOULD NEVER BE USED WITHOUT ALL OF THE MAST STAYS BEING SECURED. The mast flexes very easily

and can create metal fatigue.

- 7. Lower the boom with the center line to approximately 45 degrees from vertical, and secure in this position by lashing to the mast cleat.
- 8. Tighten port and starboard boom lines and secure to cleats.

9.3.2 Mast assembly take-down:

- 1. Loosen port and starboard boom lines.
- 2. Raise boom with the center line, then pivot to one side and secure.
- 3. Loosen turnbuckles and detach all stays (side stays first) and remove the bolt from the center mast bracket, while supporting the mast in the upright position.
- 4. Lower the mast assembly onto a supporting cross board and securely lash in place. Great care should be observed while lowering the mast because the radar dome resides on the top of the mast assembly

There are three antennae on each boat for the various electronic gear. These need to be raised when the boat is launched and lowered for transport between sites. All three are tightened and loosened with a lever. While afloat, the antennae should be locked in the upright position. During transport, the antennae should be locked and lashed (if possible) in the lowered position. The mobile lab VHF antenna must also be lowered and stored inside the lab.

9.4 Gear Check-Out and Loading

Since much of the sampling gear is loaded onto and removed from the boat on a daily basis, it is important to maintain a careful record of available gear. When loading the boat, carefully follow the gear checklist (Appendix A) to avoid leaving essential items behind. Once the necessary gear has been assembled, inspect for damage and replace as needed. When loading the boat, securely lash heavy and bulky gear (e.g., grab sampler, trawl net) in a manner which minimizes obstruction on the deck. Fragile and valuable equipment (e.g., Sea-Bird CTD, Hydrolab DataSonde 3 dataloggers, GRiD computers, cameras) should be securely lashed or stowed to prevent damage in route to the sampling stations. All other gear should be loaded and stowed where appropriate.

While sampling and loading or unloading equipment, make note of any supplies which need to be replenished or damaged gear which needs to be replaced. Contact the Field Operations Center when supplies are needed and make arrangements to pick them up or have them delivered.

9.5 General Policies Underway

All personnel should be aware of general boating and navigational rules. Some of the more important rules are:

- 1. Anchored vehicles have the right of way over moving vessels.
- 2. Sailboats have the right of way over power boats (except when under power).
- 3. If overtaking another boat, it is your responsibility to remain out of their way.
- 4. When approaching another boat head-on, stay to the right and pass port to port unless you are far enough apart to safely pass starboard to starboard.
- 5. When crossing paths, the boat to the right has the right of way.

The following is a simplified list of vessels which have the right of way over vessels listed below it.

- 1. Overtaken vessel.
- Vessel not under command.
- 3. Vessel restricted by its ability to maneuver.
- 4. Vessel constrained by draft.
- 5. Fishing vessel (fishing or trawling, not trolling).
- 6. Sailboat.
- 7. Powerboat.

9.5.1 Required Personnel

At least two crew members must be on board the vessel at all times. The only

exception is for moving the boat short distances, PROVIDING NO SAMPLING ACTIVITIES ARE TO BE PERFORMED.

9.5.2 Speed Regulations

Always travel at a safe speed. EMAP boats are capable of high speed, therefore, restraint must be exercised. The boats were equipped with twin engines to allow for the completion of sampling activities in the event that one engine fails, NOT so the crews could travel between stations at 40 mph. This speed will be dependent on a number of conditions, including weather conditions, visibility, and amount of boat traffic. Reduce speed when passing marinas, anchored boats, and swimming areas. It is very important to observe 'reduce speed' and 'no wake' signs.

9.5.3 Anchoring

Avoid anchoring the boat in a busy, narrow channel or anywhere it could obstruct normal boat traffic. Don't block launching ramp areas. Also, consult appropriate charts of the local area for anchoring restrictions and look for signs denoting an underwater cable. Do not anchor in the vicinity of such a cable.

Additional information on navigational skills and boat operation can be found in a number of references, including:

- 1. Nynex Boater's Directory, 1990, Volumes 1-4, Published by Nynex Information Resources. (provides only general information)
- 2. Boating Skills and Seamanship, 1988. U.S. Coast Guard Auxiliary, U.S.A.

9.6 Radio Operations

The operation of marine radios is governed by regulations of the Federal Communications Commission (FCC). There are specific procedures for placing calls to other vessels, and for answering calls to your vessel. Monitor Channel 16 when the marine radio is on. All calls originate on Channel 16; however, only emergency transmissions are permitted on that channel. To call another ship or the mobile lab, follow these procedures:

1. Switch the radio to channel 16. Listen to make sure you are not interrupting another conversation, then transmit:

NAME OF BOAT YOU ARE CALLING

THIS IS NAME AND CALL SIGN OF YOUR BOAT

OVER

If you get no response, repeat two or three times.

2. When the boat you are calling responds, state:

SWITCHING TO 82A (working channel)

- 3. Switch to channel 82A and listen to make sure you are not interrupting another conversation.
- 4. Conduct routine conversation, trying to limit it to three minutes or less. At the end of your conversation state:

NAME AND CALL SIGN OF YOUR BOAT OUT

5. Switch back to channel 16.

A request for a radio check should be initiated on Channel 16 and then switched to Channel 82A if additional conversation is desired. Routine radio checks made by the boat should be to the mobile lab. The Coast Guard should never be contacted for a routine radio check.

As U.S. government vessels, all EMAP boats are subject to regulations that differ from those specified for recreational and commercial boaters. A permit to operate the boat radios has been obtained and must be carried on board at all times. A copy of this permit is included in Appendix D. Call signs for all EMAP vessels and a list of the channels authorized for our use can be found in Figure 9.1. Transmissions from the mobile laboratory are only permitted when the lab is stationary. The need to remove the antenna during transit should make transmissions while the vehicle is in motion impossible.

OPERATING PROCEDURES FOR DISTRESS CALLS

There are three spoken radio emergency signals:

- 1. Distress signal: **MAYDAY**. Mayday is used to indicate that a mobile station is threatened by GRAVE and IMMINENT danger and requests immediate assistance.
- 2. Urgency signal: **PAN PAN** (correct pronunciation is PAHN-PAHN). Used when the safety of the vessel or person is in jeopardy, such as "man overboard."
- 3. Safety Signal: **SECURITY**. Security is used for messages concerning the safety of navigation or giving important meteorological warnings.

ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM BOAT RADIO FREQUENCY ASSIGNMENTS

CALL SIGNS

<i>R/V CYPRINODON</i>	WRH 4387
R/V ARBACIA	WRW 8803
R/V MYSIDOPSIS	WRM 8373
R/V CHAMPIA	WRG 3330

MOBILE LABS KB 2053

FREQUENCY ASSIGNMENTS

CHANNEL	TRANSMIT FREQ. (MHz)	TYPE OF OPERATION
6	156.300	Intership safety
12	156.600	Port operations
13	156.650	Bridge to bridge communications
14	156.700	Port operations
16	156.800	Calling, safety and DISTRESS
20	157.000	Port operations
22A	157.100	Communications with Coast Guard
67	156.375	Bridge to bridge - Louisiana
82A	157.125	Working channel US govt. only

In addition, all public correspondence channels (marine operator) can be used: 24, 25, 26, 27, 28, 84, 85, 86, and 87

Figure 9.1. Listing of radio call signs and authorized frequencies.

If you hear any of these messages while monitoring Ch 16, listen, don't transmit, and be prepared to help if you can.

To issue a distress call, use Ch 16:

- 1. Say MAYDAY (3 times).
- 2. This is the R/V (3 Times).
- 3. Give VHF call numbers (1 time).
- 4. Give location (Latitude-Longitude, LORAN, bearings off marker, etc.).
- 5. Briefly describe nature of distress (i.e., what is wrong, and what kind of help is needed.
- 6. Describe your boat length, type, hull color.
- 7. Keep repeating until someone acknowledges your call.

REMEMBER: ONLY ISSUE A DISTRESS CALL IN A GRAVE EMERGENCY!

9.7 Radar Operation

Each boat is equipped with a radar unit to aid in navigation under reduced visibility. Radar consists of a display unit (mounted in the cabin) and a Radome antenna (mounted on the top of the mast). When operating, the antenna emits microwaves in a 360° sweep. These microwaves bounce off of dense objects, are then received by the antenna, and transmitted to the display unit. Consult the owner's manual for proper operation of this unit. Radar can also be used to determine ranges needed during dead reckoning.

9.8 Winch Operation

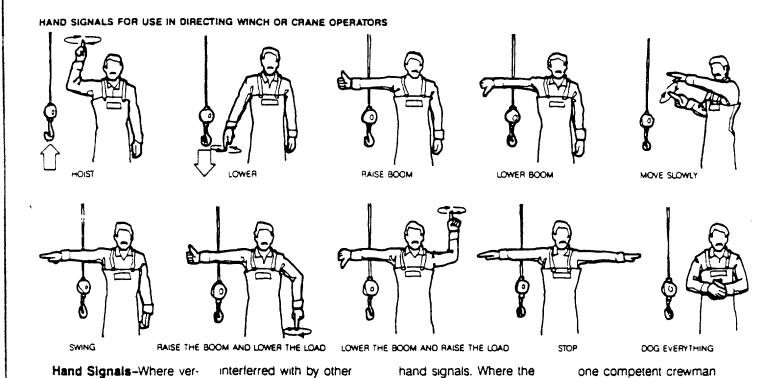
Operations involving the hydraulic winch and capstan are the most dangerous. All personnel must be equipped with a hard hat when working on deck during hydraulic operation. Life jackets are always required. Each boat is equipped with a hydraulic winch and capstan which is run by an air-cooled gas-powered motor located just behind the cabin on the port side. The winch operator must be aware of the power generated by the hydraulics and the dangers involved in the operation of the gear. The operator of the winch must be aware of all activities being conducted on-board the deck when the winch is being used. All personnel on the deck must be careful to stay out of the bite of the cable, and personnel in the cabin must be careful to not accidentally engage one of the winch control levers.

To start the Briggs and Stratton engine supplying power for the hydraulics:

- 1. MAKE SURE THE CONTROL LEVERS ARE IN THEIR NEUTRAL POSITION.
- 2. Pull out the kill switch located on the aft shelf in the cabin.
- 3. Set the engine's throttle lever for greater than half throttle.
- 4. Engage the choke if the engine is cold.
- 5. Depress the starter button (an emergency pull cord is also available).
- 6. As soon as the engine starts, push in the choke lever.

Once the engine is running, power can be supplied to the winch. Great care must be taken to assure that hands, clothing, or gear do not get caught in the winch or any of the blocks the wire is traveling through.

The levers controlling hydraulic power are located inside the cabin on the rear bulkhead. The starboard lever controls the winch and the port lever controls the capstan. The winch will not free-spool, so power must be supplied to lower, as well as raise, gear. The speed at which the winch or capstan operate is controlled by how far the lever is moved.


During winch operation, the operator must not only observe the activities of the crew on the deck, but must also watch the winch to assure that it is spooling properly. If necessary, a wood 2x4 can be used to guide the spooling wire back on track.

ALL STAYS MUST BE PROPERLY FASTENED AND TIGHTENED ANY TIME THE MAST AND BOOM ASSEMBLY IS USED.

The noise created by the Briggs and Stratton engine makes verbal communication between the winch operator and the deck crew difficult and unreliable. To assure the safety of the crew members on the deck, hand signals should be used. These signals are shown in Figure 9.2.

should give signals, not the

whole crew.

winch operator doesn't have

a clear view of the load,

Figure 9.2. Hand signals used during winch operation.

noises, the crew should

utilize a standard set of

bal communications are im-

possible or are likely to be

9.9 Emergencies/Accidents

Emergencies or accidents may occur in the course of sampling which may or may not involve EMAP boats or personnel. In the case where non-EMAP personnel are in an emergency situation, EMAP crews are required to render assistance if there is danger of loss of life or limb of those involved. In such an instance, crews should take the appropriate action (e.g., administer first aid and/or CPR, tow the boat to safety, radio for help) necessary to protect those involved. Under circumstances where there is no immediate danger of loss of life or limb (e.g., boaters with mechanical problems) EMAP crews should inform the Coast Guard or a local towing service of the problem and give the location and a description of the disabled vessel. If the disabled vessel is near a marina and if it will not result in a major loss of sampling time, in the interest of public relations crews should render assistance. Towing another vessel is discouraged but assistance can be provided using extreme caution. In the case of an EMAP vessel requiring a tow, a towing service should be contacted. For liability reasons a passerby should not be used.

If EMAP personnel are in an emergency/accident situation, take appropriate action to reduce the immediate danger to those involved. In the case of a physical problems (e.g., man overboard, hypothermia, seasickness, sunburn, heatstroke, fish bites or stings, etc.) take the appropriate lifesaving, first aid, or CPR measures and call for help (911 with cell phone) if necessary. In an accident situation where there is no immediate danger of loss of life or limb, notify the FC and the mobile unit of the problem and take measures necessary to rectify the situation (e.g., call for help, head for port). If an emergency or accident is serious enough to return to port, notify the mobile unit on shore and arrange to have an ambulance or other necessary emergency equipment in port upon arrival.

9.10 Equipment Failure/Repair

The best way to assure proper functioning of the equipment is to adhere to the routine maintenance schedule (Section 19). When equipment fails to operate, check the most obvious solutions first before attempting a major overhaul. The most obvious reasons for equipment failure are loss of electrical power or fuel.

9.10.1 Outboard Motors

If the outboard motor will not start or if it suddenly stops, check the fuel and oil levels. If fuel and oil levels are adequate, inspect the electrical system for poor connections and the condition of the spark plugs. Tighten any loose connections and clean any contact points that appear to be excessively corroded. If attempts to restart

fail after inspecting the fuel and power supply, refer to the owner's manual. If a motor fails and cannot be easily repaired notify the FC to arrange to have the boat repaired or replaced.

9.10.2 Hydraulic Winch

If the Briggs and Stratton that powers the hydraulic winch fails to operate, check the fuel, spark plugs, and power supply. If needed, use the pull cord to start the motor. If proper functioning is not restored, consult the owner's manual. In the case where the trawl net is in the water and the winch fails, attempt to retrieve the net manually and proceed as described above. Notify the FC immediately if a winch fails.

9.10.3 Navigational/Electronic Equipment

In the event of navigational/electronic equipment failure, check fuses and inspect power supply for loose connections. Also check to be sure antennae are not damaged or lost. Consult the owner's manual if the above steps fail to correct the problem and notify the FC. Use backup methods (Loran or dead reckoning) to locate the station where appropriate.

In general, crews should be capable of trouble shooting many problems. In many cases the problem could be as simple as a loose or broken wire. Each boat is equipped with a multimeter that can be used to check the continuity of wires. Attempts to use gear should be abandoned only after every attempt has been made to correct the problem on-board.

SECTION 10 ON-BOARD COMPUTER SYSTEM

Each team is supplied with two GRiD model 1535 laptop computers. One computer is located in the mobile lab for the land crew member's activities and the other computer is placed on the boat where it is interfaced with the Loran, GPS, CTD and/or Hydrolab units and a barcode reader. This chapter provides a summary of boat computer system procedures and references to the appropriate sections of the Field Computer System User's Manual (Part 1) for more detailed information.

The boat computer system consists of two separate computer programs, one for acquiring navigation data from the Loran and GPS instruments (EDAS or Environmental Data Acquisition System Program) and one for collecting and cataloging EMAP sample data (EMAP NC-VP program). Both programs are accessed by selecting the **Navigate to a Station** option from the **Main Menu**. The resulting menu display is the **EDAS Menu**. Refer to the EDAS manual (SAIC, 1991) for more information on the EDAS program procedures and to Chapter 11 of this document for navigation procedures.

The EMAP NC-VP program options are embedded in the **Environmental Sampling** Menu. Detailed procedures for collecting and cataloging data are provided in the Field Computer System User's Manual, Part 1. The following table briefly describes the functions of each menu selection and lists the appropriate section of the manual for more information.

Menu Item	Description	Section
Station Setup	Station location and general data	3.2
Hydro. Deploy	Long term deployment data	N/A
Hydro. Retrv.	Long term retrieval data	N/A
CTD	Setup, download CTD	3.3.1
Profile Hydro.	Substitute Hydro. for CTD	3.3.2
Benthic	Catalogue benthic grab data	3.4
Sed. Chemistry	Catalogue sediment chem. data	3.5
Fish Trawl	Time trawl and catalogue data	3.6

On shore options of the EMAP NC-VP computer program including data editing, reviewing, fish and shipment cataloging and communications are all accessed from other options from the **Main Menu** and are not required for normal boat operations. For more information on these items, refer to the Field Computer System User's Manual, Part 2.

SECTION 11 *NAVIGATION SYSTEM*

Details on the operation of the navigation component of the computer system can be found in SAIC (1991). This system both assists the boat operator in navigating to the station, and provides for the automatic storage of position data once the station is reached. The system is entirely menu driven for ease of operation.

Prior to use the system must be calibrated. This consists of positioning the boat at a location of known coordinates (e.g. the end of a dock showing on a nautical chart) and inputting the known latitude and longitude. The system will automatically average TDs (Time Delays) and calculate a calibration factor (for calculating latitude and longitude from TDs). This calibration factor is then stored and can be used for all stations in close proximity. The distance over which this calibration factor is valid is dependent upon the body of water in which the boat is operating and the existence of conditions which could distort the TDs (such as electrical power lines). Once a station is "set up", the calibration factor is associated with that station and saved in its parameters file. For each subsequent visit to that station, that file is called up and the system is automatically calibrated.

11.1 Loran and GPS

The Loran-C uses shore-based radio transmitters (referred to as Master and Slave stations) combined with shipboard receivers to track low frequency signals. The Loran displays the time difference (TD) between the Master and Slave stations, allowing several lines of position to be plotted. Using navigational charts and the TDs obtained on the shipboard receiver, the boat's position can be determined from where these TD lines intersect.

Each boat is also equipped with a Global Positioning System (GPS) unit to aide in navigation. This unit uses satellite signals to determine position. The utility of this instrument is, at present, limited. Only a portion of the satellites necessary have been put into orbit, therefore, use of this instrument is limited to those hours of the day during which one the existing satellites is overhead. As more satellites are launched, GPS will become a more valuable tool. As of the writing of this manual 16 satellites were available.

Each team is supplied with a GRiD laptop computer containing an integrated navigation system. This system interfaces with both the Loran and the GPS. It provides for an averaging of multiple calibration factors, and is capable of storing parameters files for each station sampled. Sampling protocol dictates that sampling be performed as close as possible to each designated sample site, therefore, the computer navigation

system should be used at every station. The only exception should be when a major component of the system (Loran or computer) fails. In that case, either the Loran, GPS, or dead reckoning (in river systems) should be used to locate the station. The use of any system other than the computer navigation system requires an explanation in the log.

Each Crew Chief is required to maintain a navigation log containing ranges and bearings for all stations. Hand-held compasses can be used for the bearings and the radar for the ranges. This should be used to validate the coordinated produced by the boat electronics.

11.3 Set up Computer and Configure GPS

- 1. The computer should be configured with the LORAN data cable in COM4 and the GPS data cable in COM3.
- 2. BEFORE starting the navigation system on the computer, the LORAN and GPS receivers should be powered up and operating correctly.
- 3. The following steps outline the initialization and use of the Raytheon GPS receiver. Initialization normally needs to be done only once, but it is a good idea to at least check the initialization parameters at the beginning of each sampling cycle.

GPS INITIALIZATION

- A. Turn the GPS on and set the position switch to the INIT mode. To scroll through the parameters without resetting them, use the <ENTER> key. A flashing parameter can be set by hitting the appropriate numeric keys.
- B. Set your approximate current position (within about 1 nm). Enter the values as DD MM.mm (degrees and decimal minutes). Make sure the Lat/Long values scroll all the way across the screen, and enter any terminating zeros in the values. While entering the Lat/Long, confirm that the correct hemisphere is displayed next to the number (should be W and N). If not, change the hemisphere with the <+> and <-> keys. Press <ENTER> when finished with each value.
- C. Set the time. This is in GMT (Greenwich Mean Time) which is 4 hours ahead of our time (therefore if your current local time is 13:00 hours, GMT will be 17:00 hours). Set the date, using the format YYMMDD, and entering

any zeros as needed. (Note the unusual format of the date value, and be careful to enter it correctly. Also be aware that if you are initializing the unit after 20:00 hours local time, the date will be the NEXT day in GMT.) Enter the local time offset from GMT, which in our case is -4.00 hours. Press <ENTER> when finished with each value.

- D. Set the antenna height, using an approximate value of 3 meters. Press <ENTER> when finished.
- E. Once the initialization parameters are set to your satisfaction, turn the position switch to the SAT mode. The GPS should remain in this mode throughout the day.

GPS USE AND STATUS

- A. Following initialization, the GPS receiver will acquire and download tracking information from all currently available satellites. The time it takes for this process to happen will vary, but should be no longer than about 15 minutes.
- B. The status display of the GPS will provide you with a variety of information. See the GPS manual for the display format. Individual satellite information can be cycled through by pressing the <#> key.

The GPS display parameters are as follows:

- Satellite number: the number of the satellite for which information is displayed.
- Status: status of the satellite. 0 = searching, 1 = tracking, 2 = data download from satellite complete.
- Received Signal Level: the strength of the satellite signal. The higher the better.
- Azimuth Angle: angle on the horizon (0 = north) of the satellite.
- Elevation Angle: elevation above the horizon of the satellite. A satellite below 5 degrees will be tracked (but not accepted) by the GPS until its height is adequate.

