CLEAR SKIES IN OKLAHOMA

Human Health and Environmental Benefits of Clear Skies: Clear Skies would protect human health, improve air quality, and reduce deposition of sulfur dioxide (SO$_2$), nitrogen oxides (NO$_x$), and mercury2.

- Beginning in 2020, approximately $1 billion of the annual benefits of Clear Skies would occur in Oklahoma. Every year, these would include:
 - over 100 fewer premature deaths;
 - approximately 100 fewer cases of chronic bronchitis;
 - over 6,000 fewer days with asthma attacks;
 - over 100 fewer hospitalizations and emergency room visits;
 - over 19,000 fewer days of work lost due to respiratory symptoms; and
 - approximately 170,000 fewer total days with respiratory-related symptoms.

- There are no counties in Oklahoma currently projected to be out of attainment with the annual fine particle standard. Clear Skies would, however, achieve additional reductions in fine particles that would further protect human health.

- Based on initial modeling, Tulsa County, the single county currently projected to be out of attainment with the 8-hour ozone standard, would attain the standard under the existing Clean Air Act by 2010. Clear Skies would provide additional reductions in ozone to further protect human health.

- Clear Skies would deliver numerous environmental benefits by 2020:
 - visibility would improve 1-2 deciviews in eastern portions of the state (a change of 1 deciview is a perceptible change in visibility);
 - sulfur deposition would decrease by up to 30% in eastern portions of the state and by up to 15% throughout the remainder of the state; and
 - nitrogen deposition would be reduced by 15-30% in eastern portions of the state and by up to 15% throughout the rest of the state.

Clear Skies Benefits Nationwide

- In 2020, annual health benefits from reductions in ozone and fine particles would total $93 billion, including 12,000 fewer premature deaths, far outweighing the $6.49 billion cost of the Clear Skies program.
- Using an alternative methodology results in over 7,000 premature deaths prevented and $11 billion in benefits by 2020—still exceeding the cost of the program.3
- Clear Skies would provide an additional $3 billion in benefits due to improved visibility in National Parks and wilderness areas in 2020.

1 The projected impacts are the results of extensive emissions and regional air quality modeling and benefits analyses as summarized in the Technical Addendum: Methodologies for Benefit Analysis of the Clear Skies Initiative, 2002. While the policy analyses tools EPA used are among the best available, all such national scale policy assessments are subject to a number of uncertainties, particularly when projecting air quality or environmental impacts in particular locations.

2 All human health and environmental benefits are calculated in comparison to existing Clean Air Act programs.

3 The two sets of estimates reflect alternative assumptions and analytical approaches regarding quantifying and evaluating the effects of airborne particles on public health. All estimates assume that particles are causally associated with health effects, and that all components have the same toxicity. Linear concentration-response relationships between PM and all health effects are assumed, indicating that reductions in PM have the same impact on health outcomes regardless of the absolute level of PM in a given location. The base estimate relies on estimates of the potential cumulative effect of long-term exposure to particles, while the alternative estimate presumes that PM effects are limited to those that accumulate over much shorter time periods. All such estimates are subject to a number of assumptions and uncertainties. It is of note that, based on recent preliminary findings from the Health Effects Institute, the magnitude of mortality from short-term exposure (alternative estimates) and hospital/ER admissions estimates (both estimates) may be overstated. The alternatives also use different approaches to value health effects damages. The key assumptions, uncertainties, and valuation methodologies underlying the approaches used to produce these results are detailed in the Technical Addendum noted above.

4 To permit comparisons among various analyses, the air quality data used in this analysis was fixed as the most complete and recently available as of mid-2001 (1997-1999 ozone monitoring data and 1999-2000 PM2.5 data). More complete and more recent air quality data for ozone and fine particles (1999-2001 data) indicates some differences in the likely attainment status of some counties. Future analyses of Clear Skies will incorporate the most recent data available.
Changes in Emissions Under Clear Skies: Clear Skies is projected to result in significant NOx emission reductions from power generators by 2020:

- In Oklahoma, Clear Skies is projected to reduce NOx emissions by 63% from power generators and increase SO2 emissions by 37%, and mercury emissions by 17%.

Nationwide Emissions under Clear Skies in 2020

- SO2 emissions from power generators are projected to be 3.9 million tons (a 65% reduction from 2000 levels).
- NOx emissions are projected to be 1.7 million tons (a 67% reduction from 2000 levels).
- Mercury emissions are projected to be 18 tons (a 63% reduction from 2000 levels).
- At full implementation, the emission reductions would be 73% for SO2, 67% for NOx, and 69% for mercury.

