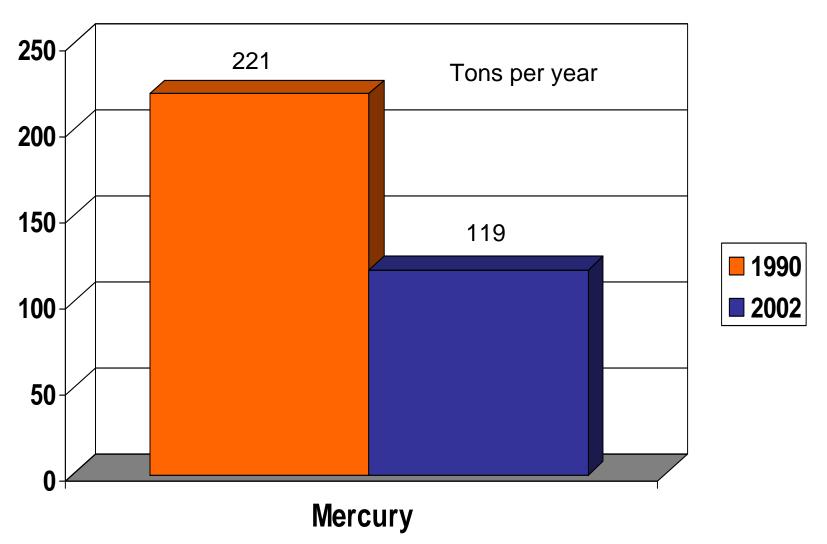
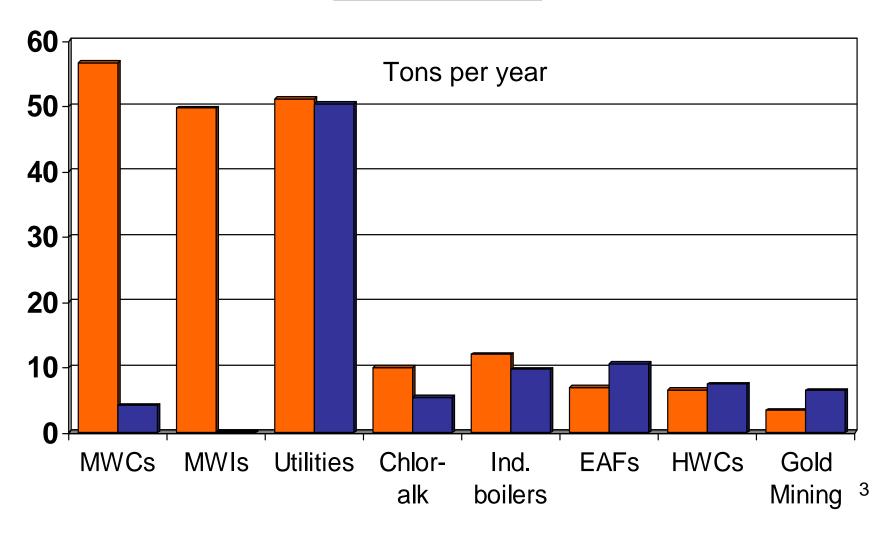
US ERA ARCHIVE DOCUMENT



Reducing Mercury Emissions in the U.S.A.
Status of U.S. EPA Regulations and Other Actions


By Chuck French, U.S. EPA GLBTS Mercury Meeting Chicago 12 December 2007

Total Estimated Anthropogenic Emissions of Mercury in U.S.A. for 1990 & 2002

Mercury Emissions Estimates in U.S.A. for 8 Source Categories for years 1990 and 2002

■ 1990 ■ 2002

Mercury Emissions in U.S.A.