- Normal Satellites: the number of normal satellites currently in operation.
- Dilution of Precision (DOP): this is a statistic representing the quality of the position information being output to the computer. It is most important to observe the DOP, since the higher the value the more degraded the position solution. For system calibration, DOP should be LESS THAN 5, for navigation with the LORAN and GPS on-line, DOP should be LESS THAN 10. If DOP is greater than 10, the GPS should be taken off-line from the navigation system.
- Visible Number of Satellites: the total number of satellites currently visible to the receiver.
- Satellite Numbers used for Position Fix: these start as two lines of 4 dashes. They are replaced by the satellite numbers being tracked, as the satellites are acquired. Note that these numbers will only be displayed if 3 or more satellites are being tracked.
- C. If the satellite coverage is currently not sufficient to provide position information, the time window when coverage will be adequate can be checked. To do this press the <CHNG> key twice. The bottom of the display will show the time window when coverage will be available for a 2-dimensional solution. These times will be in your LOCAL time.
- D. The EDAS system is configured to OUTPUT position information in the North American 1983 (NAD-83) datum. However, it expects that the INPUT from the GPS will be in the WGS-72 datum. Therefore the GPS datum must be set to WGS-72. Do this by turning the position switch to LAT/LONG. Press the <CHNG> key twice. Press the <#> then <5> to change the GPS datum to WGS-72. The datum need only be set once it will be saved in memory, even after the GPS has been turned off.

11.3 EDAS Calibration

The EDAS is capable of two types of calibration, SYSTEM and POINT. SYSTEM calibration uses the GPS position to generate calibration factors for the LORAN. POINT calibration also creates calibration factors for the LORAN, but requires the boat to be positioned at a fixed point with known coordinates (such as a buoy or lighthouse). Whenever GPS satellite coverage is available, SYSTEM calibration is the preferred method. POINT calibration should be used only when GPS position data is not available.

For both types of calibration, the boat should be stationary and preferably tied to a dock. The LORAN Cal Factors generated by either method are generally good for a radius of 20-30 nm, provided there is no strong interference with the LORAN signals.

For either calibration the LORAN receiver should be using the two slaves that provide the strongest signals and optimum LOPs. The receiver should also be set so that it DOES NOT automatically select chains (otherwise the unit might later switch over to a slave that did not have Cal Factors). See the LORAN manual for instructions on selecting chains.

SYSTEM CALIBRATION

- 1. Confirm that the navigation system is getting LORAN and GPS data from the receivers. Do this by pressing <Ctrl F10>, then typing "DTCLDP" to display the LORAN telegram. Check the GPS telegram by pressing <Ctrl F10> and typing "DTCGDP". If both the LORAN and GPS are outputting data, select "Navigate to Station" from the main menu.
- 2. Select "Kalman Filter", and turn BOTH the GPS and the LORAN C OFFLINE. This is done by moving to each item and pressing <RETURN>. <ESC> back to the EDAS menu.
- 3. Select "Positioning Systems". The GRI should be 9960. Select "Calibrate", then select "Reset", and answer <Y> to reset. <ESC> and answer <Y> to save the cal factors (this will save the zeroed out cal factors). <ESC> back to the EDAS menu.
- 4. Select **"Kalman Filter"** again, and turn the GPS **ONLINE**. Leave the LORAN OFFLINE. <ESC> back to the EDAS menu.
- 5. Select the "Positioning System" again, and select "Calibrate". Press <F2> twice, to display the bias and TD's for each LORAN chain. These will update continuously. When the bias becomes stable then the system can be calibrated.
- 6. Select "System Calibration". Answer <Y> to calibrate. Record the 2 Cal Factors for the LORAN chains being used. Press <ESC> and answer <Y> to save the Cal Factors. At this point the Cal Factors will be applied to the LORAN data. Press <ESC> to return to the EDAS menu.
- 7. Select "Kalman Filter", and turn the LORAN C ONLINE. Leave the GPS

ONLINE. <ESC> back to the EDAS menu. The system is now ready to navigate using both calibrated LORAN and GPS. (NOTE: Read the "IMPORTANT CALIBRATION NOTES" below.)

POINT CALIBRATION

The point calibration should only be used when the GPS data is not available, or the DOP is above 5. The following discussion assumes that 1) the boat has been navigated to a known position (a buoy, lighthouse, etc.), and 2) the datum of this position is NAD-83 (or WGS-84) coordinates. To convert WGS-72 chart data to the NAD-83 datum, see Section 3.0 DATUM CONVERSION USING THE GEODETIC UTILITIES.

- 1. Confirm that the navigation system is getting LORAN data from the receiver. Do this by pressing <Ctrl F10>, then typing "DTCLDP" to display the LORAN telegram. If the LORAN is outputting data, select **"Navigate to Station"** from the main menu.
- 2. Select "Kalman Filter", and turn BOTH the GPS and the LORAN C OFFLINE. This is done by moving to each item and pressing <RETURN>. <ESC> back to the EDAS menu.
- 3. Select "Positioning Systems". The GRI should be 9960. Select "Calibrate", then select "Reset", and answer <Y> to reset. <ESC> and answer <Y> to save the cal factors (this will save the zeroed out cal factors). <ESC> back to the EDAS menu.
- 4. Select **"Kalman Filter"** again, and turn the LORAN **ONLINE**. Leave the GPS OFFLINE. <ESC> back to the EDAS menu.
- 5. Select the "Positioning System" again, and select "Calibrate". Enter the Latitude and Longitude of your known position. Select "Point Calibration" and press <SPACE> to begin the averaging. When the average Cal Factors stabilize, press <SPACE> to stop the averaging. Record the 2 Cal Factors for the LORAN chains being used in the navigation log. Press <ESC> and answer <Y> to save the Cal Factors. At this point the Cal Factors will be applied to the LORAN data. Press <ESC> to return to the EDAS menu.
- 6. The system is now ready to navigate using only the calibrated LORAN. (NOTE: Read the "IMPORTANT CALIBRATION NOTES" below.)

IMPORTANT CALIBRATION NOTES

Be aware that the GPS will ALWAYS output navigation data to the EDAS, regardless of the quality of that data. Therefore if the DOP goes high, or satellites are lost, the position information coming into the EDAS will not be good.

** It is up to you, the operator, to determine the quality of the GPS reception. **

Some rules of thumb:

If the DOP is low-to-moderate (less than 10), and the time window for coverage spans the period you will be sampling, and the LORAN reception is good, then use both the GPS and calibrated LORAN to navigate. (Both GPS and LORAN **ONLINE** in the Kalman Filter.)

If the GPS coverage window is small (i.e. the satellite coverage will not be adequate the whole time you are on the water) or the DOP is high (greater than 10), then navigate with just the calibrated LORAN. (GPS **OFFLINE** and LORAN **ONLINE** in the Kalman Filter.)

If the GPS coverage is good but the LORAN reception is not, then navigate with the GPS alone. (GPS **ONLINE** and LORAN **OFFLINE** in the Kalman Filter).

11.4 Datum Conversion Using the Geodetic Utilities

When doing a POINT calibration of the LORAN, it is necessary to read your position from a chart. If the chart coordinates are in WGS-72 or NAD-27 (North American 1927) they need to be converted to the NAD-83 (North American 1983) datum. To convert Lat/Longs between datums, use the Geodetic Utilities as follows:

- 1. From the EDAS menu select "Geodetic Utilities", and then select "Datum Conversion".
- 2. "Datum 1" is the datum you are converting FROM (i.e. the chart datum). Press <RETURN> to scroll through the available datums.
- 3. "Datum 2" is the datum you are converting TO. You should always select "North American 1983" (NAD-83). Press <RETURN> to scroll through the available datums.

- 4. "Latitude 1" is the latitude you are converting FROM. Press <RETURN>, enter the latitude, and press <RETURN> again. Repeat this process with "Longitude 1". Each time a value is entered the screen will update.
- 5. The converted Lat/Longs are "Latitude 2" and "Longitude 2". Record these values, and use them as the latitude and longitude entries for the POINT calibration.

SECTION 12 COMMUNICATIONS

The Virginian Province Project is a complex effort involving activities in field and laboratory sites separated by hundreds of miles. Good communications are critical to the efficiency, and possibly the ultimate success, of the Project. Several communication nets have been incorporated into the program. These include electronic transfer of data, communications between the boat and mobile lab, and communications between the field crews and the Field Operations Center.

12.1 Electronic Transfer of Data

Due to the complexity of the sampling program, it is important that data collected in the field be transferred to the Field Operations Center on a daily basis. This electronic data consists of any data and information entered into the on-board computer, including data collected from DO monitoring instruments, sample numbers, daily logs, sample shipments, etc.

This communication is directly linked between the GRiD computer and the ERL-N VAX. Communications are established using the external Codex modem and the PROCOMM Plus communications package. The Kermit subroutine is used to upload and download data and information. Once a link has been established, transfer is automatic. If data or notes are flagged by the field crew, the FC, the QA Coordinator, the Project Manager, and the Data Base Manager are notified automatically by the VAX the next time one of them logs onto the computer.

Any information that the Field Operations Center wishes to transfer to the crews is automatically downloaded to their GRiD during this session.

The transfer of electronic information is performed daily by each team. Because a phone line (not a portable phone) is required, these communications are performed at night after sampling activities have been completed. All information should be uploaded to the VAX on the day it is collected. Experience from the Demonstration Project shows that in many cases this is not possible due to poor phone lines or motels with "hard-wired" phones. In these cases, data should be uploaded as soon as possible i.e. the next evening.

Details on the electronic transfer of data can be found in Section 8 of Part 2 of the Field Computer System (1992).

12.2 Communications with the Field Operations Center

In addition to electronic communications, verbal communications between the field crews and the Field Operations Center should be conducted on a daily basis. Each team is equipped with a portable cellular telephone to simplify these communications, however, because of the cost involved in using a cellular phone, the person calling in should attempt to locate a pay phone first. If one is not available, then the cellular phone should be used. The EMAP Field Operations Center has been assigned a Toll-Free "800" phone number to further simplify communications. That number is:

1-800-732-2305

Any problems in the field should be relayed immediately to the FC by the crew member manning the mobile laboratory. On weekends, or in the evening, the FC is available by pager. Phone calls to the "800" number are automatically forwarded to an answering machine. Crews should try to make these communications as concise as possible because of limited time available on the tape.

The information required by the Field Operations Center are the stations (and event numbers) sampled on the previous day, the stations being sampled on that day, and the stations the crew expects to sample on the following day. Also required is any shipping information from that, or the previous, day, including sample type, where it was shipped, and both the shipment ID number and the Federal Express tracking number. Crews are provided with copies of the phone log sheet used in the FOC (included in Appendix G). They should complete these sheets prior to placing the phone call to assure they have all the required information readily available. Whenever possible, crews should place their daily call during the morning.

Through the use of the portable phones, the Field Operations Center should be able to contact each team at any time. The land-based crew member will also carry a pager, allowing the FOC staff to contact him/her even where cellular phone service is not available. The Field Operations Center can utilize the Marine Operator to contact crews as a last resort.

As phone calls placed through Marine Operators are very expensive, teams should restrain from using the Marine Operator unless Cellular phone service or pay phones are not available.

Use of the portable cellular telephones is restricted to official and emergency

calls. Since there is a charge for incoming as well as outgoing calls, spouses and/or friends are not to call on the portable phone except in the event of an emergency. Portable phones can be used to report any emergency, whether it involves the crew directly or not.

12.3 Ship-to-Shore Communications

Both the boats and mobile laboratories are equipped with marine-band VHF radios. Any problems or changes in itinerary should be communicated between the boat and mobile lab using Channel 82A. As this frequency is shared by other U.S. government operations, transmissions should be kept to a minimum. This radio is also used to communicate with other boat traffic and port operations as required. The mobile lab radio should be used only to communicate with the boat, or, in an emergency, the marine operator. Communications between the boat and mobile laboratory were frequently unavailable during the Demonstration Project due to poor radio reception. The boat antenna has been raised to the top of the mast, and the mobile lab antenna has been relocated to a considerably higher position. The lab antenna now requires lowering prior to departure from the staging area. These modifications should significantly increase the range of operation of these units. FCC REGULATIONS PROHIBIT THE MOBILE LAB FROM TRANSMITTING ON ANY MARINE FREQUENCY WHILE THE LAB IS IN MOTION. The need to lower the lab's antenna during transit should effectively prevent such unauthorized use.

In addition, it is highly recommended that the mobil phone be carried on the vessel to insure good communication. From the vessel the shore person can be contacted via the pager and prompted to call the vessel from a pay phone.

12.4 Truck-to-Truck Communications

Citizen's Band radios in the mobile labs and pick-up trucks should allow for more efficient transmitting between staging areas since directions or changes in planned routes due to traffic congestion can be communicated between vehicles. As with all radio communications, proper etiquette must be followed. Additional information is provided in Section 8.1

SECTION 13 SAMPLING SCHEDULE AND STATION TYPES

13.1 Sampling Schedule

Sampling activities for the 1992 Virginian Province Project are scheduled to begin on Monday, July 27, 1992. The Index Period has been divided into six-day "windows", corresponding to crews' six-day work periods. Within each window crews will sample a predetermined cluster of approximately eight stations. Stations have been clustered according to proximity and logistical considerations. Which cluster is sampled in a given window has been quasi-randomly determined, i.e. the selection is random, however, logistical guidelines have been applied to the process. For example, the selection of clusters at opposite ends of a crew's region in two consecutive windows would result in a re-draw, thereby reducing the burden on the crew to travel long distances in limited time.

Crews should make every effort to sample all stations in the cluster within the prescribed six-day window. If a station cannot be sampled, a decision will be made by the Project Manager as to whether to drop the station or sample it at the end of all other sampling activities. Crews should not sample any additional stations within a window without permission from the Field Coordinator. If, once field operations begin, crews feel that the schedule is overly ambitious or not efficient, they should contact the Field Coordinator who will consult with the Project Manager.

13.2 Station Types

Several different types of stations will be sampled during the Project. The locations of all stations are provided in Table 13.1. Specific instructions on obtaining samples are covered in the following chapters. Flow charts outlining these activities are included below.

13.2.1 Base Sampling Sites (BSS)

Base Sampling Sites (BSS) are randomly chosen sites that will be used to characterize the water quality of the Province. BSS are visited once during the index period. Sampling activities at Base stations are as follows:

a. Perform a CTD cast with bottom and surface YSI measurements

- b. Collect a water sample for total suspended solids analysis
- c. Collect benthic biology and grain size samples (three)
- d. Collect sediment organics, sediment metals, AVS (acid volatile sulfides), sediment toxicity, and grain size samples (generally one each).
- e. Perform a fish trawl and process for species composition, chemistry, and pathology. At Base stations located in small estuaries certain species of fish will be collected for spleen macrophage aggregate analysis.
- f. Perform additional trawls as necessary to obtain the required number of fish for pathology and chemistry.

13.2.2 Long Term Trend (LTT) Stations

These are Base Sites that are revisited yearly to establish Long Term Trends at individual locations. The sampling activities are identical to those described for BSS. LTT stations are visited twice during the index period. The same activities are performed on both visits. Visits must not be in consecutive windows and are preferably 12 days apart.

13.2.3 Replicate (REP) Stations

These are spatial replicates that occur in the largest segment of each of the five tidal rivers and the five largest of the small systems. Sampling at these replicates is identical to that at a Base Station. If lack of time is a problem in finishing off all stations anticipated for a particular window REP stations have a slightly lower priority and should be dropped first.

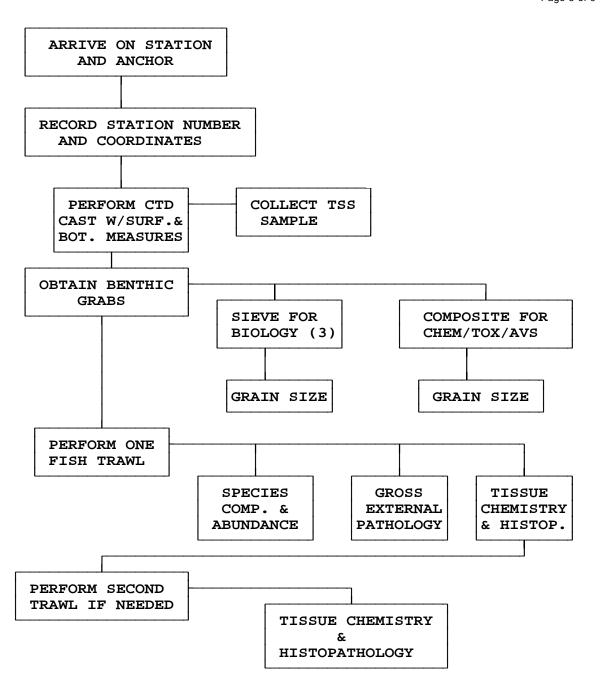


Figure 13.1 Field Sampling Activities at Base, Replicate and Long Term Trend Sites

Table 13.1. Listing of 1992 EMAP-VP stations by team. Stations crossed out were deemed inaccessible and should not be sampled.

Team 1 Stations.

Sta. (Class Si	ize	Estuary Name	Lati		D MM S	Longi S.SS)	tude	
			Buzzards	s Bay					
561 568	BSS BSS	L L	BUZZARDS BAY BUZZARDS BAY	41 41	30 39	46.20 18.60	70 70	50 44	59.40 41.40
	Block Island Sound								
553 554 556	BSS BSS BSS	L L O	BLOCK ISLAND SOUND BLOCK ISLAND SOUND NINIGRET POND	41 41 41	12 12 21	36.60 12.00 10.00	71 71 71	42 56 41	55.20 8.40 6.00
			Eastern Lon	ng Islan	nd				
540 543 545 546	BSS BSS BSS REP	0 0 0 0	THREEMILE HARBOR SHELTER SOUND LAKE MONTAUK SHELTER SOUND	41 41 41 41	1 2 3 5	13.71 20.40 58.20 28.22	72 72 71 72	11 19 55 22	24.63 46.80 15.00 0.15
			Great Sou	th Bay	7				
531 532	BSS BSS	L O	GREAT SOUTH BAY MORICHES BAY Hudson	40 40 River	44 47	48.60 31.20	72 72	53 43	18.60 5.40
21.7		- Th				0.00	70	. .	12 50
215 537 552 555 560 570	LTT BSS REP BSS BSS BSS	TR TR TR TR TR TR	HUDSON RIVER HUDSON RIVER HUDSON RIVER HUDSON RIVER HUDSON RIVER HUDSON RIVER	41 40 41 41 41 41	44 58 11 14 28 48	0.00 44.97 30.31 4.46 18.83 3.64	73 73 73 73 73 73	56 54 57 56 59 56	42.60 13.00 21.00 54.62 37.00 51.33

									1 age 3 0	,1
571	BSS	TR	HUDSON RIVER	42	5	15.49	73	55	43.00	
			Long Islan	nd Soun	ıd					
025	LTT	L	LONG ISLAND SOUND	41	0	43.20	73	14	32.40	
079	LTT	L	LONG ISLAND SOUND	41	10	29.40	72	42	21.60	
533	BSS	O	MANHASSET BAY	40	49	47.00	73	43	0.00	
534	BSS	Ö	HEMPSTEAD HARBOR	40	51	26.13	73	40	1.34	
535	BSS	Ö	NORTHPORT BAY	40	54	37.15	73	21	35.01	
536	BSS	Ö	PORT JEFFERSON HBR	40	58	1.03	73	6	17.59	
538	BSS	Ĺ	LONG ISLAND SOUND	40	59	54.60	73	34	15.00	
539	BSS	L	LONG ISLAND SOUND	41	0	30.60	73	21	6.60	
541	BSS	L	LONG ISLAND SOUND	41	1	38.40	72	54	48.60	
542	BSS	L	LONG ISLAND SOUND	41	1	5.40	73	7	57.60	
544	BSS	L	LONG ISLAND SOUND	41	2	10.20	72	41	39.00	
547	BSS	L	LONG ISLAND SOUND	41	9	46.80	73	2	8.40	
548	BSS	L	LONG ISLAND SOUND	41	10	49.80	72	35	45.60	
549	BSS	L	LONG ISLAND SOUND	41	10	19.20	72	48	57.00	
550	BSS	L	LONG ISLAND SOUND	41	11	46.20	72	9	21.00	
551	BSS	L	LONG ISLAND SOUND	41	11	19.20	72	22	33.60	
			Nantucke	t Sound	d					
557	BSS	L	NANTUCKET SOUND	41	22	59.40	70	17	14.40	
558	BSS	L	NANTUCKET SOUND	41	23	11.40	70	3	57.00	
562	BSS	L	NANTUCKET SOUND	41	31	29.40	70	10	58.20	
563	BSS	L	NANTUCKET SOUND	41	31	16.80	70	24	17.40	
564	BSS	L	VINEYARD SOUND	41	31	2.40	70	37	36.00	
565	BSS	O	WAQUOIT BAY	41	34	45.56	70	31	18.53	
567	BSS	Ö	LEWIS BAY	41	38	23.81	70	15	30.00	
569	BSS	O	CHATHAM HARBOR	41	40	46.80	69	56	27.60	
			Narragan	sett Bay	y					
559	BSS	\circ	POINT JUDITH POND	41	22	58.80	71	30	23.00	
566	BSS	0	SAKONNET RIVER	41	23 35	0.00	71 71	30 13	59.40	
200	DSS	U	SARUMMEI KIVEK	41	33	0.00	/ 1	13	J7.4U	

Table 13.1 (continued).

