CLEAR SKIES IN WISCONSIN

Human Health and Environmental Benefits of Clear Skies: Clear Skies would protect human health, improve air quality, and reduce deposition of sulfur dioxide (SO₂), nitrogen oxides (NOₓ), and mercury.¹

- Beginning in 2020, over $1 billion of the annual benefits of Clear Skies would occur in Wisconsin. Every year, these would include:
 - approximately 200 fewer premature deaths;
 - over 100 fewer cases of chronic bronchitis;
 - approximately 8,000 fewer days with asthma attacks;
 - over 200 fewer hospitalizations and emergency room visits;
 - approximately 33,000 fewer days of work lost due to respiratory symptoms; and
 - approximately 260,000 fewer total days with respiratory-related symptoms.

- There are no counties in Wisconsin currently projected to be out of attainment with the fine particle standard. Clear Skies would, however, achieve additional reductions in fine particles that would further protect human health.

- Eleven counties are currently projected to be out of attainment with the 8-hour ozone standard. Based on initial modeling, all but one of these counties would attain the standard under the existing Clean Air Act by 2010; the additional county would achieve the standard under the existing Clean Air Act by 2020. Clear Skies would, however, provide additional reductions in ozone to further protect human health.⁴

- By 2020, Clear Skies would also provide benefits to public health in Wisconsin by bringing Kenosha County significantly closer to attainment of the 8-hour ozone standard.

- Clear Skies delivers numerous environmental benefits by 2020:
 - visibility would improve 1-2 deciviews throughout most of Wisconsin (a change of 1 deciview is a perceptible change in visibility);
 - sulfur deposition would decrease by 15-30% throughout most of the state and by up to 15% throughout remaining portions of the state;
 - nitrogen deposition would be reduced by 15-30% throughout the state; and
 - mercury deposition would be reduced by 5-25% in the southern portion of the state.

¹ The projected impacts are the results of extensive emissions and regional air quality modeling and benefits analyses as summarized in the Technical Addendum: Methodologies for Benefit Analysis of the Clear Skies Initiative, 2002. While the policy analyses tools EPA used are among the best available, all such national scale policy assessments are subject to a number of uncertainties, particularly when projecting air quality or environmental impacts in particular locations.

² All human health and environmental benefits are calculated in comparison to existing Clean Air Act programs.

³ The two sets of estimates reflect alternative assumptions and analytical approaches regarding quantifying and evaluating the effects of airborne particles on public health. All estimates assume that particles are causally associated with health effects, and that all components have the same toxicity. Linear concentration-response relationships between PM and all health effects are assumed, indicating that reductions in PM have the same impact on health outcomes regardless of the absolute level of PM in a given location. The base estimate relies on estimates of the potential cumulative effect of long-term exposure to particles, while the alternative estimate presumes that PM effects are limited to those that accumulate over much shorter time periods. All such estimates are subject to a number of assumptions and uncertainties. It is of note that, based on recent preliminary findings from the Health Effects Institute, the magnitude of mortality from short-term exposure (alternative estimates) and hospital/ER admissions estimates (both estimates) may be overstated. The alternatives also use different approaches to value health effects damages. The key assumptions, uncertainties, and valuation methodologies underlying the approaches used to produce these results are detailed in the Technical Addendum noted above.

⁴ To permit comparisons among various analyses, the air quality data used in this analysis was fixed as the most complete and recently available as of mid-2001 (1997-1999 ozone monitoring data and 1999-2000 PM2.5 data). More complete and more recent air quality data for ozone and fine particles (1999-2001 data) indicates some differences in the likely attainment status of some counties. Future analyses of Clear Skies will incorporate the most recent data available.
Changes in Emissions Under Clear Skies: Clear Skies is projected to result in significant emissions reductions from power generators by 2020.

- In Wisconsin, Clear Skies is projected to significantly reduce emissions from power generators by 2020 (relative to 2000 emissions):
 - SO$_2$ emissions would be reduced by 18%;
 - NO$_x$ emissions would be reduced by 61%; and
 - mercury emissions would be reduced by 16%.

Nationwide Emissions under Clear Skies in 2020

- SO$_2$ emissions from power generators are projected to be 3.9 million tons (a 65% reduction from 2000 levels).
- NO$_x$ emissions are projected to be 1.7 million tons (a 67% reduction from 2000 levels).
- Mercury emissions are projected to be 18 tons (a 63% reduction from 2000 levels).
- At full implementation, the emission reductions would be 73% for SO$_2$, 67% for NO$_x$, and 69% for mercury.