Figures 1a, 1b and 1c. Existing Clean Air Act Regulations (base case5) vs. Clear Skies in Oklahoma in 2010 and 2020

Figure 1a. SO2

Figure 1b. NOx

Figure 1c. Mercury

- Emissions rates in Oklahoma in 2010 and 2020:

<table>
<thead>
<tr>
<th></th>
<th>SO2 lbs/MMBtu</th>
<th>NOx lbs/MMBtu</th>
<th>Hg lbs/TBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Base Case</td>
<td>Clear Skies</td>
<td>Base Case</td>
</tr>
<tr>
<td>2010</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>2020</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.11</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Costs: Nationwide, the projected annual costs of Clear Skies (in $1999) are $3.69 billion in 2010 and $6.49 billion in 2020.6

5 The base case includes Title IV, the NOx SIP call and State-specific caps in CT, MO and TX. It does not include mercury MACT in 2008 or any other potential future regulations to implement the current Clean Air Act.

6 EPA uses the Integrated Planning Model (IPM) to project the economic impact of Clear Skies on the power generation sector. IPM disaggregates the power generation sector into specific regions based on properties of the electric transmission system, power market fundamentals, and regional environmental regulations. These regions do not conform to State or EPA region boundaries making some compliance options, such as dispatch, and associated costs impractical to differentiate at a State or Regional level.
Changes in Projected Retail Electricity Prices Under Clear Skies: Electricity prices in Oklahoma would not be significantly affected by Clear Skies.

- In 1999, the average retail electricity price in Oklahoma was approximately 5.37 cents/kWh, which was slightly below the average national retail price of approximately 6.66 cents/kWh. As shown in Figure 3, retail prices in SPP (the North American Electric Reliability Council (NERC) region that contains Oklahoma) are projected to decrease and remain below the national average between 2005 and 2020.

Figure 2. Projected Retail Electricity Prices in SPP under Clear Skies (2005-2020)

Generation in Oklahoma Under Clear Skies: Coal-fired power plants currently produce 62% of the electricity generated in Oklahoma. Although coal-fired generation would continue to increase in the future under Clear Skies, the portion of total generation from coal-fired plants would decrease. In Oklahoma, coal-fired generation would decrease to approximately 54% of all generation by 2010 and 47% of all generation by 2020.

Figure 3. Current and Projected Generation by Fuel Type in Oklahoma under Clear Skies (GWh)

8 State-level retail electricity prices vary considerably across the United States. Variation in prices can be caused by many factors including access to low cost fuels for generating power, State taxes, and the mix of power plants in the States.
9 Source: 1999 data from EIA at http://www.eia.doe.gov/cneaf/electricity/st_profiles/oklahoma/ok.html#5 (Table 5).
• EPA does not project that any facilities in Oklahoma would switch from coal to natural gas in response to the Clear Skies emissions caps. Instead, sources in Oklahoma would reduce their emissions through the installation of control technologies.
 - By 2010, coal-fired capacity in Oklahoma is projected to be approximately 5,200 MW under Clear Skies. Approximately 4,400 MW of Oklahoma’s coal capacity is projected to install Selective Catalytic Reduction (SCR).
 - Between 2010 and 2020, no additional control technology installations are projected.
• 85% of Oklahoma’s coal-fired generation is projected to come from coal units with emission control equipment in 2010, and 87% in 2020.

Coal Production in Oklahoma: Oklahoma currently produces approximately 0.2% of the nation's coal supply, and has about 0.3% of the nation's coal reserves.

• EPA projects a *nationwide* 7.2% increase in coal production by 2020, relative to 2000. Preliminary analysis shows a 48% increase in total coal production in the Interior of the US between 2000 (145 million tons) and 2020 (214 million tons). (The Interior includes the Midwest, Central West and the Gulf.)

Based on preliminary analysis, EPA projects a slight increase in jobs by 2020 in the Interior relative to the base case.

Major Generation Companies in Oklahoma: The ten largest plants in the State -- each over 400 MW -- are a combination of coal-, gas- and petroleum-fired units. The major generation companies include: Oklahoma Gas & Electric Co., Public Service Co. of Oklahoma, Grand River Dam Authority, Oklahoma Electric Coop, Inc., and Edmond Electric Department.

10 Emissions control equipment includes, where applicable, scrubbers, selective catalytic reduction, selective non-catalytic reduction, gas-reburn and activated carbon injection.
11 Source: 2000 Coal Industry Annual, Tables 1 and 33