Team 2 Stations.

Sta. #	Class S	ize	Estuary Name	Lati		(DD MM		gitude	
			Chesapeake Ba	y - Ma	ryland	1			
058	LTT	L	CHESAPEAKE BAY	39	7	45.00	76	16	52.80
136	LTT	O	MIDDLE RIVER	39	18	18.00	76	24	36.00
483	BSS	O	BIG ANNEMESSEX RIV.	38	3	50.00	75	47	34.00
488	BSS	O	MONIE BAY	38	12	55.00	75	51	5.00
491	BSS	L	CHESAPEAKE BAY	38	17	10.80	76	15	19.20
497	BSS	L	CHESAPEAKE BAY	38	25	6.60	76	22	50.40
498	BSS	L	CHESAPEAKE BAY	38	-33	1.80	76	-30	53.40
500	BSS	L	CHESAPEAKE BAY	38	41	57.00	76	25	19.80
501	BSS	O	HARRIS CREEK	38	44	32.40	76	18	37.20
504	BSS	O	SOUTH RIVER	38	55	20.00	76	29	30.00
506	BSS	O	SEVERN RIVER	38	58	47.06	76	28	33.05
507	BSS	O	MAGOTHY RIVER	39	3	55.88	76	26	23.21
511	BSS	L	CHESAPEAKE BAY	39	7	42.00	76	22	42.60
514	BSS	L	CHESAPEAKE BAY	39	16	36.00	76	17	34.20
519	BSS	O	BUSH RIVER	39	25	41.40	76	14	22.80
521	BSS	О	BOHEMIA RIVER	39	28	44.40	75	53	48.00
			Delawar	e Bay					
178	LTT	TR	DELAWARE RIVER	40	10	0.00	74	43	40.80
503	BSS	L	DELAWARE BAY	38	55	25.20	75	16	54.00
505	BSS	L	DELAWARE BAY	38	56	15.60	75	4	12.00
508	BSS	L	DELAWARE BAY	39	4	15.60	75	11	38.40
510	BSS	L	DELAWARE BAY	39	5	5.40	74	58	54.60
513	BSS	L	DELAWARE BAY	39	12	15.60	75	19	6.00
517	BSS	L	DELAWARE BAY	39	20	15.60	75	26	34.80
518	BSS	O	COHANSEY RIVER	39	22	56.05	75	20	53.01
520	BSS	L	DELAWARE BAY	39	28	14.40	75	34	4.80
522	BSS	TR	DELAWARE RIVER	39	38	32.84	75	35	1.03
523	REP	TR	DELAWARE RIVER	39	47	28.59	75	25	47.82
524	BSS	TR	DELAWARE RIVER	39	48	58.00	75	23	13.85

									Revision Date: 6/1/9 DRAF Page 7 of	92
525	BSS	TR	DELAWARE RIVER	39	56	37.86	75	8	4.55	
526	BSS	TR	DELAWARE RIVER	40	4	18.47	74	55	9.54	
			Delaware	Coast						
150	LTT	O	INDIAN RIVER BAY	38	35	36.00	75	6	42.00	
			Hudson	River						
173	LTT	O	UPPER NJ BAY	40	38	48.00	74	3	30.00	
528	REP	O	RARITAN BAY	40	29	41.31	74	11	35.55	
529	BSS	O	RARITAN BAY	40	30	7.80	74	11	27.60	
530	BSS	O	NEWARK BAY	40	41	36.00	74	7	6.00	
			Maryland	l Coast						
495	BSS	O	ASSAWOMAN BAY/							
			ISLE OF WIGHT BAY	38	24	5.40	75	5	18.00	
496	REP	O	ASSAWOMAN BAY/							
			ISLE OF WIGHT BAY	38	25	4.04	75	5	36.00	
			New Jerse	y Coas	st					
509	BSS	O	GREAT SOUND	39	5	31.20	74	46	2.00	
512	BSS	O	LUDLAM BAY	39	10	49.20	74	41	59.00	
515	BSS	O	GREAT EGG HARBOR	39	17	35.00	74	36	46.20	
516	REP	O	GREAT EGG HARBOR	39	19	21.00	74	40	3.93	
527	BSS	O	MANASQUAN RIVER	40	5	32.00	74	4	42.60	

Table 13.1 (continued).

Team 3 Stations.

Sta.	Class Si	ize	Estuary Name	Latitude		Longitud			
#						(DD MM	SS.SS)		
			Chesapeake	Bay - Ma	aryland	l			
188	LTT	TR	POTOMAC RIVER	38	44	12.00	77	2	0.00
045	LTT	L	TANGIER SOUND	38	9	37.80	76	1	33.60
050	LTT	L	CHESAPEAKE BAY	38	0	43.80	76	6	36.00
482	BSS	L	CHESAPEAKE BAY	38	0	19.80	76	12	51.00
485	BSS	TR	POTOMAC RIVER	38	7	25.00	76	29	52.00
486	BSS	O	ST MARYS RIVER	38	8	3.00	76	28	57.60
487	BSS	L	CHESAPEAKE BAY	38	9	14.40	76	7	49.20
489	REP	TR	POTOMAC RIVER	38	12	47.50	76	55	13.63
490	BSS	TR	POTOMAC RIVER	38	14	40.67	76	48	38.92
492	BSS	O	WICOMICO RIVER (PO	T) 38	20	46.80	76	51	15.00
493	BSS	TR	POTOMAC RIVER	38	21	12.95	77	11	36.20
494	BSS	O	AQUIA CREEK	38	23	45.00	77	19	30.00
499	BSS	TR	POTOMAC RIVER	38	37	3.06	77	12	44.88
502	BSS	TR	POTOMAC RIVER	38	46	41.13	77	2	9.00
			C1 1	_					
			Chesapeake	Bay - Vi	irginia				
060	LTT	L	CHESAPEAKE BAY	37	42	55.20	76	16	36.60
451	BSS	O	NANSEMOND RIVER	36	51	51.00	76	31	7.80
452	BSS	O	BROAD/LINKHORN BA	Y 36	52	50.40	76	0	44.00
453	BSS	TR	JAMES RIVER	36	55	37.19	76	25	2.04
454	BSS	L	CHESAPEAKE BAY	37	0	52.20	76	10	21.60
455	BSS	L	CHESAPEAKE BAY	37	1	50.40	75	58	1.80
456	REP	TR	JAMES RIVER	37	3	26.47	76	37	12.66
457	BSS	TR	JAMES RIVER	37	5	13.00	76	35	57.00
458	BSS	0	FISHERMANS INLET	37	6	40.20	75	56	55.20
459	BSS	L	CHESAPEAKE BAY	37	8	48.00	76	17	46.80
460	BSS	L	CHESAPEAKE BAY	37	9	46.80	76	5	25.80
461	BSS	TR	JAMES RIVER	37	13	34.81	76	53	42.97
462	BSS	L	CHESAPEAKE BAY	37	17	43.20	76	12	51.60
463	BSS	L	CHESAPEAKE BAY	37	18	41.40	76	-0	28.80

464	BSS	TR	JAMES RIVER	37	18	42.00	77	6	22.14
465	REP	0	MOBJACK BAY	37	19	46.10	76	22	51.36
		-							
466	BSS	O	MOBJACK BAY	37	19	50.40	76	23	37.80
467	BSS	O	APPOMATOX RIVER	37	19	4.00	77	17	1.00
468	BSS	O	CHICKAHOMINY RIVER	37	20	43.22	76	52	28.00
469	BSS	TR	JAMES RIVER	37	21	20.40	77	16	13.95
470	BSS	L	CHESAPEAKE BAY	37	26	38.40	76	7	54.60
471	BSS	O	PAMUNKEY RIVER	37	33	40.80	76	54	16.20
472	BSS	L	CHESAPEAKE BAY	37	34	34.20	76	15	21.60
473	BSS	L	CHESAPEAKE BAY	37	35	32.40	76	2	55.80
474	BSS	L	CHESAPEAKE BAY	37	43	29.40	76	10	22.80
475	BSS	L	CHESAPEAKE BAY	37	44	26.40	75	57	55.80
476	REP	TR	RAPPAHANNOCK RIVER	37	48	26.00	76	40	55.00
477	BSS	TR	RAPPAHANNOCK RIVER	37	48	41.00	76	41	40.00
478	BSS	L	CHESAPEAKE BAY	37	52	23.40	76	5	22.80
479	BSS	L	POCOMOKE SOUND	37	-53	20.40	75	-52	54.00
480	BSS	L	POCOMOKE SOUND	37	-54	15.60	75	-40	24.60
481	BSS	TR	RAPPAHANNOCK RIVER	37	59	1.00	76	54	20.00
484	BSS	TR	RAPPAHANNOCK RIVER	38	5	41.11	77	2	6.13

SECTION 14 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE

14.1 Sea-Bird Sealogger CTD

The first activity performed at every station is obtaining a vertical profile of the water column for salinity, temperature, dissolved oxygen (DO) concentration, light transmission, chlorophyll *a* fluorescence, and PAR (a measurement of the intensity of light in the range of wavelengths used by algae in photosynthesis) using the Sea-Bird SeaLogger CTD.

The Sea-Bird SeaLogger CTD unit is a self-contained array of instruments capable of measuring all the parameters mentioned above. The core of the unit is a data logger which stores all data collected by the individual probes. The entire array runs off of internal batteries, therefore it does not require any electronic connection to the boat during operation. Supplied with the instrument is the software required for communicating with the data logger and for uploading data to the on-board computer.

The CTD unit is a very sensitive device. Crews need to be particularly careful to avoid sudden shocks when handling this unit. Because of the weight of this unit two people should always be involved in carrying the CTD to and from the vessel. The magnetic ON/OFF switch of this unit is also very sensitive. Attempts to turn the unit ON or OFF should be in one smooth definitive motion. Do not rapidly through the switch ON and OFF in an attempt to "wake it up". This will thoroughly confuse the unit, delay sampling and cause further irritation to the crew.

14.2 YSI Model 58 Dissolved Oxygen Meter and Probe

The YSI will be used to take oxygen measurements from surface water and from bottom water collected in a GO-FLO bottle. In addition, the YSI will be used for a weekly QC check of the CTD. The following information details the maintenance and operation of the YSI Model 58 Dissolved Oxygen Meter.

14.2.1 Initial Setup of The YSI

1. The YSI Model 58 has two separate sets of batteries, one for the oxygen meter and the other for the stirrer. Both sets consist of 4 D-size Alkaline batteries. These are accessed by removing the four screws on the back

panel then carefully pulling the meter back away. The upper battery holder is for the oxygen meter, the lower holder for the stirrer batteries. Note that the stirrer batteries will probably require more frequent replacement, whereas the meter batteries will most likely last throughout the entire field season. Observe correct polarity whenever changing batteries in either holder.

2. When the YSI meter batteries are low, the LOWBAT warning will show **continuously** on the display (the LOWBAT warning may flash momentarily as the meter knob is turned off, but this is normal). The initial appearance of LOWBAT indicates about 50 hours of meter battery life. The normal life for the meter batteries is about 1000 hours.

To check the YSI stirrer batteries, turn and hold the STIRRER knob to the BATT CHK position. If the LOWBAT warning shows **continuously** on the display then the stirrer batteries should be changed. The initial appearance of the LOWBAT warning in the BATT CHK position indicates 5 hours or less of stirrer battery life. The normal life for the stirrer batteries is about 100 hours.

- 3. While the meter is still open, observe the position of the sliding switch in the upper right hand corner of the meter. This switch sets the meter sensitivity for the type of membrane on the oxygen probe. The switch should be in the middle position, set for a 1 mil ("standard") membrane.
- 4. Close the meter housing and gently tighten the corner screws. DO NOT OVER TIGHTEN these screws, as they are easily stripped. As you close the meter, work the rubber gasket so that the outer edge overlaps both halves of the housing.

14.2.2 Changing the YSI Probe Membrane

The procedure for changing the YSI probe membrane is similar to that for the HydroLab membrane. However there are some differences, so it's important to be familiar with both procedures. The YSI membrane should be changed weekly. Visual inspection is the best indication of when to change the membrane: if the membrane is fouled, wrinkled, cut, has bubbles underneath it, or the gold cathode is tarnished...then it's time. Try to schedule membrane replacement at the end of a field day, or the night before. This allows the membrane more time to "relax" and equilibrate.

- 1. Prepare the electrolyte by dissolving the KCl crystals in the dropper bottle with distilled water. Fill the bottle to the top.
- 2. Unscrew the sensor guard, and remove the O-ring and membrane. Rinse the sensor with distilled water and then with electrolyte. Gently wipe the gold cathode ring with a kim-wipe or paper towel.
- 3. Fill the sensor with electrolyte. If you're a "rightie", grasp the sensor in your left hand with the pressure compensating vent to the right. Successively fill the sensor body with electrolyte, then pump the diaphragm with the ERASER end of a pencil or with some similar soft, blunt tool. Continue filling and pumping until no more air bubbles appear. Tap the sensor with the pencil to free any bubbles trapped on the sides.
- 4. Remove a membrane from the "standard membrane" package (DO NOT use the HydroLab membranes they are different). Secure the membrane under your left thumb. Add a few more drops of electrolyte to the sensor to form a meniscus over the gold cathode.
- 5. With the thumb and forefinger of your other hand, grasp the free end of the membrane.
- 6. Using a continuous motion, stretch the membrane UP, OVER, and DOWN the other side of the sensor. Stretching forms the membrane to the contour of the probe.
- 7. Secure the end of the membrane under the forefinger of the hand holding the probe.
- 8. Set the O-ring on the membrane above the probe, and using your thumb and index finger, roll the O-ring down over the probe until it is seated. Try not to touch the membrane surface while doing this. Gently tug at the exposed corners to remove all wrinkles, then trim away the excess membrane below the O-ring and replace the sensor guard. Inspect the membrane to make sure there are no <u>bubbles</u>, <u>wrinkles</u>, or <u>cuts</u>.
- 9. The probe should be stored in the open-ended plastic bottle provided for that purpose. Moisten the sponge or paper towel in the end of the storage bottle to prevent the membrane from drying out.

14.2.3 Calibration of the YSI Oxygen Meter

The YSI should be calibrated before sampling at EACH station, and the meter and attached probe should be turned on for **at least 15 minutes** prior to calibration or sampling. In practice this means turning the meter on at the beginning of the day and leaving it on (with the possible exception of very long transit periods between stations). On field days when the probe is not being used leave the meter in the % switch positions (or, in the case of the model 57, in the 0-10 MG/L position).

- 1. Calibration will be done in the probe storage/calibration chamber. Confirm that a moist piece of towel or sponge is present in the bottle. Remove any water droplets from the membrane surface by drying with the corner of a paper towel. Insert the probe in the chamber and submerge the chamber in water at the station. Allow for thermal equilibrium with ambient water temperature.
- 2. Set the function switch to ZERO, and when the display reading has stabilized, readjust display to read 0.00.
- 3. Reset the function switch to % mode. When the display reading has stabilized, unlock the O2 CALIB control locking ring and adjust the display to read 100%. Relock the locking ring to prevent inadvertent changes. Avoid exposing the calibrated probe to large thermal changes, such as from direct sunlight or lying on a hot deck.

14.2.4 Operation of the YSI Oxygen Meter

In general the YSI will be used to confirm the proper operation of the HydroLab and CTD.

- 1. Calibrate the YSI (See above; section 14.2.3.
- 2. Remove the storage/calibration chamber and the sensor guard, and CAREFULLY screw the probe into the stirrer. The probe membrane should NOT touch the stirrer blades. Membrane damage occurs most often when the probe is being inserted or removed from the stirrer. If a measurement isn't to be taken immediately, wrap the stirrer-probe unit in a moist towel and set it out of the sun.
- 3. Set the function switch to 0.01 MG/L model.

- 4. To perform a surface YSI check hang the probe next to the CTD DO probe. Set the YSI salinity from refractometer reading. Record temperature from a thermometer, and DO from the YSI on the "CTD CAST DATA SHEET".
- 5. To perform the bottom dissolved oxygen check of the CTD do the following:
 - A. Collect a bottom water sample in the GO-FLO bottle.
 - B. Draw out a small sample from the bottle and measure the salinity using the refractometer. Set the SALINITY switch to this value, and record the salinity on the "CTD CAST DATA SHEET".
 - C. Insert the stirrer-probe unit into the GO-FLO bottle and turn the stirrer ON.
 - D. When the meter reading has stabilized, record the oxygen value on the "CTD CAST DATA SHEET".
 - E. Remove the probe, turn the stirrer OFF, rinse the probe with freshwater, replace the storage bottle, and store the unit out of sunlight.

14.2.5 YSI Mobil Lab QC Check

A QC check of the YSI will be preformed once each sampling cycle. This should be done before the CTD QC check, since the YSI is used to QC the CTD. YSI QC data should be recorded on the **CTD/YSI QC DATA SHEET**. This information MUST also be transferred to the computer, and should be done immediately following the CTD QC check.

- 1. Air calibrate the YSI as outlined above (see section 3.0 CALIBRATION OF THE YSI OXYGEN METER).
- 2. Bubble a bucket of freshwater for at least 2 hours to allow it to become air saturated. Put the calibrated YSI stirrer-probe unit into the bucket and turn the stirrer ON. The SALINITY switch should be set to 0.
- 3. When the meter has stabilized, record the YSI oxygen and temperature

readings.

- 4. Insert a thermometer into the bucket and record the ambient water temperature.
- 5. Siphon a water sample from the bucket into three BOD bottle, and do a Winkler titration on two samples. If they differ significantly titrate the third sample (see appendix D). (NOTE: As part of the titration process, the thiosulfate should be calibrated.) Record the Winkler oxygen value.
- 6. Tolerances for passing the YSI QC check are as follows:

- Temperature: +/- 2 C - Oxygen: +/- 0.5 mg/l

If a YSI fails to pass any of the QC checks, repeat the above procedures one time. If the YSI still fails, change the probe unit and try again. Repeated failure with a new probe unit may indicate that the YSI meter is bad. Contact Sue Cielinski at the FOC immediately.

14.3 CTD Dockside QC Checks

A QC check of the CTD (and the YSI) will be performed once each sampling cycle, from a convenient dock or sheltered location. The CTD/YSI QC DATA SHEET should be used to record all values taken during the CTD QC check.

- 1. If not already done, do the YSI QC check (see appendix F, section 5.0) and calibrate the YSI (see above).
- 2. Set up the CTD in realtime mode. To do this, connect the data cable to the CTD, select "Instruments Menu" from the main menu, select "CTD", and select "Realtime CTD/YSI QC Check". Answer <N> when asked about changing the acquisition or display parameters. You will be prompted to turn on the CTD switch. NOTE: DO NOT turn on the CTD until just before you are ready to lower it into the water. (As with a real deployment, this will allow air to bleed out of the tubing system before the pump kicks in.)
- 3. Once the CTD is on, the computer screen should change to a display of numbers updated every 2 seconds. Allow the CTD to equilibrate in the

water - this may take up to 10 minutes, depending on the temperature difference between the deck and the water. Watch the "Oxygen Temp" and "Temperature" numbers. When they are within 0.5° C, the unit is equilibrated.

- **4.** Take a bucket water sample from next to the CTD, check the salinity with a refractometer and record this value.
- 5. Put the calibrated YSI over the side next to the bottom of the CTD. Adjust the YSI salinity to the refractometer salinity, then record the YSI temperature and oxygen (as the AMBIENT values) and the CTD temperature, oxygen and salinity.
- Bring the CTD back on deck, but leave the magnetic switch ON, and leave the computer in real time mode. Rinse off the pH probe with distilled water and some pH 10 buffer, then insert the probe in the pH 10 buffer. Confirm that an electrical connection exists between the top of the pH probe and the buffer solution. Record the CTD pH reading.
- 7. The CTD may now be turned OFF, the sensors rinsed with freshwater, and all probe covers replaced. Exit from the real time mode with <Ctrl F1>, then answer <N> to the restart question.
- 8. When prompted enter the appropriate barcode number for the CTD. At this point the computer will display the "CTD/YSI QC Information" menu. Fill in ALL pertinent data and copy all the CTD QC check values to the computer data sheet (the differences between the CTD and the AMBIENT readings will be automatically calculated. At this point you should also enter the YSI QC check data (see above).
- **9.** The tolerances for passing the CTD QC check are as follows:

- Salinity: ± 3 ppt - Temperature: $\pm 2^{\circ}$ C - Oxygen: ± 0.5 (mg/l) - pH: ± 0.5 pH units

If a CTD fails to pass any of the QC checks, repeat the above procedures one time. If the CTD still fails, contact Dan Reifsteck or Sue Cielenski at the FOC immediately. If CTD DO is off by > 0.3 contact the FOC regarding recalibration.