- Mercury Emissions reduced about 47% between 1990 to 2002, largely due to huge reductions from waste incineration.
- Further reductions will be achieved between 2002 to 2020 from at least 5 categories
 - ➤ Coal-fired Power Plants
 - Secondary Steel Production (EAFs)
 - > Chlor-alkali Production
 - Gold Mining
 - Waste Incineration (including municipal, medical, and hazardous waste combustors)

Two Rules promulgated in March 2005 to reduce emissions from Coal-fired Power Plants

- Clean Air Interstate Rule (CAIR)
 - Creates a two-phase program with declining emission caps
 - for NOx in 2009 and 2015, and
 - for SO₂ in 2010 and 2015
 - based on application of cost effective controls to large Power Plants.
 - mercury emissions will also be reduced as a co-benefit
- Clean Air Mercury Rule (CAMR)

Clean Air Mercury Rule (CAMR)

- CAMR establishes a mechanism by which mercury emissions from coal-fired power plants are capped at specified, declining nationwide levels in two phases.
 - ➤ Phase I (2010): Cap is 38 tons (which is a reduction of about 10 tons from the 1999 levels);
 - >most mercury reductions resulting from "cobenefit" of controls installed to meet CAIR.
 - ➤ Phase II (2018): Cap is 15 tons; additional mercuryspecific control technologies will likely be necessary...
 - > Total emissions reduction:
 - from about 48 tons mercury (in 1999) to about 15 tons (in 2020), nearly a 70% reduction.

CAMR Reconsideration

- In 2005, EPA received 2 petitions for reconsideration.
 - one from 14 States; and the other from 5 environmental groups.
- EPA agreed to reconsider certain aspects, including:
 - legal issues underlying the decision; and
 - the methodology to assess the amount of utilityattributable mercury levels in fish and the public health implications.
- In May 2006, after carefully considering the petitions, EPA made some adjustments to the rule, but generally reaffirmed the rules as promulgated.

CAMR Litigation Status

- Also in 2005, 11 States and several environmental groups filed suit against EPA challenging CAMR and the determination under Section 112 of the Clean Air Act.
 - Oral arguments occurred on December6, 2007.
 - -Waiting for a decision from the court.

Secondary Steel Production: Electric Arc Furnaces (EAFs)

- Facilities produce steel using scrap metal (e.g., old/damaged cars, trucks, appliances, etc.....) using EAFs
- This category emits about 10 tons per year mercury in the U.S. (based on 1999 and 2002 inventories)
- Mercury emissions are largely due to presence of mercury-containing switches in scrap vehicles built before 2003
 - Convenience lighting in hoods, trunks
 - Some anti-locking brake systems

2006 National Vehicle Mercury Switch Recovery Program (NVMSRP)

- Result of collaboration between U.S. EPA, States, environmental organizations and industry.
- Designed to remove mercury-containing switches from scrap vehicles before they are recycled in steel mills.
- Estimate about 67 million switches are available for recovery.
- This Program, along with a few state mercury switch programs, are expected to reduce mercury emissions by about 75 tons over the next 15 years.
 - Average of about 5 tons reductions per year

National Emissions Standard for Hazardous Air Pollutants (including mercury) for EAFs

- In addition to the switch program, U.S. EPA is developing a regulation under Section 112 of the Clean Air Act that will limit mercury emissions from EAFs.
- Proposed rule on Sept. 20, 2007.
 - Standard for mercury based on Maximum Achievable Control Technology (MACT)
 - Standard for other HAPs based on Generally Available control Technologies (GACT)
- Final rule to be promulgated by December 15, 2007.

Summary of Proposed MACT rule for Mercury for EAFs

- Focused on work practice requirements for facilities to address mercury emissions, with 3 options:
 - -Participate in the NVMSRP, or
 - Develop their own equivalent approach, or
 - Certify facility does not use auto scrap with mercury switches.

Summary of Comments on proposed EAF rule for mercury

- Some stakeholders commented that:
 - Rule should include additional monitoring and recordkeeping to assure accountability and enforceability.
 - Rule should establish a mercury emission limit, and/or require add-on emission controls and monitoring.
 - Rule should address other sources of mercury in scrap.
- Other stakeholders supported the approach as outlined in the proposed rule.