Figures 1a, 1b and 1c. Existing Clean Air Act Regulations (base case5) vs. Clear Skies in Wisconsin in 2010 and 2020

<table>
<thead>
<tr>
<th>Year</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coal</td>
<td>All</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td>lbs/MMBtu</td>
<td>lbs/MMBtu</td>
<td>lbs/MMBtu</td>
</tr>
<tr>
<td>2010 Base Case</td>
<td>0.81</td>
<td>0.45</td>
<td>0.49</td>
</tr>
<tr>
<td>Clear Skies</td>
<td>0.81</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>2020 Base Case</td>
<td>0.82</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>Clear Skies</td>
<td>0.67</td>
<td>0.13</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Costs: Nationwide, the projected annual costs of Clear Skies (in $1999) are $3.69 billion in 2010 and $6.49 billion in 2020.6

5 The base case includes Title IV, the NO$_x$ SIP call and State-specific caps in CT, MO and TX. It does not include mercury MACT in 2008 or any other potential future regulations to implement the current Clean Air Act.

6 EPA uses the Integrated Planning Model (IPM) to project the economic impact of Clear Skies on the power generation sector. IPM disaggregates the power generation sector into specific regions based on properties of the electric transmission system, power market fundamentals, and regional environmental regulations. These regions do not conform to State or EPA region boundaries making some compliance options, such as dispatch, and associated costs impractical to differentiate at a State or Regional level.
Changes in Projected Retail Electricity Prices Under Clear Skies: Electricity prices in Wisconsin would not be significantly affected by Clear Skies.

- In 1999, the average retail electricity price in Wisconsin was approximately 5.53 cents/kWh, which was below the average national retail price of approximately 6.66 cents/kWh.\(^7\) As shown in Figure 3, retail prices in MAIN (the North American Electric Reliability Council (NERC) region that contains Wisconsin\(^8\)) are projected to decrease and remain above the national average between 2005 and 2008, and below the national average between 2009 and 2020.\(^9\)

Figure 2. Projected Retail Electricity Prices in MAIN under Clear Skies (2005-2020)

Generation in Wisconsin Under Clear Skies: Coal-fired power plants currently produce 70% of the electricity generated in Wisconsin. While the portion of the total generation contributed by coal-fired units may vary, coal-fired generation would increase under Clear Skies. This contribution is projected to be approximately 78% by 2010 and 68% by 2020.

Figure 3. Current and Projected Generation by Fuel Type in Wisconsin under Clear Skies (GWh)\(^{10}\)

\(^{8}\) Wisconsin falls under NERC regions MAIN and MAPP. The region shown in the graph represents the larger capacity share of the state.

\(^{9}\) State-level retail electricity prices vary considerably across the United States. Variation in prices can be caused by many factors including access to low cost fuels for generating power, State taxes, and the mix of power plants in the States.

\(^{10}\) Source: 1999 data from EIA at http://www.eia.doe.gov/cneaf/electricity/st_profiles/wisconsin/wi.html (Table 5).
• EPA does not project that any facilities in Wisconsin would switch from coal to natural gas in response to the Clear Skies emissions caps. Instead, sources in Wisconsin would reduce their emissions through the installation of control technologies:
 ➢ By 2010, coal-fired capacity in Wisconsin is projected to be approximately 7,100 MW under Clear Skies. Approximately 300 MW of Wisconsin’s coal capacity is projected to install Selective Catalytic Reduction (SCR).
 ➢ Between 2010 and 2020, an additional 3,500 MW are projected to install SCR and 800 MW are projected to install scrubbers.

• 7% of Wisconsin’s coal-fired generation is projected to come from coal units with emission control equipment in 2010, and 60% in 2020.11

Coal Production in Wisconsin: Wisconsin did not produce coal in 2000 and is not projected to produce coal under Clear Skies.

Major Generation Companies in Wisconsin: The ten largest plants in the State -- each over 350 MW -- are a combination of nuclear, petroleum-, gas-, and coal-fired plants. The major generation companies include: Wisconsin Electric Power Co., Wisconsin Public Service Corp., Wisconsin Power & Light Co., Northern States Power Company, and Madison Gas & Electric Company.

11 Emissions control equipment includes, where applicable, scrubbers, selective catalytic reduction, selective non-catalytic reduction, gas-reburn and activated carbon injection.