14.4 Obtaining CTD Profile (See Figure 14.1)

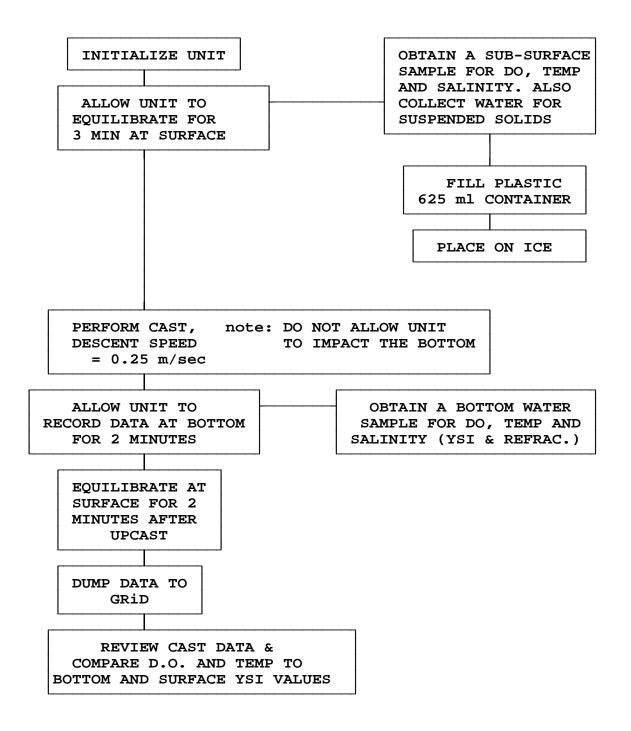
14.4.1 Setup and Initialization Procedures

During the surface and bottom soaks of the cast, independent measurements are collected at the respective depths with a YSI meter according to the instructions in above. Great care must be taken to avoid altering the oxygen concentration of the bottom samples. Enter the DO concentration and temperature into the computer. These data serve as backup measurements for the CTD, and a QC check on the CTD instrument.

At each station, the general procedures for collection of data are as follows:

- 1. Connect the CTD to the end of the winch cable with a shackle, and **TIGHTEN THE PIN**. Make sure a "pinger" is attached to the unit. A 50 pound weight should be hanging approximately one meter below the unit, and two floats attached to the top. This will prevent the unit from impacting the bottom. Once the weight hits the bottom the unit will float one meter above.
- 2. Select "CTD Cast" from the "Environmental Sampling" menu. The computer will prompt for connection to the CTD. The computer will attempt to communicate with the CTD. If successful, computer will display "CTD Menu". If communication is not established, you will be asked if you want to retry. Answer <Y>. If communication still cannot be established, check your connections and try again.
- **3.** For the FIRST cast of the day select **"Initialize CTD"**. Answer <Y> to clear the CTD memory. At this point logging will be initialized, and the CTD time and date will be reset to match the computer time and date.
- 4. If this is NOT the first cast of the day, OR if you have completed "Initialize CTD", select "Prepare For Next Cast".
- 5. Confirm that the magnetic switch is in the OFF position and press <ESC>. At this point the computer will check and display the CTD main battery voltage and availability of free memory, then place the CTD in quiet state. If the voltage or memory capacity are low a warning message will be displayed. You can still elect to continue the cast, or take action to correct the problems.

- To correct a low voltage problem, change the batteries (See 4.0 CTD MAINTENANCE AND CLEANING).
- To correct a full memory problem, initialize the CTD (See 14.5 above). NOTE: Make certain that all files have been saved or they will be lost.
- **6.** Disconnect the CTD when prompted, and prepare for deployment.


14.4.2 Deployment

- 1. Disconnect the data cable, and replace the dummy plug (be careful NOT to bend the CTD pins). The bump on the side of the plug should be aligned with the thick pin. Finger tighten the locking sleeve on the dummy plug. Confirm that the magnetic switch on the CTD is in the OFF position. Attach the cocked Go-flow bottle to the side of the CTD in preparation for collecting a bottom water sample. For stations > 10 m simultaneous bottom sampling may be difficult. Bottom water sample may need to be taken after the CTD cast is completed.
- 2. Prior to actually putting the CTD in the water, run through the following checklist:
- **A.** Remove the distilled water loop from the conductivity cell, and connect the tube from the oxygen probe. Remove all rubber stoppers.
- **B.** Check the transmissometer and fluorometer lens to make sure they are clean. Use only Kim-wipes or lens paper to clean them. **Do not wipe dry lenses if there is salt on them.**
- **C.** Carefully unscrew the bottom of the bottle covering the pH probe, and slide it straight down off the probe. If you can't reach the plastic bottle, first remove the sensor guard cage by unscrewing it.
- **D.** Remove the black plastic cap covering the PAR light sensor.
- **E.** Attach the ballast weight and floatation if they are to be used. Secure the winch shackle to the metal ring at the top of the frame, and raise the CTD to the rail.
- **F.** Slide the magnetic switch DOWN into the ON position, and <u>immediately</u>

lower the CTD into the water.

- 3. Attempt to position the boat so that the PAR sensor (the small white sphere) is NOT shaded. This may involve holding the CTD away from the boat with a boat hook.
- 4. After allowing the instrument to reach thermal equilibrium (at least 4 minutes), hang the YSI probe over the side next to the CTD to measure the dissolved oxygen and temperature with the calibrated YSI. Collect a sub surface water sample with a bucket, and measure the salinity with the refractometer. Process the water sample collected for total suspended solids. Record the temperature and DO immediately prior to descent of CTD.
- 5. Lower the CTD through the water column at a rate of approximately 0.25 to 1.0 meter per second until it reaches the bottom.
- 6. When you feel the CTD bottom weight touch, the wire will go slack, stop lowering and hold the CTD at the bottom for at least 2 minutes. Pay careful attention to the wire, and make sure the CTD isn't bounced or dragged across the bottom. The bottom weight/buoy system should ensure that the CTD sensors never actually touch the bottom, and therefore won't become plugged with mud. Collect a water sample with the Go-flow bottle attached directly to the CTD.
- 7. Raise the CTD to just below the surface and let it collect data for at least 2 minutes. As the CTD comes out of the water, slide the magnetic switch UP to the OFF position. Check the conductivity and temperature probes for damage and/or obstructing mud or stones. Rinse the conductivity cell and DO probe with DI water. Reconnect the distilled water loops to the oxygen and conductivity sensors, and carefully cap the pH and PAR probes. Remove the dummy plug from the data port. Dry of the port and re-connect the cable, and download the data
- **8.** Measure the dissolved oxygen and temperature of water sample collected with the Go-flo with the calibrated YSI, and measure the salinity with the refractometer.

Figure 14.1 PERFORMING A CTD CAST

14.4.3 Retrieving Data

- 1. Select "Download CTD" from the CTD Menu. Reconnect when prompted if not already connected. The computer will establish communication with the CTD, display the cast headers in the scroll window, and request the cast number to be downloaded. Enter the appropriate cast number. This will normally be the highest number (i.e. the latest cast).
- 2. The computer will list 3 steps that must be performed by the operator:

```
Step 1: Press <ENTER>.
```

Step 2: Press <D> to start download.

Step 3: Press <ESC> when done.

Begin by pressing <ENTER>. After you see the message "Sea-Bird Electronics, Inc. SEASOFT Version 3.4e" press <D>. WAIT until the download is finished, then when you see the "S>" prompt, press <ESC>. At this point WAIT while the system processes the data and builds the graphical displays.

- **3.** If downloading in the Mobil Lab, enter station and event number.
- 4. The computer will present a series of graphical displays of each sampled parameter plotted against depth. At present, YOU MUST RECORD ON THE "CTD CAST DATASHEET" A CTD SURFACE AND BOTTOM D.O., A CTD SURFACE AND BOTTOM SALINITY, A CTD SURFACE AND BOTTOM TEMPERATURE, AND A CTD BOTTOM DEPTH. These numbers can be read from the graphical displays.
 - To change parameter displays, press <ENTER>. Currently, you can move forward with the <F8> or <ENTER> and backward $\,$ with <F7> through the displays.
 - To scroll through the data in a parameter display, use the arrow and page keys. Page keys work by holding the <Fn> key down, and pressing <PgUp> or <PgDn>.
 - To dump a screen display to the printer, make sure the printer is on-line, then hold the <Fn> key down and press <PrtSc>.

- 5. After you have viewed all the profiles, press <ESC> and the computer will ask if you want to accept this cast. Answer <Y> or <N>.
 - "NO" will return you to the "First" or "Second Visit Menu".
 - "YES" will bring up the "Field Crew's Station Info. screen".
- 6. Enter ALL the appropriate information, including the CTD DO, salinity, temperature and CTD bottom depth as recorded on the data sheet. Press <F5> to save and record the data. Answer <Y> if the page is correct. At this point more log files will be copied to the A: drive, and the computer will return to the "First" or "Second Visit Menu".
- 7. After data are stored in the on-board computer, view the DO data on the screen using the software supplied. Compare the bottom DO to the value obtained by the YSI. If surface or bottom CTD DO measurements differ by greater than 0.5 mg/l repeat the cast. If measurements from the second cast do not agree, flag the data. The cast can still be accepted if the other measurements appear reasonable.
- **8.** After sampling is finished for the day, the CTD should be thoroughly rinsed down with freshwater.

14.5 CTD Maintenance and Cleaning

- 1. As often as possible, flush the entire CTD with fresh water.
- 2. Keep the distilled water loop on the conductivity cell, and keep the oxygen sensor moist (it does not need to be full of water, just in a humid environment.
- 3. To clean the conductivity cell and the oxygen probe, put a few drops of the Triton X-100 cleaner into their respective tubes, and allow to soak over night. The tubes should be flushed with water before deployment. NEVER use a brush or tool to clean the inside of the conductivity cell.
- **4.** When the data cable is not in use, keep it coiled.
- 5. Handle the CTD with care some of the sensors are more delicate than others, and can be damaged by bouncing the unit on deck, or by letting

the unit fall over, etc.

14.6 Safety Considerations

The CTD is fairly heavy; therefore, care should be taken when deploying or retrieving this unit from the end of the boom under adverse weather conditions. The only other danger to the user is from the operation of the winch, which is covered in Section 9. In addition, care should be taken not to damage the instrument.

14.6 Contingencies

- 1. If the water depth is too shallow (≤ 3 meters) to obtain a profile, suspend the unit just above the bottom and collect data for two minutes (following a three minute warm-up period). This must be noted in the computer log, and the Field Coordinator notified.
- 2. If the CTD fails to function properly, the surface and bottom DO value obtained from the YSI meter will be used in data assessment for the DO concentration. In addition the Hydrolab unit will be deployed to profile salinity, temperature and pH. The operation of the Hydrolab is described in Appendix E.
- **3.** Any time a contingency plan is initiated, the FC must be notified. In the case of equipment failure, the FC should be notified immediately so arrangements can be made for shipping back-up equipment.

SECTION 15 SEDIMENT COLLECTIONS

15.1 Sediment Collections

Sediments are collected for a variety of analyses. Three samples are collected for benthic species composition, abundance, and biomass. Additional sediment grabs are collected for chemical analyses and for use in acute toxicity tests (actual number needed may vary based on the required volume). To minimize the possibility of biasing results, benthic biology grabs should not be collected consecutively, but rather interspersed among the chemistry/toxicity grabs. While a biology grab is being processed (sieved), grabs should be collected for chemistry/toxicity.

A 1/25 m², stainless steel, Young-modified Van Veen Grab sampler is used to collect sediments for benthic analyses. The sampler is constructed entirely of stainless steel and has been Kynar®-coated (similar to Teflon) and is therefore appropriate for collecting sediment samples for both biological and chemical analyses. The top of the sampler is hinged to allow for the removal of the top layer of sediment for chemical and toxicity analyses. This gear is relatively easy to operate and requires little specialized training.

Listed below is the protocol for obtaining sediment samples.

- 1. Using the washdown pump, thoroughly rinse the inside of the grab sampler with seawater from the station being sampled. NOTE: The sampler must be washed with Alconox prior to use at a station.
- 2. Attach the sampler to the end of the winch cable with a shackle and **tighten the pin**. An auxiliary link is also installed to provide added assurance against loss of the equipment. Attach a pinger to the grab.
- **3.** Attach one set of weights to the sampler. These can be removed, or additional weights added depending on the sediment type. The grab is then cocked.
- 4. Lower the grab sampler through the water column such that travel through the last 5 meters is no faster than 1 m/sec. This minimizes the effects of bow wave disturbance to surficial sediments.

- Retrieve the sampler and lower it into its cradle on-board. Open the hinged top and determine whether the sample is successful or not. A successful grab is one having relatively level, intact sediment over the entire area of the grab, and a sediment depth at the center of at least 7 centimeters (see Figure 15.1). Grabs containing no sediments, partially filled grabs, or grabs with shelly substrates or grossly slumped surfaces are unacceptable. Grabs completely filled to the top, where the sediment is in direct contact with the hinged top, are also unacceptable. It may take several attempts using different amounts of weight to obtain the first acceptable sample. The more weight added, the deeper the bite of the grab. In very soft mud, pads may be needed to prevent the sampler from sinking in the mud. If pads are used, the rate of descent near the bottom should be slowed even further to reduce the bow wave.
- **6.** Carefully drain overlying water from the grab.
- 7. Enter notes on the condition of the sample into the computer. Options on smell, texture, etc. are available via menus.
- **8.** Process the grab sample for either benthic community analysis or chemistry/toxicity testing as described below.
- 9. Repeat steps 4-8 until all samples are collected. To minimize the chance of sampling the exact same location twice, after three grabs are taken (whether successful or not), move the boat 5 meters downstream by letting out the appropriate length of anchor line.

Figure 15.2 SEDIMENT COLLECTIONS

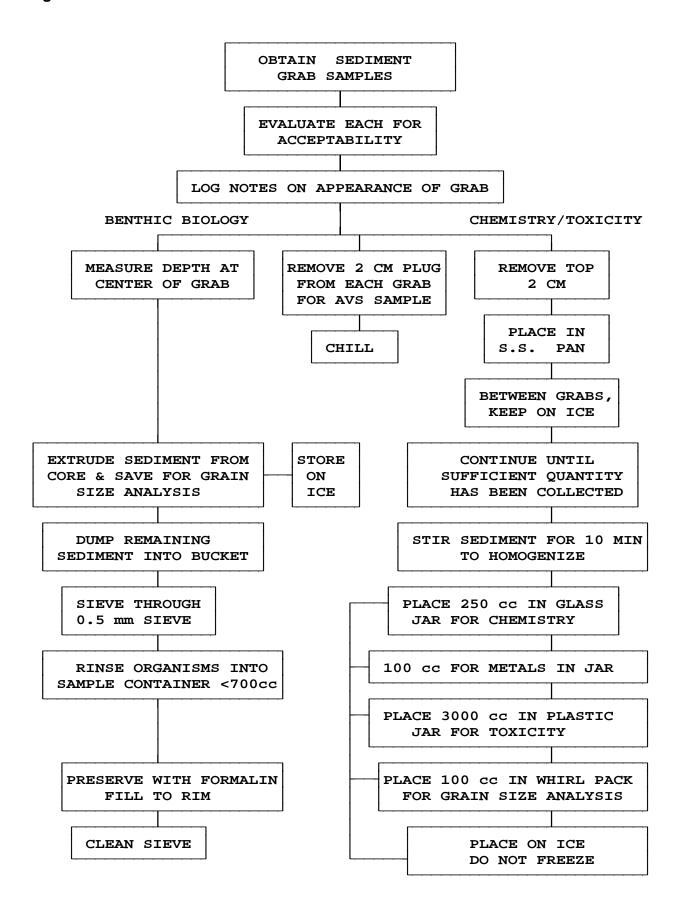


Figure 15.1. Quality assurance criteria for obtaining grab samples. Only those samples meeting QA criteria are retained. Those not meeting these criteria are discarded.

15.1.1 Field Processing of Samples for Benthic Community Assessment

Grab samples to be used in the assessment of macrobenthic communities are processed in the following manner:

- 1. Assign a sample number to the sample, affix the label to the sample jar, and scan the number into the computer using the bar code reader.
- 2. Measure the depth of the sediment at the middle of the sampler and record the value on the data sheet. The depth should be ≥ 7 cm. Record descriptive information about the grab, such as the presence or absence of a surface floc, color and smell of surface sediments, and visible fauna in the computer.
- 3. Insert a small (2.5 cm diameter, 15 cm long), clear plastic core into a random location within the sampler and extract a core sample. Measure the depth to the black layer of sediment within the core and record in the RPD (Redox Potential Discontinuity) field in the computer. Extrude the sediment from the core tube into a "Whirl Pack." If an insufficient amount of sediment has been extruded to fill the Whirl Pack half-way, the repeat until the pack is full. Place an appropriate bar code label on the Whirl Pack. Record the sample number on the Whirl Pack, and store for later analysis to determine the relative proportion of silt and clays versus sands. The sample should be stored on ice (NOT dry ice) as the sample should be refrigerated at 4°C, not frozen.
- 4. Process the remainder of the grab for benthic community analyses. Dump the sediments into a basin and then into a 500 μm mesh sieve. Place the sieve into a table (sieve box) containing water from the sampling station. Agitate the tray in the sieve box thus washing away sediments and leaving organisms, detritus, sand particles, and pebbles larger than 500 μm. This method minimizes mechanical damage to fauna that is common when forceful jets of water are used to break up sediments. A gentle flow of water over the sample is acceptable. Extreme care must be taken to assure that no sample is lost over the side of the sieve.
- 5. Drain the water from the sieve box and gently rinse the contents of the tray to one edge. Using either your fingers or a spoon, GENTLY scoop up the bulk of the sample and place it in the plastic screw-top bottle from which the sample number was scanned in Step 1 (which should be

placed in the sieve or a bucket in case some of the sample spills over). Rinse the outside of the sample jar into the sieve, then, using a funnel, rinse the contents into the jar. The jar should be filled no higher than the 700 ml mark. If the quantity of sample exceeds 700 ml, place the remainder of the sample in a second, unlabeled container. Using a waterproof marker, write the sample number on the second container and tape the two together. Note in the computer that the sample consists of more than one container.

- 6. Carefully inspect the sieve to ensure that all organisms are removed using fine forceps (if necessary) to transfer fauna from the sieve to the bottle containing the proper sample number.
- 7. Ten percent buffered formalin is used to fix and preserve samples. A 100 % buffered, stained stock formalin solution should be mixed according to the recipe in Table 15.1. 100 ml of the formalin should be added to each sample jar, and a teaspoon-full of borax added to assure saturation of the buffer. FILL THE JAR TO THE RIM WITH SEAWATER TO ELIMINATE ANY AIR SPACE. This eliminates the problem of organisms sticking to the cap because of sloshing during shipment. Gently invert the bottle to mix the contents and place in the dark. If the sample occupies more than one container, tape the two together.
- **9.** Prior to sieving the next sample, use copious amounts of forceful water and a stiff brush to clean the sieve, thereby minimizing cross-contamination of samples

Table 15.1. Directions for mixing stock solutions of formalin.

Chemical	Volume Desired	Total Quantity
100% formalin stock (stained and	buffered)	
Rose Bengal stain Borax 100% formalin	8 l 8 l 8 l	1/4 teaspoon 8 heaping tablespoons two gallons

15.1.2 Field Processing of Sediments for Chemistry and Toxicity Testing

In addition to the three grabs collected for benthic community analyses, additional grabs are collected for chemical analyses and toxicity testing. The top two cm of these grabs are removed, homogenized, and split for chemistry and toxicity testing. Because of contamination concerns these samples are removed and processed in the order described below:

1. As each grab is retrieved, carefully examine it to determine acceptability as described above in Section 15.8, Step 6. Record notes on the appearance of acceptable samples, and carefully remove and discard large, non-living surface items such as rocks or pieces of wood.

NOTE: Great care must be taken to avoid contamination of this sample from atmospheric contaminants. The Briggs and Stratton engine must be turned off and either the boat engine turned off or the boat maneuvered to assure the exhaust is down wind.

- 2. A clean stainless steel spoon and a uncontaminated syringe are used to remove sediments from grab samples for these analyses. All items must be washed with Alconox and rinsed with ambient seawater before use.
- **3. ACID VOLATILE SULFIDES** Use a uncontaminated 60 cc syringe to extract the top two centimeters of material from undisturbed surficial

sediment. An appropriate number of plugs must be taken from each chemistry grab in order to fill a 125 ml plastic jar to the bottom of the threads (normally one plug/grab). In between grabs the jar must be sealed and placed in a cooler on ice. CARE MUST BE TAKEN TO PREVENT OXIDATION OF THE SAMPLE. This sample must be **FROZEN ASAP**

- 4. Remove the top two cm of sediment using the stainless steel spoon. Place the sediment removed in a stainless pot and place the pot in a cooler on ice (NOT dry ice). The sample must be stored at 4°C, NOT FROZEN.
- 5. Repeat this procedure, composite the sediment in the same stainless pot until a sufficient quantity of sediment has been collected for all samples. Stir sediment homogenate after every addition to the composite to insure adequate mixing. Keep the container covered and in the cooler between grabs.
- **6.** Homogenize the sediment by stirring with a Teflon paddle for 10 minutes.
- 7. ORGANICS Using a stainless steel spoon, carefully place 250 cc of sediment in a 500 ml glass bottle for chemical analysis. CARE MUST BE TAKEN TO ASSURE THAT THE INSIDE OF THE BOTTLE, BOTTLE CAP, AND THE SAMPLE ARE NOT CONTAMINATED. If not already in place, affix the label supplied with the bottle containing the lot number (this need not be recorded anywhere). Record the sample number, wrap the jar in "bubble wrap" to protect it from breakage, and place the sample on ice (NOT dry ice). To reduce the possibility of breakage, the sample should be stored at 4°C, NOT FROZEN.
- **8. METALS** Using a stainless steel spoon, place approximately 100cc of sediment into a pre-cleaned plastic (HDPE) sampling jar. Record the sample number and keep on ice at 4°C.
- 9. SEDIMENT CHEMISTRY QA At two previously designated stations per crew, three additional samples need to be collected for each of the following: 125 ml AVS, 250 ml organics and 125 ml metals are collected for duplicate analyses (1) and for analysis by a referee laboratory (2). Four plugs must be taken from each of chemistry grabs to fill each of the bottles at a constant rate following directions in step 3. QA samples for

organics and metals are collected from the same composite as per the directions in Step 6. The FC will notify the crew at which stations this sample needs to be collected. In addition, one glass sample jar should be left open on the deck whenever the organics sample is exposed. This will serve as a blank.

