

Some Thoughts Regarding Ecosystem Monitoring Programs

How should we design the programs? What can we learn from the results?

Dale K. Phenicie Council of Great Lakes Industries December 2, 2009

Why are we monitoring?

The evolutional hierarchy of monitoring

- To characterize water quality
- To identify sources of contamination
- To track water quality trends

• To characterize the state of the ecosystem

To Characterize Water Quality

Physical attributes

- Temperature
- Turbidity
- Color
- Dissolved oxygen

Chemical attributes

- COD (dissolved organic constituents)
- BOD (bio-available organic constituents)
- Nutrients (constituents that enable microbiological activity)
- Toxic substances (constituents that can impact biological function in plants, animals, and humans)
 - Heavy metals
 - Organic substances

To Identify Sources of Contamination

- Property or substance specific monitoring
- Spatial considerations are important
 - Must select multiple sample points chosen specifically to locate the source
- Temporal considerations are important
 - Multiple sampling events must be chosen over a specific time period that encompasses both specific process events and unrelated variability

To Track Water Quality Trends

- Observations regarding a single property or substance
 - Spatial elements (careful selection of sample point, and ability to return to that same point – or set of points – is important)
 - Temporal elements (repeatable timing and timing with respect to variable factors is important)
- Observations regarding multiple properties or substances
 - Adds the additional need to design sampling points and timeframes around the analytical needs associated with multiple properties and/or substances and the need to accommodate temporal variables associated with each of the individual properties/substances

US EPA ARCHIVE DOCUMENT

To Track Water Quality Trends

- Parameters/analytes
 - Define the trend for that parameter/analyate only
 - Multiply parameters/analyates may be needed for trend analysis
- Data analysis techniques employed are critical
 - An understanding of the kinetics responsible for the trend is essential for trend characterization

Characterize State of the Ecosystem

- Ecosystem outcomes are often/always the result of multiple factors
 - An integrated monitoring program must be designed to discern ecosystem status, trends, and causal factors.
 - This approach leads to looking beyond contaminant monitoring and exploring the nature of the watershed and activities in it.

Additional Parameters Needed for Ecosystem Monitoring Protocols

- Nutrient dynamics
- Community structure
- Habitat conditions
- Invasive species
- Food web structure

Interpreting Ecosystem Monitoring Results

- Understanding of specifics regarding presence and sources of contaminants
- Mapping the state of ecosystem communities
 - Species present
 - Impacts from invasives
 - Habitat related impacts
- Establishing causal relationships
 - Evaluation of land use activities
 - Defining role of each of the stressors within a given watershed

Directing our Monitoring Resources

- Screening models provide guidance for detailed substance assessments
- Contaminant monitoring programs highlight research and potential management agenda needs
- Holistic collaborative science driven review efforts reveal crosscutting and overarching Basin-wide needs
 - Example: IJC Chemicals of Emerging Concern working group recommendation:
 - Effects-based monitoring in the context of multiple stressors should be developed and implemented to supplement the current chemical monitoring regimes.