- 9. **SEDIMENT GRAIN SIZE** Attach an appropriate bar code label to a Whirl-Pack, and fill approximately half-way for sediment grain size analysis, and record the sample number. Store this sample on ice (NOT dry ice).
- 85% of the 1 gallon plastic container for toxicity testing with sediment (minimum volume required is 3000 ml). Record the sample number on the bottle, and place the sample on ice (NOT dry ice). The sample must be stored at 4°C, NOT FROZEN.

15.2 Safety Considerations

All sediment grab samplers are dangerous pieces of equipment. Once the device is cocked, it could accidentally trip at any time. The operators must be careful not to place hands or fingers in a position where they could be damaged (or amputated) in the event that the device trips prematurely.

The sampler is a heavy piece of equipment (especially when full). The operators must take care when deploying or retrieving this gear under adverse weather conditions. A grab sampler swinging wildly at the end of a boom can be very dangerous.

15.3 Quality Assurance

There are a number of steps that can be taken to ensure the integrity of the samples collected.

1. The interior surfaces of the grab sampler (including the underside of the hinged top) must be washed and thoroughly rinsed prior to use to assure that no sediment remains from the previous station.

- 2. Prior to use, all Teflon and stainless steel supplies which are to come into contact with samples must also be properly cleaned.
- **3.** ASSURE THAT THE PROPER BAR CODE LABELS ARE AFFIXED TO ALL SAMPLES.
- 4. At selected sites, "blanks" for chemistry will be obtained. Leave an empty glass chemistry jar open whenever the sample is exposed, mimicking the treatment it would receive if a sample was to be placed in it. Then seal the jar and record the sample number. This jar is then treated in the same fashion as all other chemistry samples.
- 5. Care should be taken to assure that the sediment saved for chemical and toxicological analyses is collected only from the top two cm of the grab.
- 6. Care must be taken to assure that the chemistry samples do not become contaminated. This requires great care in extracting the sample, homogenizing it, and placing it in the proper container. If it is raining when the sample is collected, all activities should be conducted under a tarp to prevent contamination of the sample by rain water.
- 7. Great care must be taken to avoid atmospheric contamination from engine exhaust. The Briggs and Stratton engine must be turned off and the boat maneuvered to assure the engine exhaust is down wind of the sample.
- 8. The grab must be suspended off the deck at all times to avoid contamination.

15.4 Contingency Plans

It is recognized that at certain stations, the sediment type will prevent the collection of sediment samples. If a single "acceptable" grab sample cannot be obtained after five attempts, or if ≥ 70 percent of the attempts are unsuccessful, then additional attempts are abandoned and no sediment samples collected. All other samples should be collected. This must be noted in the computer and the FC notified during the next scheduled call-in.

SECTION 16 FISH TRAWLS

After all required sediments are collected, one or more trawls are made to collect fish for species composition and relative abundance, tissue chemistry, and for pathological examination.

16.1 The EMAP Otter Trawl

A fish trawl is a funnel-shaped net that filters fish from the near bottom waters. Fish are herded by ground wire and doors into the mouth of the funnel where fish are captured. The basic components of a trawl net are described briefly below.

The doors of the net provide spreading power to the net. Water pressure against the doors force them to spread the wings of the trawl. The wings are the beginning of the webbing and form the mouth of the funnel on two sides of the net. The wings are bordered on top and bottom by a headrope and a footrope, respectively. For a single warp rig, each end of the headrope, or top line, is attached directly to the upper ring on the back of the doors. Each end of the footrope, or bottom line, is attached to the bottom ring of the doors. For strength and weight, a sweep is attached to the footrope. At the bosom, or top of the curve of the mouth, the wings attach to the body of the net. The top portion of the body has an overhanging panel, or square, which prevents fish from escaping over the top panel of the trawl. Continuing back toward the terminus of the net are the first and second bellies which are normally symmetrical top and bottom. The bellies contribute most of the body of the net, and therefore make up most of the taper. The cod-end is the rear portion of the trawl net which serves as a collecting bag for all that is captured by the trawl.

Fish are collected using a high rise sampling trawl with a 16-meter footrope with a chain sweep. Tow duration is 10 minutes with a towing speed of 2-3 knots against the prevailing current. Speed over the bottom should be 1-3 knot. Fish are sorted and enumerated, examined for evidence of gross pathological conditions, and selected specimens retained and properly processed for tissue chemical analysis. Subsampling of fish is conducted as necessary. The outline below describes the specific protocol to be followed during trawling operations. The procedures include: net deployment, vessel operation while under tow, net retrieval, and processing.

Types of trawls can be defined as follows:

STANDARD TRAWL - This trawl is the "quantitative" trawl performed at all stations for community structure and abundance determination. One standard trawl should be performed at EVERY station. Any fish sample type can be taken from a standard trawl. Fish are identified, measured, and examined.

NON-STANDARD (formerly chemistry) TRAWL - Non-standard trawls may need to be performed following the completion of a standard trawl to obtain a sufficient number of fish for *pathology QA*, *SMA*, or *chemistry*. All sample types EXCEPT PATHOLOGY can be obtained from a non-standard trawl. All fish are identified and counted.

The type of fish samples that will be collected are as follows:

<u>Pathology Fish</u> - These are fish observed by the field crew to have a gross external pathology (lump, growth, ulcer, and/or fin rot ONLY!!). ALL species are examined for external pathology, therefore, pathology fish may be of any species collected. Pathology Fish are collected during the standard trawl only.

<u>SMA</u> (spleen macrophage aggregate) fish - These are "randomly" selected fish collected only at stations in small estuaries. SMA fish are selected by the crew after or during examination for gross external pathology and are free from external pathology (according to the collecting crew). Only those species listed on the list of pathology target species are collected for SMA.

<u>Pathology QA fish</u> (previously known as Histopathology reference fish) - These are "non-pathology" fish (*i.e.* fish without external pathologies) collected at selected stations to determine the crew's error rate of "false negatives". Pathology QA fish are NOT limited to target species.

<u>Chemistry fish</u> - These are "randomly" selected fish processed for chemical residue analysis. Only target species are processed.

<u>Taxonomy QA fish</u> - The first two individuals of EVERY species collected by each crew are preserved and sent back to ERL-N for verification by an expert taxonomist.

16.2 Trawl Preparation

- 1. Inspect the trawl net for holes, including cod-end liners, and mend/replace as necessary prior to departure from the dock. Inspect all hardware for wear and replace as needed. All connections should be made securely and tightened with a wrench. Do NOT rely on hand tightening shackles, bolts, or other fasteners.
- **2.** Lead the winch wire from the drum through the turning block on the mast assembly and through the snatch block at the end of the boom.
- 3. Attach the bridle to the winch wire with a shackle. Wind both legs of the bridle onto the main winch drum, while maintaining tension on the wire. All bridle connections should be tightened with a wrench.
- 4. Arrange the net on the deck with the cod-end aft and the head rope on top. Close the end of the cod-end by using a cod-end knot. Check to make sure there is no escapement possibility through the cod end rings. The line should pass through the rings at the back of the cod end and around the net just in front of these rings. Coil the float line from the cod-end to the float, and position it on the net for easy access.
- 5. Attach the legs of the net to the trawl doors. The top leg of the net is the extension of the headrope and must be secured to the top aft ring of the door. The bottom leg is the extension of the sweep and must be secured to the bottom aft ring of the door. One bridle wire should be attached to each door at the towing point of the chain harness. Shackles should be used for all connections.

16.3 Net Deployment

1. After all preparation steps have been completed, the Crew Chief should check all resources available (chart, navigational aids, land marks etc.) to determine that there are no under water hazards. Determine the direction of current flow and survey the probable trawl track for potential hazards, such as other vessels, deployed commercial fishing gear (nets, pots, etc.), shallow water, or unsuitable substrate. In addition, depth, weather, and sea conditions should also be evaluated prior to each trawl. The decision as to whether or not to collect a sample is the responsibility of the Crew Chief.

2. With the starboard engine in neutral, the boom should be positioned out over the starboard gunnel with a enough incline for the doors to clear the rail. Lead the bridles through the snatch block on the boom, raise the doors with the winch, and bring them to rest on the gunnel (starboard door forward, port door aft). Circle the boat slowly to starboard. When the starboard side is down current, deploy the float and safety line attached to the cod-end. Flake the net into the water from the cod-end to the wings. Check to make sure that the legs of the net are not twisted before continuing deployment. Pay out wire until the doors are well behind the engines. Swing the boom to the centerline then lower the boom, releasing tension on the snatch block (the wire should now be on the goalpost assembly). Head slowly into the current (e.g., 1 knot) and continue to pay out wire until appropriate warp length is obtained (consult Table 13.2 for the proper amount of wire to be released based on water depth). Great care should be taken to prevent fouling of the propeller with the net. Care should also be taken to maintain tension on the tow warp to avoid fouling the net on bottom. The starboard engine can be engaged when the gear is clear of the props and the doors spread.

Table 16.1. Amount of Winch Wire to be Used for Trawling and Dredging

Water depth (ft)	Ratio of line to water depth (including the 125' bridle)	Line out
10 (3 m)	7:1	Bridle only (38 m)
20 (6 m)	7:1	Bridle+20' (44 m)
30 (9 m)	7:1	Bridle+60' (56 m)
40 (12 m)	6:1	Bridle+120' (75 m)
50 (15 m)	5.5:1	Bridle+155' (85 m)
60 (18 m)	5:1	Bridle+180' (92 m)
70 (21 m)	4.6:1	Bridle+202' (100m)
80 (24 m)	4.2:1	Bridle+216' (104m)
90 (27 m)	3.8:1	Bridle+222' (106m)

16.4 Trawling

- 1. As soon as the required warp length is reached, the winch operator should inform the Crew Chief that the net is ready for towing. The Crew Chief then visually resurveys the trawl track, records the time, initiates the computer trawl clock, and begins the tow. An attempt should be made to trawl along a uniform depth contour. Recording of the time and coordinates is performed automatically by the computer system upon prompting.
- **2.** Boat speed should be 2-3 knots. Speed over bottom, as measured by

Loran position, should be between 1 and 3 knots. If it becomes apparent that these conditions will not be met, the net should be retrieved and a different trawl direction tried.

- 3. During the trawl tow, the Crew Chief should monitor the depth finder for potential obstructions or sudden changes in depth. If a hazard is identified or a hang up occurs, the net should be retrieved and another tow attempted approximately 100 m from the initial trawl track. If three unsuccessful attempts are made, or 1.5 hours effort is expended, trawling operations should be aborted. If a successful 10 minute trawl cannot be accomplished, fish can still be collected from a shorter trawl for chemistry and pathology indicators.
- 4. The duration of all standard trawls should be 10 minutes from the time the pay-out of warp is completed until the time hauling begins.

16.5 Net Retrieval

- 1. After approximately 10 minutes of trawling and when the crew is prepared to haul back the computer should be prompted to end the trawl.
- 2. Haul back the wire until approximately 10 meters of the bridle is still out. Put the starboard engine in neutral. Throttle back and raise the boom so the wire clears the goal post assembly. Turn the boat slightly to starboard and move the boom over the starboard side (the boom should be controlled by the vangs during this process). Take in wire until the doors are at the block. Haul the cod end in by hand or use the capstan head to assist

16.6 Safety Considerations

Operation of the trawl can be a dangerous operation. In addition to the dangers of using the winch and capstan, improper towing procedures could capsize the boat. The net should always be towed off the stern, with the winch cable passing through the towing bracket. Towing off the side of the boat can capsize it. Care must also be taken when pulling the net in over the side. If the net is full, the total weight may be too great to use the mast and boom.

When deploying the net, the crew must be careful not to entangle themselves or other gear in the net, bridle, or winch cable. This could result in serious injury or damage to equipment.

All trawling operations must be conducted in a manner consistent with maintaining the safety of the crew. The Crew Chief will determine when weather or sea conditions are unsafe for trawling.

In the event of net hang-ups on bottom obstructions, the Crew Chief must consider the safety of the crew before attempting to free the gear. A means to sever the tow line should be immediately available to the crew during all trawl operations. SEVERING THE LINE SHOULD ONLY BE PERFORMED AS A LAST RESORT AND WHEN THE LINE IS SLACK!!! SEVERING IT WHILE UNDER TENSION COULD RESULT IN WHIPLASH OF THE LINE AND SEVERE INJURY.

Before deploying the trawl, the Crew Chief should ensure that other vessels do not present a safety hazard during the tow. Whenever possible, the Crew Chief shall contact nearby vessels by marine radio to make them aware of the trawling operation. In addition, the marine radio should be monitored by the crew prior to and during trawl operations.

16.7 Criteria for Voiding Tows

A standardized tow will be considered void if one or more of the following conditions occur:

- 1. A tow cannot be completed because of hang down, boat malfunction, vessel traffic, or major disruption of gear.
- 2. Boat speed or speed over bottom is outside the prescribed, acceptable range.
- **3.** The cod-end is not tied shut.
- **4.** If the tow continues for more than two minutes beyond the ten-minute tow duration, or is discontinued less than eight minutes following the start.
- **5.** The net is filled with mud or debris.

- **6.** A portion of the catch is lost prior to processing.
- 7. The tow wire, bridle, headrope, footrope, or up and down lines parted.
- 8. The net is torn (>30 bars in the tapered portion, >20 bars in the extension or cod end, or multiple tears that, in the opinion of the Crew Chief, may have significantly altered the efficiency of the net).

NOTE: Although the tow may be invalid as a standardized tow, target species should still be saved for chemistry and some histopathology indicators.

16.8 Endangered Species

All species considered to be rare, threatened, or endangered (Table 16.2) should be processed immediately and released alive. At the discretion of the Chief Scientist, photographs may be taken to document the catch.

Table 16.2. List of endangered fish species that might be encountered in the Virginian Province. These fish should be measured and returned to the water immediately.

SPECIES	State protected in
Short nosed sturgeon	all (federal endangered species list)
Atlantic sturgeon	CT, NJ, RI
Atlantic salmon	CT
American shad	NJ
Striped bass	DE, MD

16.9 Sample Processing

Once a catch is brought on deck, fish are processed based upon the priority level for that sample type:

- 1. Pathology
- 2. Taxonomy QA
- 3. Pathology QA / SMA
- 4. Chemistry

16.9.1 Processing of Fish for Gross External Pathological Analysis

I. Gross examination of fishes: (Ulcers, Growths, Lumps and Fin rot ONLY!)

Crews will perform a "standard" trawl at <u>ALL STATIONS</u>. All individuals collected will be identified and counted, and the first 30 individuals of each species will be measured. All individuals measured (*i.e.* the first 30) that exceed 75 mm in length will be examined for evidence of gross external pathology (lumps, growths, ulcers, and fin rot ONLY). The examination is intended to be a rapid scan of the surface of individuals to be completed while other fish measures are being completed (i.e., identifying, enumerating, measuring). This scan should take no longer than 10-15 seconds per fish. Fish determined to show evidence of a pathology are assigned a sample number from the end of the chemistry range and processed appropriately (see below). The type of pathology will be noted on the data sheet and entered into the field computer. These are **PATHOLOGY FISH. Only fish collected in "standard" trawls are saved for pathology.**

II. Selection, killing and fixation for transfer:

Proper fixation of specimens is critical to the ultimate quality of the data obtained. Fish should be examined and fixed while still alive or shortly after death (within one hour of collection). Specimens should not be frozen or kept on ice at any time.

A. All specimens with gross lesions or other suspect conditions, as identified in Section I above, will be processed and coded individually.

All these fish will be transferred as indicated below (Section III) to ERL-N for subsequent examination.

- 1. Carefully cut the entire length of the abdominal cavity open using scissors or a sharp knife. Gently insert the instrument into the abdomen near the anus and make an incision to the operculum. Cut with a lifting motion so that the incision is made from the inside outward, taking care not to injure the visceral organs. Remove the lateral musculature from one side of the animal's visceral cavity to facilitate the fixation of the internal organs. Make one or two cuts along the longitudinal axis of the livers of fishes larger than 15 cm, remove the opercula, and immerse in fixative (see step 5). This may require the gentle loosening and lifting of the liver prior to cutting the organ.
- 2. If the total length of the fish exceeds 15 cm, only a portion of the fish will be saved for laboratory analysis. Carefully cut, through the entire thickness of the fish, from the top of the operculum back along the spine, until a position behind the visceral cavity is reached, and then a 90° change in direction towards the anus. The head and viscera are then saved. Remove both opercula, and musculature covering the visceral cavity on one side. The head and thorax can be separated at the esophagus if needed. Any abnormalities found on the remaining portion of the fish (which is to be discarded) are excised along with the surrounding tissue, and saved with the head and visceral cavity. For fishes smaller than 15 cm, the entire fish is saved.
- 4. If an external growth is present, measure it and slice through the lesion with one clean cut using a sharp razor blade.
- 5. Place the sample (whole fish or head, visceral cavity and abnormalities excised) in a onion bag bag filled with holes. Assign an appropriate sample number to each fish, affix the bar code to a fish tag, and attach the tag to the fish. Record this number on the data sheet, along with all other pertinent information on that fish. Place the bag in a tight sealing plastic container with sufficient fixative to completely cover the specimen. Specimens should be fixed in Dietrich's fixative for one or two days.

6. Carefully record pertinent information relating to each individual sample on the data sheet.

III. Shipping of preserved specimens:

Wrap each specimen in cotton or cheese-cloth and saturate with Dietrich's fixative. Clearly label individual specimens with code tags wrapped up with the fish. Place wrapped fish in zip-lock plastic bags and assure that they are completely saturated with fixative. Pack wrapped and bagged specimen in buckets or other suitable containers and ship via appropriate carrier. Fish sent via currier should be double bagged packed in box with styrofoam packing and have a final plastic wrap that normally comes with each shipping box Fish can also be hand carried to ERL-N in liquid Dietrich's fixative without being wrapped in cheese cloth.

16.9.2 Taxon QA Fish

The first two individuals of every non-threatened species collected by each crew during the summer (from either trawl type) will be assigned a sample number from the ranges designated on the data sheets, recorded on the data sheet, and preserved. This fish should be preserved with the 10% un-stained formalin solution provided and shipped back to Sue Cielinski at ERL-N at the end of every shift.

16.9.3 Spleen Macrophage Aggregate

Following the examination of fish for external pathology, **SMA FISH** will be selected by the crew. **SMA** fish are collected **ONLY AT BASE STATIONS LOCATED**

IN SMALL ESTUARIES. Only target species are processed for SMA. The goal is to select five individuals (>75mm length) of each of the three highest priority target species present at that station (see Table 16.3). These individuals are "randomly" selected from the pool of fish that "passed" the crew's pathology examination. Additional "non-standard" trawls may be employed to collect these fish. SMA fish collected from a non-standard trawl still need to be examined to assure they are free from external pathologies, however, no record of pathologies found should be made and these fish can be discarded. No more than two hours of trawling are required of the crews regardless of the number of fish caught. SMA fish are assigned a barcode number from a pre-assigned range, recorded on the data sheet, and processed appropriately.

Table 16.3 <u>Prioritized Pathology Target Species List</u>

4	****	
1	Winter Flor	ındar
Ι.	Winter Flou	macı

- 2. Summer Flounder
- 3. Channel Catfish
- 4. White Catfish
- 5. White Perch

- 6. Atlantic Croaker
- 7. Spot
- 8. Weakfish
- 9. Scup
- 10. Bluefish

Example:

The crew caught one winter flounder, five croaker, five weakfish, and five scup at a station. Despite the fact that they caught five individuals of each of three target species, they should continue to trawl in an attempt to catch a total of five winter flounder because that species was captured at that station and is a higher priority than the other species. As always, the crew is not expected to spend more than two hours on this effort. Regardless of the final catch, up to five individuals of ALL target species caught should be retained for SMA determination, so, in this case, 16 fish would be retained (assuming that no additional winter flounder were caught in non-standard trawls.

16.9.4 Pathology QA Fish

PATHOLOGY QA FISH will be collected at <u>SELECTED STATIONS</u> (1 per crew) in large estuaries and tidal rivers. Crews will be informed in advance as to which stations these fish should be collected at. Following the examination of fish and

processing of Pathology fish, up to 20 individuals of each target species present and 10 of all other species collected will be assigned a number from a pre-assigned range and processed in the same fashion as Pathology fish. As with SMA fish, additional trawling may be required, with the crews expected to spend up to two hours trawling at that site.

16.9.5 Processing of Fish for Chemical Analysis of Muscle

Following the selection of fish for all of the above categories, **CHEMISTRY FISH** will be then be processed at **ALL STATIONS**. Up to five individuals of each target species (within the primary size range) collected will be processed for chemistry. Chemistry fish may be collected in either standard or additional trawls, and should be "randomly" selected from the catch following processing of the fish listed above. Based on the priorities listed above, no fish collected in the standard trawl that shows evidence of a gross external pathology should be included in the chemistry sample. However, it is possible that a fish with a pathology from the non-standard trawl may be included as fish collected from these trawls are not processed for pathology. Any pathologies observed from a non-standard trawl should NOT be recorded on the data sheet, and if they are among the "random" fish selected for chemistry they should still be included in the chemistry sample. Unlike previous years, chemistry fish do NOT have to be gutted this year. They should be immediately placed on ice and frozen on dry ice as soon as the crew returns to shore. Trawling should continue for up to two hours to provide a full compliment of five fish (within the primary size range) of at least one species. If a sufficient number of fish within the primary size range of at least one species is not caught, the crew should select the largest fish from the secondary range, then fish closest in size to the primary range (i.e. slightly larger fish). Crews should process fish from every target species present at each station (within the primary size range).

Table 16.4. Listing of Target Species for Chemical Analysis (sizes are the target sizes for fish saved for chemical analyses).

SPECIES	PRIMARY RANGE (mm)	SECONDARY RANGE (mm)
Channel Catfish	200-300	300-400
Atlantic Croaker	200-300	100-270
Bluefish	175-225	125-175
Scup	150-200	100-150
Summer Flounder	350-450	65-350*
Spot	150-250	70-150
White Catfish	200-300	300-400
Weakfish	300-400	45-300*
Winter Flounder	300-400	55-300*
White Perch	150-250	70-150

Indicates that this group contains fish that will be below the legal sport fish size limit in some states.

1. For taxa designated as target species (Table 16.4), measure and retain five individuals within the desired size range for future chemical analysis. Individuals are randomly selected from all those collected until five of the appropriate size have been selected. If no individuals in the primary size

range were collected, individuals from the secondary size range closest to the primary size range should be selected. If only individuals outside the desired size range are obtained, those that are closest to the preferred size range are selected.

NOTE: Even if a tow is voided for species composition and abundance, fish collected can still be processed for chemistry.

- 2. Place the fish on the cutting block and sever the spinal cord directly behind the head. Blot the fish dry using a paper towel.
- 3. Record on the data sheet the size, species, sample number (see Step 4), processing technique (see steps 5 and 6), and any other appropriate notes.
- 4. To assign a sample number, choose the next number in the series for that event designated as a fish chemistry sample (see Data Base Management section Section 21). Fish bar codes are supplied in duplicate. Place one bar code on the pack of the data sheet and number the box to correspond with the number on the front of the sheet. Place the twin bar code on a plastic tag and affix to the fish by placing the zip-tie through the mouth and out the operculum.
- 5. The treatment of fish saved for chemical analysis is dependent on the size of the fish. For fish smaller than 30 cm, wrap the entire fish in aluminum foil (with the tag exposed), place all fish of that species in a single zip-lock bag, and place it in a cooler on DRY ICE if possible. If dry ice is not possible, thoroughly chill the fish on wet ice and transfer to dry ice as soon as possible. **EARLY AND**COMPLETE FREEZING IS CRUCIAL because fish are not being gutted. All samples must be placed on DRY ICE for freezing as soon as possible. Upon the addition of new samples to the cooler containing the dry ice, samples should be rearranged to assure that these samples are in contact with the dry ice so they will freeze rapidly. One option would be to use one cooler for freezing fish, and a second for storing them. This is dependent on the equipment carried on the boat, and therefore, the amount of space available.
- **6.** For fish larger than 30 cm, gut the fish; cut off the head and tail leaving a

section no longer than 30 cm, and treat as described above. This is necessary because of limited storage space on board the boat. In no case should the filet knife cut into the section of fish saved.

- 7. Dispose of the remainder of the carcass overboard as described in Section 22.
- **8.** Repeat trawling (standardized methods not required) for up to 2 hours if needed to obtain five individuals of at least one target species.

NOTE: Target species collected in the secondary size range should be saved until sampling is completed in case five within the primary range are not collected. If an insufficient number in the primary size range are not collected in 2 hours, then some of those in the secondary range can be processed to bring the number to five.

16.9.6 General Processing

- 1. After all fish have been sorted, process fish for tissue chemistry and pathological examination as described above. Sampling for chemistry and pathology are performed concurrently with the collection of composition and abundance data. Only fish are recorded. Crustaceans, other invertebrates, and trash are noted in the computer then discarded.
- 2. Measure, with a measuring board, the fork length to the nearest millimeter, of individuals of each species. If there are fewer than 30 individuals of a species, all individuals should be measured. If it is estimated that more than 30 individuals of a species were caught, a subsampling procedure should be used to measure between 30-50 individuals. Subsampling will be accomplished by randomly selecting fish from the buckets. All data are entered onto data sheets and later into the computer.
- 3. Enter data on the fish data sheets. Common names are acceptable. All data are entered into the computer in the mobile laboratory with common names (most are already listed in the computer). For fish not in computer list the scientific name must also be included on the data sheet.
- **4.** All fish not measured for length (i.e. those subsampled) are counted,

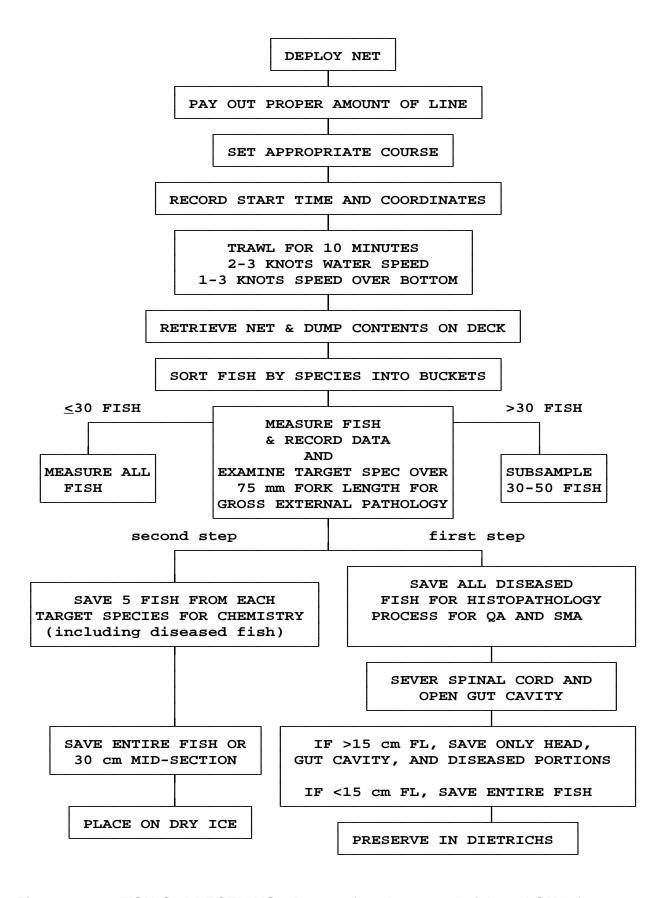


Figure 16.1 FISH COLLECTIONS - Repeat for chem, path QA and SMA for up to 2 hours.

either by direct count or weight-counts. When extremely large catches of schooling fish such as bay anchovy or other clupeids are made, abundance may be estimated by weight-counts. At least 100 individuals should be weighed in a batch, and 2 batches should be weighed to determine mean weight per individual. All remaining fish should be weighed, and the total number of fish estimated and recorded on the data sheet. If two or more obvious size classes are present in a sample (e.g., young-of-year and adults), the size classes should be treated as separate species for the purpose of counting.

- 5. After all processing has been completed, the Chief Scientist should review the trawl data sheet for discrepancies and inaccuracies. When any questions have been resolved, he/she signs the data sheets as being reviewed and the remaining portion of the catch can be returned to the water. When significant mortality occurs and the trawl site is in a highly visible area, the Crew Chief may elect to retain the catch until more discrete disposal can be accomplished. Under no circumstances should the crew give fish away to the general public.
- 6. On the following day, the crew member in the mobile laboratory enters all data into the computer and assures that it is properly associated with the correct station (see Data Management, Section 21). This crew member is also responsible for verifying the sample numbers of fish saved for chemistry and pathology, and providing the analytical laboratory with a computer printout of the size and species of each fish shipped.

Figure 16.1 FISH COLLECTIONS - Repeat for chem, path QA and SMA for up to 2 hours.

16.9 Quality Assurance

In order for the net to "fish" properly, the proper amount of winch cable must be let out. Consult Table 16.1 for the proper scope. Care must also be taken to assure that fish are not lost from the net during retrieval.

It is important that the tow time and speed be as close to the desired values as possible. Any deviations should be noted on the data sheet.

In an attempt to determine the "true" percentage error associated with species identification and the determination of pathological conditions, the first two individuals of each species collected will be preserved in 10% formalin and returned to ERL-N or VERSAR for verification of identification.

The entire fillet will be used for chemisrty analysis so be careful not to puncture the skin in any part of the fillet when processing fish. If this should accidentally happen, the fish should be discarded and another processed.

16.10 Contingency Plans

Considering the wide variety of environments to be sampled by EMAP, it is likely that towing a net will be impossible at some stations. If, due to repeated snags, a successful trawl cannot be performed within 2 hours of starting, no further attempts should be made. This is noted on the data sheet and the FC notified as soon as possible.

16.11 Collection Permits

Many states require scientific collection permits for the collection of fish using trawls. Permits issued for EMAP activities are carried on each boat. A permit must be presented to any appropriate state official that requests to see it.

SECTION 17 PACKAGING AND SHIPPING SAMPLES

After samples are collected, proper packaging and shipping procedures are critical steps in assuring the integrity of the samples. Failure to follow these procedures could result in the loss of valuable data. Each type of sample requires different handling as described below. Packaging and shipping are performed within several days of sample collection by the crew member in the mobile laboratory. He/she is responsible for assuring that the samples are delivered to Federal Express.

As samples are packaged for final shipment, the sample number of each sample is recorded in the computer. Upon completion of packaging, a unique tracking number (bar code label) is affixed to the SIDE of the box, and this number entered into the computer. The number must be placed on the side, not top, so as not to interfere with the Federal Express tracking system (which also uses bar codes). In addition to the Federal Express waybill, a mailing label should also be affixed to the box as an additional precaution against loss. A computer printout of the shipment number and all enclosed sample numbers should be included in a packing slip envelope affixed to the outside of the box. The shipment data sheet should also be completed and sent to the Field Operations Center along with the next shipment of data sheets. Samples that are "hand-carried" require the same paperwork (less the airbill) and tracking as those shipped by commercial carrier.

17.1 Proper Packaging Methods

Proper packaging of samples is critical in assuring they arrive at the receiving laboratory in good condition. Improper packaging can result in damaged or lost samples which costly in terms of time and money. There are several important aspects of proper packaging: assembly of the shipping box, the amount of blue or dry ice needed, and proper packaging of the contents.

Each team is supplied with several sizes of insulated shipping boxes which must be assembled in the field. Proper assembly is critical in assuring proper insulation. Several sizes of styrofoam are included for the top, sides, and bottom. As a tight fit is necessary, ONLY THE APPROPRIATE PIECES SHOULD BE USED. THERE SHOULD BE NO NEED TO CUT DOWN PIECES OF STYROFOAM INSULATION. First, the bottom should be placed INSIDE the plastic bag, and then into the box. The sides should then be inserted, assuring the proper pieced of styrofoam are used. When completed, the correct order of materials from the inside

out should be the styrofoam (again the pieces should **FIT TIGHTLY**), the plastic bag, then the cardboard box. It is important that the plastic bag be BETWEEN the styrofoam and the cardboard.

Each team carries coolers with dry ice and blue ice to keep samples frozen or cool prior to shipment. Blue ice blocks are frozen by placing them on the dry ice. A general rule of thumb supplied by the shipping box supplier is to use at least 20-25 pounds of dry ice for shipments between 20 and 100 pounds ASSUMING THE SAMPLES ARE ALREADY FROZEN. An additional 30 pounds per 100 pounds of fish would be required to freeze samples if they are not already frozen. The amount of blue ice needed to keep samples cool is approximately one pound per pound of sample. This should guarantee samples arrive frozen or cool (depending on the ice type) even if the shipment is delayed a day. Each mobile lab is supplied with a shipping scale to facilitate estimating the quantity of ice required. During storage on the boat and in the mobile lab, all chilled samples should be stored on wet ice rather than blue ice. Blue ice should be used only for shipping. Frozen samples should always be stored on dry ice.

In addition, it is recommended that the sample be sandwiched between refrigerant, i.e. dry ice should be packed both above and below the sample. It is also important that the box contain a minimum of air space. Therefore, packing material should be inserted above the top ice layer to fill the box.

A third consideration for all sample types (not just cooled or frozen samples) is proper packaging within the shipping box. During the Demonstration Project several shipments arrived broken due to improper packaging. During packing a shipment box, one should assume that the box will be improperly handled. All samples should be protected and sufficient packing material included to eliminate any possible movement of the samples within the box. All material that could possibly leak, such as water or sediment samples, should be sealed with sealing tape and packaged carefully.

Proper storage and shipment conditions are summarized in Table 17.1. Federal Express requires a Dangerous Materials waybill for all shipments of formalin. Federal Express requires a class 9 placard, UN number, packing description and a emergency phone number for all shipments of formalin and dry ice.

Table 17.1. Sample holding and shipping conditions

SAMPLE TYPE	HOLDING CONDITIONS	SHIPPING CONDITIONS
SEDIMENT BIOTA	PRESERVED IN FORMALIN	SHIP AT LEAST ONCE DURING SHIFT
SEDIMENT GRAIN SIZE	REFRIGERATED	* SHIP TWICE WEEKLY
SEDIMENT ORGANICS	REFRIGERATED	* SHIP TWICE WEEKLY
SEDIMENT METALS	REFRIGERATED	* SHIP TWICE WEEKLY
SEDIMENT AVS	FROZEN	* SHIP TWICE WEEKLY ON BLUE ICE
SEDIMENT TOXICITY	REFRIGERATED	* SHIP TWICE WEEKLY
SUSPENDED SOLIDS	REFRIGERATED	* SHIP TWICE WEEKLY
FISH CHEMISTRY	FROZEN	SHIP AT LEAST ONCE DURING SHIFT
FISH PATHOLOGY	PRESERVED IN DIETRICHS	SHIP AT LEAST ONCE DURING SHIFT
FISH TAXONOMY QA	PRESERVED IN FORMALIN	SHIP AT LEAST ONCE DURING SHIFT

^{*} Crews should attempt to ship as frequently as logistically possible. Samples MUST be shipped at least twice during a six-day shift.

17.2 Benthic Species Composition and Biomass Samples

Samples for benthic community analyses are preserved in formalin in the field. These samples are in plastic containers with tight fitting screw-top lids. As these samples are preserved, there is no need to keep them cool. These samples need not be shipped daily, however, they must be shipped at least once during a shift, preferably on the last day. These boxes should not weigh more than 50 pounds. The lid of each jar should be checked to assure that it is tight, and the lid taped with sealing tape. The bar code label of each container is then read and the samples placed in an insulated shipping box, the insulation being for protection rather than thermal regulation. As described above, a computer printout of the sample numbers included in this shipment is enclosed in the box. To assure blind processing of the samples, no additional information is provided to the analytical laboratory.

The box is then sealed and an appropriate shipping label affixed. Be sure to pack all bottles upright. Benthic biology samples should be shipped Federal Express Standard Second Day Service. Overnight delivery is not required. Samples should be shipped to:

EMAP Sample Processing Versar, Inc. 9200 Rumsey Road Columbia, MD 21045 (301) 964-9200 Attention: Lisa Scott

As this shipment contains formalin, Federal Express requires that the appropriate boxes indicating dangerous goods be checked on the airbill. In addition, a Dangerous Goods Airbill and Shipper Certification form must be completed. This is available from the Agent picking up the shipment.

17.3 Grain Size Samples

Samples for grain size analysis are collected along with each sample collected for benthic biology and sediment chemistry/toxicity analyses. Samples for grain size analysis should be kept cool (4°C), but not frozen. They should therefore be stored in the mobile lab on ice. These samples are contained in Whirl Packs and sealed with metal wraps. Tape should be placed around the ends of these wraps to prevent the metal tips from piercing one of the other bags.

At a minimum, they should be shipped twice during a six-day shift. Whirl Packs should be placed in a ziplock bag and packed into an insulated box or cooler with an appropriate amount of frozen blue ice to keep the samples cool (place a thin layer of paper between the blue ice and the Whirl Packs to keep them from freezing.

Samples should be shipped Federal Express, Next Day Service. Samples collected on weekends can be shipped on the following Monday as long as they are properly stored in the mobile lab over the weekend. Samples should be shipped to:

EMAP Sample Processing SAIC Environmental Testing Center 165 Dean Knauss Drive Narragansett, RI 02882 (401) 782-1900 ATTN: Anne Kuhn

17.4 Sediment Chemistry Samples

Following collection, sediment samples for organics and metals chemical characterization should be refrigerated rather than frozen because freezing greatly increases the likelihood of breakage of the glass container. It is also recommended that samples be shipped cool, but not frozen, for the same reason.

Sediment chemistry samples should be shipped as soon as possible, preferably on the day following collection. Weekend samples can be stored until the following Monday, providing they are properly stored. The lids of sample bottles should be tightened as necessary, then bottles wrapped in bubble wrap to protect them from breakage. They should then be placed in an insulated box with an appropriate amount of blue ice. Chemistry "blanks" should be treated in the same manner.

Sediment chemistry samples, duplicates and blanks must be shipped Federal Express Next Day Service. Samples should be shipped to:

EMAP Sample Processing
U.S. EPA Research Containment Facility
26 West Martin Luther King Drive
Cincinnati, OH 45268
(513) 569-7286

ATTN: Nate Malof

Samples shipped for chemical analysis by a referee laboratory should be shipped to:

EMAP Sample Processing
U.S. EPA Environmental Research Laboratory
27 Tarzwell Drive
Narragansett, RI 02882
(401) 782-3000

ATTN: Rich Pruell

17.5 Sediment AVS samples

Sediment AVS samples should be frozen immediately and shipped as soon as possible. Weekend samples can be stored until the following Monday, providing they are properly stored. The lids of sample bottles should be tightened as necessary, and the bottles then be placed in an insulated box with an appropriate amount of blue ice. These samples should be frozen at the time of shipping

All sediment AVS samples must be shipped Federal Express Next Day Service to:

EMAP Sample Processing
U.S. EPA Research Containment Facility
26 West Martin Luther King Drive
Cincinnati, OH 45268
(513) 569-7286
ATTN: Nate Malof

Samples shipped for chemical analysis by a referee laboratory should be shipped to:

EMAP Sample Processing
U.S. EPA Environmental Research Laboratory
27 Tarzwell Drive
Narragansett, RI 02882
(401) 782-3000

ATTN: Rich Pruell

17.6 Sediment Toxicity Samples

Sediment samples collected for sediment toxicity testing must be kept refrigerated (4°C), NOT FROZEN. Sample should be shipped at least twice per shift. Samples collected on weekends can be shipped on the following Monday, providing they are properly stored in the mobile lab. To prepare the samples for shipment, the lids are tightened and taped. Containers are then placed upright, along with an appropriate amount of blue ice, in an insulated box.

Sediment toxicity samples are shipped Federal Express Next Day Service to:

EMAP Sample Processing SAIC Environmental Testing Center 165 Dean Knauss Drive Narragansett, RI 02882 (401) 782-1900

ATTN: Anne Kuhn

17.7 Fish Chemistry Samples

Upon collection, fish chemistry samples are immediately frozen on dry ice. These samples should be shipped on the day following collection. Samples collected on weekends can be shipped on the following Monday, providing adequate storage space is available in the truck.

Fish samples are placed, frozen, in an insulated box containing an appropriate amount of dry ice, and shipped Federal Express Next Day Service. Since dry ice is being shipped, Federal Express requires that the appropriate boxes have a class 9 placard on the side of the box as well as an emergency phone number. However, no special waybill is required.

Samples are shipped to:

EMAP Sample Processing
Texas A & M University / GERG
833 Graham Road
College Station, TX 77845
(409) 690-0095

Attention: John Houseal

17.8 Fish Pathology, SMA and Pathology QA Samples

Fish samples retained for pathological and histopathological examination are kept preserved in Dietrich's fixative. It is therefore not necessary to ship fish samples daily, however, tissues do deteriorate in the fixative. Therefore, fish histopathology samples must be shipped AT LEAST WEEKLY, preferably on the last day of the crew's shift.

Fish for histopathological examination are wrapped in cheese cloth saturated in Dietrich's fixative, and placed in a zip-lock bag. Bags should be checked to assure a proper seal, to prevent leakage. Details can be found in Section 16. Fish are placed in an insulated box (the insulation is for protection, not thermal regulation), and shipped Federal Express, Standard Second Day Service to:

EMAP Sample Processing
U.S. EPA Environmental Research Laboratory
27 Tarzwell Drive
Narragansett, RI 02882
(401) 782-3000
ATTN: George Gardner

As this shipment contains formalin, Federal Express requires that the appropriate boxes indicating dangerous goods be checked on the airbill. In addition, a Dangerous Goods Airbill and Shipper Certification form must be completed. This shipment also requires a class 9 placard and an emergency phone number to be placed on the side of the box.

17.9 Fish QA Samples

Fish samples retained for taxonomic verification are kept preserved in 10% formalin. It is therefore not necessary to ship fish samples daily, however, tissues do deteriorate in the fixative. Therefore, samples must be shipped AT LEAST WEEKLY, preferably on the last day of the crews shift.

Fish are wrapped in cheese cloth saturated in 10% formalin, and placed in a zip-lock bag. Bags should be checked to assure a proper seal, to prevent leakage. Fish are placed in an insulated box (the insulation is for protection, not thermal regulation), and shipped Federal Express.

Samples are shipped to:

EMAP Sample Processing U.S. EPA Environmental Research Laboratory 27 Tarzwell Drive Narragansett, RI 02882 (401) 782-3000

ATTN: Sue Cielinski

17.10 Total Suspended Solids Samples

Suspended solids samples are 625 ml water samples stored on ice. These samples must be shipped as soon as possible for filtration in the laboratory. The data generated by the analysis of these samples are needed to interpret the CTD data. For shipment, the container lids are taped, and the samples placed in a small, insulated box along with blue ice and shipped Federal Express Next Day Service to:

EMAP Sample Processing SAIC Environmental Testing Center 165 Dean Knauss Drive Narragansett, RI 02882 (401) 782-1900 ATTN: Anne Kuhn

17.11 Field Computer Diskettes and Data Sheets

All data and field notes are entered into the field computer daily. This information is electronically transferred to the ERL-N VAX, and stored both on the computer's hard drive and on a diskette. These diskettes serve as a back-up of the data set. Since modem communications frequently are not possible, diskettes must be shipped to the FOC daily.

All diskettes are placed in diskette mailers, the mailers placed in a U.S. Mail Express envelope, and the envelope dropped in an Express Mailbox at any Post office. The outside of the envelope should be clearly marked **COMPUTER DISKETTES - DO NOT BEND, X-RAY, OR EXPOSE TO MAGNETIC FIELDS.**

Data sheets should be xerox copied and shipped at least once a week. **NO DATA SHEETS SHOULD EVER BE SHIPPED WITHOUT BEING COPIED FIRST!**

Diskettes and Data Sheets are shipped to:

EMAP Field Operations Center U.S. EPA Environmental Research Laboratory 27 Tarzwell Drive Narragansett, RI 02882 (401) 782-3000 ATTN: Elise Petrocelli

SECTION 18 CONTINGENCY PLANS

It is recognized that any field program will be affected by factors outside the control of the sampling crews. Weather, equipment failure, errors in designating station locations, accidents, Coast Guard regulations, etc. can all prevent the field crews from obtaining samples at one or more stations. It is therefore necessary that a set of contingency plans be in place prior to the start of field operations. These options are described below. It is the responsibility of the Crew Chief to determine if a station is indeed not able to be sampled, and determine the proper action as described in the protocol herein. If there is any question as to the protocol to follow, the FC should be contacted immediately.

18.1 Adverse Weather Conditions

It is the responsibility of the Crew Chief to determine if weather conditions are bad enough to prevent sampling. The Crew Chief should evaluate all alternatives, such as changing the sampling plan to more protected areas and return to the prescribed schedule when the weather improves. Every attempt should be made to not waste an entire day; however, THE SAFETY OF THE CREW IS THE CREW CHIEF'S NUMBER ONE PRIORITY. Any deviations from the prescribed sampling plan should be reported to the FC BEFORE THE BOAT LEAVES THE DOCK. Several states require that the appropriate state permitting agency be notified when the field crew will be sampling at specific stations. Changes must be reported to them by the FC prior to the crew sampling that site.

Because of the sampling schedule, careful planning by the Crew Chief is critical. Predictions of inclement weather may necessitate the premature removal of Hydrolabs to assure the crew completes their cluster prior to the end of their shift. Likewise, deployments may be delayed, or samples obtained on the second, rather than first visit to a station because of weather. The manner in which sampling occurs during a window is up to the discretion of the Chief Scientist, leaving several possible avenues for dealing with poor weather.

18.2 Station Inaccessibility

Stations can be inaccessible for a number of reasons: they were incorrectly positioned on land or in water too shallow for the boat or they may be made

inaccessible during sampling due to unforeseen circumstances such as a Coast Guard perimeter around an accident or oil spill. In any of these cases, the following rules should be followed:

- 1. Any inaccessible station located in a "Large Estuary" (see Appendix A) cannot be relocated by the field crew. If the site is deemed unsamplable, the FC should be notified and the crew should move on to the next station.
- 2. Any inaccessible "Tidal River" station (see Appendix A) can be relocated. The crew will move towards the river "spine" along a transect perpendicular to that spine. Attempts to relocate the station will be made at 10-meter intervals along that transect. The new coordinates must be recorded and the FC notified as soon as possible. If the station cannot be relocated, the FC should be notified and will advise the crew as to what to do.
- Inaccessible stations located in "Small Estuaries" (see Appendix A) can be relocated by the Chief Scientist. Attempts should be made to relocate the station 25 meters east, then west, north, and south. If still inaccessible, repeat at 50 meters. If an accessible location is still not found, the station can be relocated anywhere within the system, provided the location is representative of the conditions in that system (i.e. not near the end of an outfall pipe). If the station is successfully relocated, the new coordinates should be recorded, a note made in the computer log, and the FC notified.

18.3 Equipment Failure

Contingency plans for failure of individual pieces of sampling gear are discussed in the sections describing the operation of the particular gear.

In the event that the boat's engine fails while the crew is on the water, an attempt should be made to repair the engine. As soon as the engine fails, the FC must be notified IMMEDIATELY. Arrangements will be made to transport the spare boat to the crew before sampling begins on the following day.

If another critical piece of equipment (hydraulic winch, trailer, pickup truck) fails, the crew should attempt to repair it. If this is not possible, the FC should be notified IMMEDIATELY so arrangements can be made to deliver the back-up equipment.

SECTION 19 *MAINTENANCE*

The importance of proper maintenance of all gear cannot be over emphasized. Failure of any piece of major equipment could result in a significant loss of data. Maintenance of equipment should be performed as described below. It will be the responsibility of the Team Leader to maintain a record of equipment usage, and assure that proper maintenance is performed at the prescribed time intervals.

Crew Chiefs are required to maintain a maintenance log. At the end of every shift they will report boat engine hours, truck mileage and maintenance performed on the vehicles and equipment to the FC.

19.1 GRiD Computers

The GRiD computers used on the boat and in the mobile laboratory are designed to be rugged; however, they should be treated AS GENTLY AS POSSIBLE. A wiring harness has been installed on each computer to eliminate the need to use the DB-9 connectors on the back of the computer. All serial connections should be made through the wiring harness. The computer should always be protected from salt water, and the keyboard skin MUST always be in-place.

19.2 Sea-Bird CTD

The Sea-Bird CTD should require only minimal maintenance. The unit should be rinsed with fresh water at least daily. Whenever it is not in use, the conductivity probe should be covered with DI water. This is accomplished by filling the hose from the pump to the conductivity cell with DI. The DO probe must also be in a moist environment. Water in the above line should also keep the DO probe conditioned.

19.4 Boats, Motors and Vehicles

Maintenance schedules are described below:

SECTION 20 QUALITY ASSURANCE

EMAP-VP field crews are responsible for collecting a wide variety of data and samples to be used in the fulfillment of the Program's objectives. To meet these objectives, the Program's assessments of ecosystem health must be based on scientifically sound interpretations of the data collected. This, in turn, can only be accomplished if all participants strictly adhere to prescribed methods and quality assurance concerns. Since the field crews are the nodes from which all analyses begin, it is critical that field personnel pay close attention to the methods and concerns outlined in this document.

20.1 Data Quality Objectives

To achieve the goals of EMAP, and as required by EPA for all monitoring and measurement programs, objectives must be established for data quality based on the proposed uses of the data (Stanley and Verner, 1985). Data Quality Objectives (DQOs) are described in detail in the Quality Assurance Project Plan (Valente et al., 1992) and will only be briefly discussed here. DQOs are generally established for five aspects of data quality: representativeness, completeness, comparability, accuracy, and precision. It is important to note that the actions taken by field personnel can affect all five aspects of data quality.

20.1.1 Representativeness

Representativeness is defined as "the degree to which the data accurately and precisely represent a characteristic of a population parameter, variation of a property, a process characteristic, or an operational condition" (Stanley and Verner, 1985). Representativeness, as it applies to field operations, can be categorized into two tiers: the representativeness of a station relative to the system or cell within which it is located, and the representativeness of samples or data collected relative to that site.

Station location and the overall design were formulated to assure that the samples collected were representative of the conditions within the province. Because of the importance of design, crews must accurately locate stations and assure that appropriate steps are taken to relocate a station when it is inaccessible. Once a station is properly located, crews must take all precautions to assure that the samples and data collected are representative of conditions at that station. For example, a sediment chemistry sample contaminated by exhaust from the Briggs and Stratton

engine is no longer representative of the sediments at that site.

20.1.2 Completeness

Completeness is defined as "a measure of the amount of data collected from a measurement process compared to the amount that was expected to be obtained under the conditions of measurement" (Stanley and Verner, 1985). In designing the sampling program the minimum number of sample points required for an assessment of the status and for the determination trends within the province was balanced against costs. As a result, a completeness goal of 90% was established. This means that 90% of the expected data MUST be collected to make a meaningful assessment.

20.1.3 Comparability

Comparability is defined as "the confidence with which one data set can be compared to another" (Stanley and Verner, 1985). The extensive documentation of methods found in EMAP manuals reflects the importance of comparability. The manner in which data and samples are collected directly impacts their comparability with EMAP data collected in other provinces, therefore, field crews must pay careful attention to following the methods described in this manual.

20.1.4 Accuracy and precision

Accuracy is defined as the difference between a measured value and the true or expected value and represents an estimate of systematic error or net bias. Precision is defined as the degree of mutual agreement among individuals measurements and represents an estimate of random error. Collectively these two aspects provide an estimate of the total error or uncertainty associated with individual measurements. In the context of many of the measurements made, accuracy cannot be defined because expected or true values do not exist. Once again, careful attention to the details of the sampling methods should provide accurate, precise data.

20.2 Quality Assurance Procedures

The EMAP-VP QA/QC program includes procedures that must be followed for virtually every aspect of data and sample collection and analysis. Those pertinent to field operations are outlined below. Each crew will be required to demonstrate proficiency in all aspects of field operations prior to the start of the data collection phase. This will consist of an examination at the end of training and field audits during dry runs. In addition, the QA

Coordinator or Field Coordinator will conduct QA audits of each crew at least once during field operations. All components of sampling will be evaluated during audits.

20.2.1 Station Location

Despite the sophisticated electronic navigation instruments available on-board the EMAP vessels, crews must still take great care in locating stations. The most important step in assuring accuracy is the calibration of the computer system as described in Section 11. Calibrations must be done carefully, making sure that the known coordinates at the calibration location are correct, and that the calibration location is as close to the station as possible. Calibration factors are valid only for relatively short distances. Using properly calibrated Loran, the geodetic accuracy of the computer navigation system should be less than 50 meters.

A navigation log datasheet must be completed for each station. Included is information on both the station and the calibration site. Locational information from all instruments, as well as ranges and bearings, must be recorded on this data sheet. For consistency, all bearings (taken using a hand-held compass) should be obtained with the crew member standing on the aluminum deck plate. This datasheet should be returned to the FOC with all other datasheets, and will be used by the data management staff as a reference in case any station location is called into question.

When locating a station, the crew should attempt to drop the anchor as close to the expected station location as possible ($i.e. \pm 1$ second). However, even more important than reaching the exact locations expected is being able to accurately report where we did sample.

Because some of the station types cannot be moved, and those that can be must be moved according to strict guidelines, an automated check of station location will be instituted by the ERL-N VAX computer as soon as data are uploaded. If the location of a station is questionable, a flag will be raised and the QA Coordinator notified the following morning.

During the field audits the QA Coordinator will check each crew's navigation procedures to assure that they comply with those mandated by the Program.

20.2.2 Dissolved Oxygen

Determination of dissolved oxygen levels is one of the most critical measurements being made on the boat. The primary devices for obtaining these data are the SeaBird CTD and the YSI D.O. meter. Great care must be paid to the

methodologies described in this manual to assure accurate measurements. It is especially important that the CTD not be allowed to hit the bottom during descent. Past experience with this unit has revealed that impacting the bottom may result in sediment being pulled up into the pumping system, thereby clogging it and producing erroneous results. Another concern is making sure that no air bubbles are trapped in the oxygen sensor. Bubbles in the sensor will result in an irregular profile.

Dissolved oxygen and pH sensors on the CTD are calibrated under controlled laboratory conditions by trained technicians following the procedures described in the SeaBird manual. Calibrations are conducted prior to the field sampling and as needed throughout the field season. The dissolved oxygen and pH sensors are checked for accuracy using Winkler titrations and pH standards, respectively, and fluorescence offsets are determined by comparison with a laboratory fluorometer using single-species algal cultures of known concentrations. Temperature, conductivity, light transmission, and photosynthetically active radiation sensors are calibrated by the manufacturer.

Because of the controlled conditions required for calibration of this instrument, this activity cannot be performed in the field by the crews. Crews are required to perform QC checks of the instrument. If a CTD fails a check it should be returned to the FOC for recalibration.

The proper field QA protocols for dissolved oxygen are listed below:

- 1. A QC check on the CTD must be performed once during each crew's shift. The unit is hung over the side of the boat and the readings are compared with those from a calibrated YSI meter for dissolved oxygen, thermometer for temperature, and refractometer for salinity. Back on the boat the pH probe is immersed in a pH 10 solution and the instrument reading recorded. The maximum acceptable differences between the CTD and reference measurements are 2 °C temperature, 3 ppt salinity, 0.5 mg/l dissolved oxygen, and 0.5 pH units. Exceedence of any of these tolerances should result in re-testing, and, if the unit still fails, it should be returned to the FOC for recalibration.
- 2. Once per shift (when the CTD is calibrated), a check on the YSI air calibration method is required. A bucket of seawater should be obtained and aerated for AT LEAST 2 HOURS. This should bring the water to saturation. The D.O. concentration (at full saturation) should be obtained from the saturation table provided. The YSI should then be air calibrated according to the manufacturers instructions, and the D.O. of the saturated water determined

by the instrument. In addition, three (3) samples for Winkler titration must be taken from the bucket and titrated according to the instructions in Appendix D. Titrate 2 samples and if they are significantly different, titrate the third. All values (table, Winkler, YSI) should agree to within 0.3 mg/l. Exceedence should result in repeating all steps a second time. If, after a second attempt, the YSI meter is still off by ≥ 0.3 mg/l, arrangements should be made for its replacement. If the difference is greater than 0.5 mg/l, the meter should not be used, and it should be returned to the FOC for repair.

- 3. Proper procedures must be followed when obtaining a Winkler sample. This includes inserting the siphon tube at least 2/3 of the way down into the BOD bottle and allowing three volumes of water to overflow. Because of the small volumes of titrant (sodium thiosulfate) used by the Hach method, it is critical that the person performing the titration be very careful during all steps. "Sloppy" titration of the sample will most likely produce results outside of the acceptable range. Because the concentration of the titrant may vary between cartridges, and each titrator may deliver slightly different amounts per "click", an "F factor" must be determined prior to each set of titrations.
- 4. Immediately prior to use at each station, the YSI meter is "air calibrated" according to the manufacturers instructions.
- 5. Proper procedures must be followed when obtaining a cast. This includes obtaining proper surface and bottom measurements using the YSI meter. If either the surface or bottom measurements from the two instruments differ by ≥ 0.5 mg/l, the cast should be repeated (including recalibration of the YSI). If they consistently differ by ≥ 0.3 mg/l, the FOC should be notified and a replacement CTD will be shipped to the crew. Temperature and salinity must also be checked with a thermometer and refractometer respectively, and any differences must fall within the tolerances listed in "1" above.
- 6. All necessary maintenance requirements must be adhered to. This includes proper replacement of the membrane on the YSI probe and allowing the membrane to relax prior to calibration.

20.2.3 Benthic Biology

Field crews are responsible for obtaining acceptable grab samples, sieving them on-board, and preserving the material retained on the sieve. First, they must be assure that all grabs processed are indeed acceptable according to the criteria described in Section 13. Second, they must make sure that no organisms are lost

during any step, including transferring the sample to the sieve, and during sieving. Third, samples must be properly identified and preserved to assure they are received by the processing laboratory in acceptable condition.

20.2.4 Grain Size

Samples collected for grain size analysis require no special QA steps other than carefully following the directions in Section 15 and assuring proper storage.

20.2.5 RPD (Redox Potential Discontinuity) Depth

Unlike dissolved oxygen measurements which produce information on a single point in time, the depth of the RPD is determined, in part, by the longer-term oxygen condition at a station. Therefore, proper determination of the RPD depth is becoming increasingly important. The procedure described in Section 15 must be carefully followed in an attempt to disturb the sample as little as possible. The crew chief and a second crew member should independently determine the depth, and these measurements should agree to within 5 mm. If they do not, a consensus should be obtained. During audits, the QA Coordinator will independently evaluate the depth.

20.2.6 Sediment Chemistry

Great care must be exercised when processing sediment samples collected for chemical analysis. Contamination of these samples can result in erroneous data, which can compromise the Program's ability to detect trends in the level of sediment contamination. The following steps MUST be taken to avoid contamination of the sample:

- 1. ALL utensils, bowls, grabs, etc. that come in contact with the sample must be washed with alconox prior to the collection of the first grab. Once washed, crews must take precautions to assure that they do not become contaminated (*e.g.* by laying the stainless steel spoon on the deck).
- 2. Only those utensils provided or approved should contact the sediments. Therefore, if additional mixing spoons are required they should NOT be obtained at the local supermarket.
- 3. As soon as any of the stainless spoons or bowls begin to rust they should be discarded.

- 4. Both the Briggs and Stratton and the outboard engines should be turned OFF whenever the sample is exposed to the air. Their exhausts carry high levels of contaminants which can be deposited on the sample.
- 5. Exposure of the sample to the atmosphere should be minimized. Whenever possible the sample should be covered because contamination from the atmosphere, even without the engines running, can be significant.
- 6. Rain water should not be allowed to contaminate the sample.
- 7. Excess seawater should be carefully drained from the surface of the grab by "cracking" the sampler slightly.
- 8. All grabs used in the composite must meet the criteria for an acceptable grab. It is especially important to make sure that the surface sediments did not wash out of the sampler.
- 9. Crews should be careful in removing the surficial layer, keeping as close to the two centimeter (2 cm) mark as possible.
- 10. Replicates and blanks should be collected as directed. Blanks consist of leaving an empty chemistry jar open to the atmosphere whenever the sample is exposed to the air.
- 11. Because of the potential for contamination, the chemistry samples should be the first ones removed from the homogenate.
- 12. Samples should be placed in a cooler on ice as soon as they are collected and recorded.

20.2.7 AVS (Acid Volatile Sulfides)

The concentration of AVS in sediments is affected by the oxidation state of those sediments. Therefore, it is important that sediments retained for analysis of AVS be kept as close to nominal conditions as possible. This means minimizing the aeration of those sediments. Cores should be removed from each chemistry grab as soon as the grab is determined to be acceptable, placed in the appropriate container, and placed on ice. Fill to the top of the threads and freeze as soon as possible. Because the AVS core is taken from grabs to be used in the chemistry homogenate, contamination of the grab sample is a concern. Therefore, a new, clean core must be used for each station (the same core can be used for each grab within a station). As

with all chemistry utensils, great care must be taken to assure that the core does not become contaminated between grabs.

20.2.8 Sediment Toxicity

Since sediment toxicity samples are collected from the same homogenate used for sediment chemistry, the steps outlined above should be followed. In addition, because of the possibility of failure of a toxicity test, it is important that a full 3ℓ of sediment be collected for analysis at each station. This will provide a sufficient volume of sediment for re-testing if necessary.

20.2.9 Fish Community Structure

All fish collected during field operations will be identified and measured. Only those crew members skilled in fish taxonomy should be responsible for the identification of species. The quality of identifications will be assured through rigorous training and testing prior to the start of field operations. Each crew must contain at least one member who possesses taxonomic expertise who will have the final say on all field identifications. As a check on the crew's ability to accurately identify fish, the first two individuals of each species collected by each crew will be preserved and shipped to ERL-N for verification by a qualified fish taxonomist. Erroneous identifications will be brought to the crew's attention prior to their next duty cycle.

Length measurements should be made as carefully as possible, with the crew chief periodically re-measuring some fish. During field QA audits the auditor will check the accuracy of measurements. All measurements should agree to within \pm 5 mm.

20.2.10 Fish Chemistry

Individual fish (target species) collected at all stations are saved for chemical analysis of the muscle. The concentrations of contaminants in muscle tissue is generally low, therefore, the risk of contamination during processing is great. Unlike in previous years, fish saved for chemical analysis should not be gutted, but simply packaged, placed on ice, and then frozen as soon as the crew returns to shore. By not having to gut the fish the risk of contamination is lessened, however, the crew must still make all attempts to keep fish as clean as possible. The deck of the boat should be clear of oil or other gross contaminants prior to dumping the contents of the trawl. As soon as chemistry fish are identified, they should be placed in a clean container to prevent further contamination, and rinsed well with ambient water prior to

packaging. Any fish that has been damaged (*i.e.* the skin has been penetrated) should **NOT** be saved for chemical analysis. Note that the entire filet will be removed by the chemistry laboratory and analyzed, therefore, damage to any portion of the body is unacceptable, unless the damage is due to natural causes (*i.e.* an open ulcer on a fish collected from a non-standard trawl).

Because fish are composited in the laboratory, it is important that sample ID numbers be carefully recorded and that the fish be packaged correctly (by species).

20.2.11 Fish Pathology

The percent fish exhibiting signs of gross external pathology will be determined from field observations. As a check on each crew's ability to identify pathologies, any fish identified as having an external pathology will be sent to ERL-N for confirmation by an expert. This will provide an estimate of "false positives". In addition to these fish, all crews are required to preserve and ship SMA (spleen macrophage aggregate) fish collected at all stations in small estuaries, and pathology QA fish which will be collected at selected stations. All of these fish will be examined by a qualified pathologist to determine the rate of "false negatives" (number of pathologies missed by the field crews).

Because the number of fish exhibiting external pathologies is expected to be small, and only a limited number of "QA" fish will be collected, it is critical that the crew be extremely diligent in their examinations. Fish pathology has proven to be an important indictor, but unfortunately it is one that is difficult to quality assure.

As with all other indicators, the crew's performance will be checked during QA audits.

20.2.12 Data Entry

Needless to say, proper recording is critical in assuring data of the quality required for the EMAP assessment. A sophisticated field computer system has been designed to assist in assuring that all data received by the data management team are correct, however, for this system to work properly it is important that crew members be very careful in their entry of information.

The final back-up against which all computer data sets will be compared is the data sheets. Crew members must make sure that all data sheets are **correctly, completely, and LEGIBLY filled out**. If the information on the data sheet is incorrect the final data used will also be incorrect. All data are transcribed from the data sheets

into the field computer by a member of the crew and then checked by that crew member. Following entry and this first level check, IT IS THE RESPONSIBILITY OF THE CREW CHIEF TO REVIEW THE DATA AND ISSUE HIS/HER ASSURANCE THAT IT IS 100% CORRECT. Once the crew chief has "signed off" on a dataset it will be "locked" to prevent further editing by any crew member and uploaded to the ERL-N VAX. Once at the FOC, a number of automatic range checks will be performed, followed by a manual check (comparison with the datasheet).

Over the past two years a relatively large number of errors in the field data were not corrected prior to receipt by the data management team, resulting in confusion and a significant effort to correct the datasets. In part this was due to the way the computer system was configured, making it difficult to edit some files. In designing the 1992 computer system, ease of editing was a primary concern. It is hoped that this should significantly reduce the number of data errors that are not caught prior to uploading.

SECTION 21 FIELD DATA BASE MANAGEMENT

Management of data in the field is of paramount importance. Without proper data management the quality of the data generated is questionable. Field data management consists of two categories: data sheets and electronic data.

Experience gained during the 1990 Demonstration Project and 1991 Samping Season demonstrated that the field computers were capable of withstanding the rigors of boat operations. In 1992 the use of the computer system is again MANDATORY. ALL DATA RETURNING TO THE FOC WILL BE IN ELECTRONIC FORMAT AND QUALITY ASSURED BY THE CHIEF SCIENTIST. However, as an added precaution, data will continue to be entered onto data sheets as well as into the computer (example data sheets can be found in Appendix G). In general all data except for the fish indicators will be entered directly into the on-board computer while on-station. The use of bar code readers will facilitate the entry of sample numbers and eliminate transcription errors. Because of the complexity, fish indicator information will be recorded on data sheets and entered into the computer in the mobile laboratory.

Although it is mandatory that all data be transmitted electronically to the FOC, the Chief Scientist has the option of using the boat computer system only for navigation, and entering ALL data into the mobile lab computer upon returning to the dock. If this option is exercised, IT IS HIS/HER RESPONSIBILITY TO ASSURE THE DATA SENT TO THE FOC IS ERROR FREE, i.e. no transcription errors were made. The on-board computer system, along with the bar code readers, have been provided as tools to assist the field crews in providing high quality electronic data. In other words, the use of the on-board computer system and bar code readers is highly recommended, and it is felt that the use of this system will be a considerable time-savings to the crews. Use of the navigation component for determining location remains mandatory.

It is the responsibility of the Chief Scientist to guarantee the quality of the data shipped to the FOC. At the end of each day it is his/her responsibility to review the data collected that day and "sign-off" on it.

All samples collected for the EMAP program must be tracked from their collection to the receipt of analytical results from laboratories. In order to accomplish the tracking of all samples collected, each sample will be assigned a unique identification number (SAMPLEID) composed of an event number followed by a

sample number.

21.1 Sample Tracking Procedures

A variety of water, water quality, sediment, and biological samples are collected during the EMAP-Near Coastal Virginian Province sampling effort. These include physical samples (ie, sediment and fish samples) and non-physical samples (ie, fish trawl and CTD cast data). It is vital that all of these samples and data be tracked from collection to the receipt of analytical results. To accomplish this purpose, all samples collected are assigned unique sample identification numbers (SAMPLEIDs) composed of a four-digit event number (used instead of the station number to maintain blind sample analysis) and a three-digit sample number.

21.2 Event and Sample Numbers

All BSS and REP stations will be sampled once during the summer. During each station visit, a pre-determined set of samples will be collected. All of these samples will be linked by a single event number even if more than one station visit is required to collect the samples (ie, if a fish trawl is not performed during the first station visit but the station is revisited and trawled the next day).

The same suite of samples will be collected during visits to BSS/LTT stations as are collected at BSS and REP stations. However, BSS/LTT stations will be sampled twice during the summer and a full suite of samples will be collected during each visit. Each suite of samples will be linked by a single event number; therefore, each BSS/LTT station will be associated with two event numbers.

Ranges of three-digit sample numbers have been assigned to each sample type (Table 21.1). The SAMPLEID uniquely assigned to each sample or activity will consist of an event number concatenated with one of the sample numbers in the appropriate pre-assigned range. Since SAMPLEIDs for physical samples will be barcoded, the entry of these IDs into electronic data sets by the field crews and receiving laboratories will be fast and accurate. Duplicate SAMPLEID barcodes will also be applied to data sheets for ease of data entry. A one- to three-letter sample type code will be imprinted on each barcode to make it easier for the field crews to identify which barcode is applied to each sample and data sheet. This sample number design will allow for the collection of extra samples (ie, if a sample is damaged or lost) and will provide extra, pre-assigned sample numbers in case a SAMPLEID barcode is assigned to the wrong sample (a new barcode in the correct range will be placed over the incorrect barcode on the sample container and data sheet).

CTD cast SAMPLEIDs will be automatically entered by the computer system. These IDs will consist of the four-digit event number followed by "2", one digit in the range 1-9 indicating which field computer was used to download the cast, and one digit in the range 0-9 as a cast number. Although only one CTD cast is required per event, the cast number would be incremented by one for each additional cast performed and downloaded. For example, the first cast performed at event 2120 and downloaded on field computer number three would be automatically be assigned the SAMPLEID 2120230. The same sample numbering scheme will be used for Hydrolab casts. CTD cast file names will consist of the cast SAMPLEID with the extension .DAT. Hydrolab cast file names will consist of the cast SAMPLEID with the extension .HYR. If no CTD or Hydrolab was performed, the SAMPLEID assigned to the water column measurements taken using the YSI meter, thermometer, and refractometer will consist of the event number followed by "200".

The sample numbering scheme for fish chemistry samples is more complex than for other samples. The field crews will attempt to collect five fish per station of at least one target fish species for chemical analyses. Tissues from these fish will later be combined into a composite and analyzed as a unit. Therefore, it will be necessary to track these chemistry fish individually and also as groups by species for each station. To accomplish this, each individual chemistry fish will be assigned a sample number ending in 1-6 in the tens ranges "050" through "090". Each tens digit range will be assigned to a separate fish species. The composite number assigned for each species of fish will end in "0" within the same tens digit range as the individual fish. Therefore, the composite number for a group of chemistry fish of a species can be easily calculated by dividing the SAMPLEID of the individual fish by 10, taking the integer value of the result, then multiplying by 10. For example, the composite number for fish 2135062 can be calculated:

Composite number=int(2135062/10)x10 = 2135060

All chemistry fish of a species from the same event are placed in a bag together as a single composite whether or not they are from the same trawl. The fish composite barcode label will be placed on a tag and put in the bag with the individual fish so that label is visible through the bag. If more than five target fish species are caught at a station, the following sample numbers should be concatenated with the event number to create valid SAMPLEIDs (the SAMPLEIDs must be written on tags using permanent marker and also written on the data sheet):

Species 6: composite sample number=120

individual fish sample numbers 121-126

(if these numbers were already assigned to other fish sample types,

start with the 130 range for species 6)

Species 7: composite sample number=130 or 140

individual fish sample numbers 131-136 or 141-146

If there are not enough SAMPLEID barcodes for pathology, taxon QA, or SMA fish, valid SAMPLEIDs must be assigned to these fish using the event number and sample numbers starting with 120 and continuing up through 199. These SAMPLEIDs must be written on the fish tags using permanent marker and also must be written on the data sheet.

Fish pathology QA/QC samples will be collected at one large or tidal river station per crew (total of six stations). These stations are not pre-determined; a crew may choose to collect pathology QA/QC samples at any large or tidal river system station at which they have collected sufficient fish. Fish pathology QA/QC samples are tracked using a blind numbering scheme. This scheme consists of two dummy events per QA/QC station, each containing 78 SAMPLEIDs ending in 042-119. A barcoded SAMPLEID from the pathology fish QA/QC event envelope will be randomly assigned to each pathology QC fish sample collected (the pathology QA/QC event envelope for each crew must be kept on the boat at all times). SAMPLEID ranges are not assigned to specific fish species.

Sediment QA/QC samples will be collected at approximately 10% of stations. These stations are also not pre-determined; the crews will be notified of QA/QC stations the night before a QA sampling event. Sediment QA/QC samples are also tracked using a blind numbering scheme consisting of three dummy events per QA/QC station. One duplicate of each sediment organic, AVS, and metals sample is collected per dummy event for a total of nine QA/QC samples:

Dummy Event 1: SAMPLEIDs for the duplicate sediment organics, AVS, and metals samples end in the same three digits as the samples collected for the real event (030, 033, and 036). These samples will be shipped with the QA blank bottle to the laboratory performing the routine sediment chemistry analyses.

Dummy Events 2 and 3: Two duplicates each of the sediment organics, AVS, and metals samples (total of six samples) will be sent to the reference

laboratory for analysis. These SAMPLEIDs will end in 031, 034, and 037, respectively.

Envelopes containing all data sheets and SAMPLEID barcodes necessary for sampling each station (event envelopes) will be assembled for each field team. Since the suites of samples collected at each station type and size class are similar, the contents of the event envelopes will be similar. However, spleen macrophage aggregate (SMA) fish samples will be collected at small system stations but not at large or tidal river system stations. Since the event envelopes for small system stations must include barcodes for these additional fish samples, a separate event number range has been assigned for these stations. Additional event number ranges have been assigned to sediment quality assurance/quality control (QA/QC) samples, fish pathology QA/QC samples, and to crew training (dry run) events (Table 2).

21.3 Data Sheet and Diskette Tracking

Data sheets and diskettes from the crews will be tracked in the field and in the field operation center (FOC). Diskettes will be assigned barcoded SAMPLEIDs in the field in the same way as other physical samples. The crews will use each diskette for two days: one day in the boat computer and one day in the mobile lab computer. The diskettes will be shipped overnight to the FOC after all data on that diskette are verified against the data sheets by the field crews. Field data sheets for each event will also be shipped overnight to the FOC once all of the data for that event have been entered and verified. The diskettes and data sheets will be shipped separately to ensure that if either shipment is lost the field data will still arrive at the FOC.

Table 21.1 Sample number ranges assigned to each sample type.

Sample Type and Code	Sample Number Range	Barcoded?
Diskette (DK)	000-002	Yes
Suspended Solids (SS)	003-005	Yes
Benthic Grain Size (BG)	006-014	Yes
Benthic Infauna (BI)	015-023	Yes
Sediment Toxicity (ST)	024-026	Yes
Sediment Grain Size (SG)	027-029	Yes
Sediment Organics (SO)	030-032	Yes
Sediment AVS (SA)	033-035	Yes
Sediment Metals (SM)	036-038	Yes
QC Blank Bottle (BB)	039-041	Yes
Fish Pathology/Taxon QA (F)	042-049, 057-059,	Yes
	067-069, 077-079,	
	087-089, 097-099	
Fish Chemistry Species 1(FCC, FC)	050, 051-056	Yes
Fish Chemistry Species 2 (FCC, I	FC) 060, 061-066	Yes
Fish Chemistry Species 3 (FCC, I		Yes
Fish Chemistry Species 4 (FCC, I		Yes
Fish Chemistry Species 5 (FCC, I	FC) 090, 091-096	Yes
Spleen Macrophage Aggregate (F) (Small systems only)	100-119	Yes
Extra Fish Samples	120-199	No
CTD (and Hydrolab) Casts	200-299	No
Standard Fish Trawls	300-399	No
Non-standard Fish Trawls	400-499	No
Sediment Organics Duplicate (SO)	030	Yes
Sediment Organics Reference 1 (SO)	031	Yes
Sediment Organics Reference 2 (SO)	031	Yes
Sediment AVS Duplicate (SA)	033	Yes
Sediment AVS Reference 1 (SA)	034	Yes
Sediment AVS Reference 2 (SA)	034	Yes
Sediment Metals Duplicate (SM)	036	Yes
Sediment Metals Reference 1 (SM)	037	Yes
Sediment Metals Reference 2 (SM)	037	Yes
Fish Pathology QA	042-119	Yes

Table 21.2. Event numbers assigned for the VA92 sampling season. Three "extra" event numbers have been assigned in each of the two station ranges (Large/Tidal River and Small).

Station/Sample Type	Event Number Range	
Chemistry Duplicates	2000-2011	
Pathology QA	2008-2011	
Large System and Tidal		
River Stations	2012-2104	
Chemistry Reference 1	2105-2116	
Pathology QA	2113-2116	
Small System Stations	2117-2169	
Chemistry Reference 2	2170-2181	
Pathology QA	2178-2181	
Dry Runs-Large/TR	2200-2217	
Dry Runs-Small	2218-2235	

Shipment SAMPLEIDs are the only SAMPLEIDs which do not consist of seven digits. The range assigned to shipment SAMPLEIDs is from 810000 through 820999.

Hydrolab and CTD units will have EMAP barcodes applied to them for data tracking purposes. Whenever a barcode number is required on a data sheet or in a computer program for these equipment, use this EMAP barcode number. The range of these numbers is 802497-802536 for the 40 Hydrolab units and 802537, 648222-648224 for the four CTD units.

SECTION 22 WASTE DISPOSAL

Proper disposal of all wastes is an important component of field activities. At no time will any waste be disposed of improperly. It is the responsibility of the Crew Chief to assure that all garbage is disposed of correctly. Proper methods for the disposal of wastes generated during field activities are as follows.

22.1 Routine Garbage

Regular garbage (paper towels, plastic, discarded labels, etc.) is to be placed in the trash cans in the boats or mobile lab. This garbage is then disposed of on land by placing it in PUBLIC trash receptacles. In no case should trash be disposed of in PRIVATE receptacles without permission of the owner.

GARBAGE SHOULD NEVER BE THROWN OVERBOARD. This includes even small items such as the disposable strips from the whirl packs.

22.2 Detergent Washes

Detergent is used in the boat and mobile lab to wash off retrieved DataSonde units and grab samplers. Only biodegradable detergents are to be used; therefore, the wash water can be disposed of on the ground or overboard. Be sure not to dump it on a lawn.

22.3 Formalin or Dietrich's Fixative

Great care should be exercised when working with these fixatives, as they are suspected carcinogens. Formalin and Dietrich's (which contains formalin, alcohol, and acetic acid) should never be disposed of in the field. There should be no reason to generate waste. Any fixative that is poured into a container and then not used should be poured back into the original storage container.

In the event that waste IS generated, it must be placed in an appropriate container and shipped (or driven) to ERL-N where it can be disposed of properly. If shipped, the container will need a dangerous goods waybill.

22.4 Fish Waste

Fish processed following a trawl should be dumped overboard. Large quantities of fish should never be disposed of on land. Discretion should be used in the disposal of fish at sea. Large quantities should not be disposed of in enclosed areas, or when numerous other boaters are close by. Fish should only be disposed of in open areas where disposal will not adversely affect either the ecology or aesthetics of an area. Under no circumstances should fish be given to the public.

SECTION 23 CONTACT PERSONNEL

The primary contact for all field-related activities is the Field Coordinator. Any technical questions, reports of accidents, injuries, equipment breakdown, etc. should be addressed to him.

In the event that the Field Coordinator is not available, the Project Manager must be notified. The Project Manager is also the appropriate person to contact regarding general Program matters, affecting operations other than just field operations.

This structure is graphically depicted in Figure 3.5, and the proper chain-of- command discussed in Section 3.4. The names and phone numbers of contact personnel are listed below.

FIELD COORDINATOR

DANIEL M. REIFSTECK 1-(800)-732-2305 (FIELD OPERATIONS CENTER) (401) 295-2465 (HOME)

PROJECT MANAGER

MR. STEVEN SCHIMMEL 1-(800)-732-2305 (FIELD OPERATIONS CENTER) (401) 789-5269 (HOME)

SECTION 24 LOST GEAR

Lost gear can potentially have a significant effect on the sampling program. Crews should take every precaution against the loss of gear by properly tightening shackles and other connectors, but accidents are likely to happen.

Whenever a DataSonde, CTD, or grab sampler are deployed, a pinger is attached to the instrument. This will assist in locating it should the gear be lost.

If a piece of equipment is lost, attempts to recover it as described below should be followed. If the gear cannot be retrieved immediately, and a spare unit is carried by the team (even if it is on shore), the spare should be used to complete sampling activities. If a spare is not immediately available, sampling for all other indicators should continue, and a note made in the log that the samples that were to be collected by the lost gear were not collected.

Upon the loss of any gear, the FC should be notified immediately. Where appropriate, replacement equipment will be sent to the team. Attempts to recover gear are as follows.

24.1 Recovery of a CTD

The CTD is a very expensive piece of equipment. If a unit is lost, all attempts must be made to retrieve it as soon as possible. As this is also a delicate instrument, grappling is inappropriate.

As soon as it is determined that the unit is no longer attached to the end of the winch cable, record the exact coordinates. Attach the trawl to the winch cable, and attempt to retrieve the unit by catching it in the net. If the CTD is recovered, thoroughly test it out to determine if it is damaged. If it passes a QC check, continue with sampling activities.

If the unit is recovered, and it has been damaged (visual damage or failure to pass the QC check), use the hydrolab. Notify the FC immediately and he will arrange for the back-up CTD to be delivered before the next day. Continue with sampling for all other indicators.

If recovered, regardless of the damage done, note the event in the computerized equipment log and notify the FC.

If the unit is not recovered after two attempts to catch it in the trawl, deploy a marker buoy at the exact location it was lost, and notify the Field Coordinator IMMEDIATELY. He will arrange for a commercial dive operation to recover the CTD. To avoid the possibility of damaging the lost unit, cease all sampling activities at this station.

24.2 Recovery of a Grab Sampler

If a grab sampler is lost, attempt to recover by grappling in the area where the sampler was dropped. If the gear is successfully recovered, continue with sampling. If it cannot be recovered, continue sampling for all other indicators. Since trawling is still performed, the possibility exists that the grab could be caught in the net. If the gear cannot be recovered, notify the FC immediately. He will arrange for shipment of spare equipment.

SECTION 25 *REFERENCES*

- Beasley, B. and R. Biggs. 1987. Near coastal waters segmentation. Report by the College of Marine Studies, University of Delaware.
- Beaulieu, J., 1991. Users guide for the EMAP Near Coastal Field Data Acquisition System. Computer Sciences Corp., Narragansett, RI.
- Holland, A.F., ed. 1990. Near Coastal Program Plan for 1990: Estuaries. EPA 600/4-90/033. U.S. Environmental Protection Agency, Environmental Research Laboratory, Office of Research and Development, Narragansett, RI.
- Morris, P.A., 1975. The Peterson Field Guide Series: A Field Guide to Shells of the Atlantic and Gulf Coasts and the West Indies. W.J. Clench, ed. Houghton Mifflin Co., Boston. 330 pages.
- SAIC, 1991. User guide for Environmental Data Acquisition System (EDAS V1.01). Science Applications International Corp., Newport, RI.
- Schimmel, S.C., 1990. Implementation plan for the Environmental Monitoring and Assessment Program Near Coastal Demonstration Project. ERL-N contribution No. 1164.
- Stanley, T. W., and S. S. Verner. 1985. The U. S. Environmental Protection Agency's quality assurance program. pp 12-19 In: J. K. Taylor and T. W. Stanley (eds.). Quality Assurance for Environmental Measurements, ASTM STP 867. American Society for Testing and Materials, Philadelphia, Pennsylvania.
- Strobel, C.J. 1990. Environmental Monitoring and Assessment Program Near Coastal Component: 1990 Demonstration Project Field Operations Manual. EPA-600/x-90/xxx. U.S. EPA Environmental Research Laboratory, Narragansett, RI. October 1990.
- Terrell, T.T. 1979. Physical regionalization of coastal ecosystems of the United States and its territories. Office of Biological Services, U.S. Fish and Wildlife Service, FWS/OBS-79/80.

Valente, R.M., C.J. Strobel and S.C. Schimmel. 1992. EMAP-Estuaries; Virginian Province Quality Assurance Project Plan. U.S. Environmental Protection Agency, Environmental Research Laboratory, Office of Research and Development, Narragansett, RI (in preparation).