Chlor-alkali Production – Mercury Reductions

- The Chlor-alkali industry has made significant progress reducing mercury use and emissions
 - Mercury use was reduced about 94% between 1995 to 2005 in the U.S. (from about 160 tons in 1995 to 10 tons in 2005);
 - In 2000 there were 12 plants operating in the U.S.
 By 2009 there will be only 4 plants.
 - Emissions decreased from an estimated 10 tons in 1990 to about 5 tons in 2002, and are expected to decrease further to roughly about 2 to 3 tons by 2009 (~~75% reduction).

Chlor-alkali Production Emissions Regulation

- National Emissions Standard promulgated in 2003, with compliance deadline in 2006.
 - Based on MACT
 - Prohibits building new plants with Hg process
 - For existing plants, rule includes mercury emissions limits for the process vents (stacks).
 - For cell rooms, no emission limit is specified;
 however, stringent work place standards are required to minimize emissions; or
 - As an alternative, plants implement a cell room continuous mercury measurement and monitoring program.

Reconsideration of the Chlor-alkali Emissions Rule

- In February 2004, NRDC filed:
 - a petition for review of rule to U.S. Court of Appeals, and;
 - a petition for Administrative reconsideration of the rule, which EPA granted.
- EPA began an extensive emissions testing project at 2 facilities (in Tennessee and Delaware) to gain a better understanding of emissions, especially fugitive emissions.
 - Testing is completed and reports are in the EPA Docket.
- Currently, EPA is reconsidering the rule in light of comments by the petitioners, the emissions testing results, and progress by industry to refine their mercury inventory.
- EPA plans to propose a decision on the "reconsideration" in May 2008, and promulgate a final decision in May 2009.

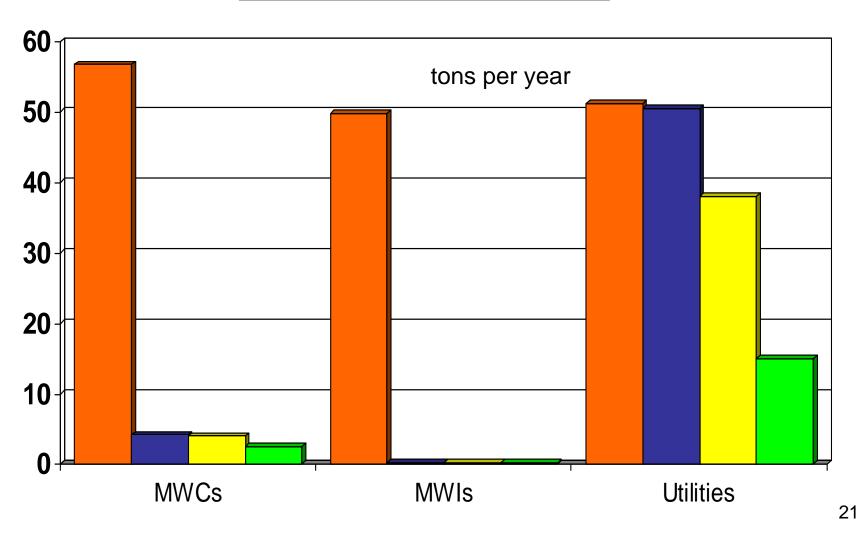
Industrial Gold Mining and Production

- Mercury emissions estimated to be about 8 to 11 tons in 1999
- About 95% of the emissions were coming from 5 mines in Nevada, and a successful Voluntary Mercury Reduction Program (VMRP) was established between the Industry, State of Nevada, and U.S. EPA to reduce these emissions
- Emissions reduced to an estimated 6.5 tons by 2002, and about 2.5 tons by 2005 (about 75% reduction from 1999).
- In 2006, State of Nevada established the mandatory Nevada Mercury Regulatory Program
 - To further reduce mercury emissions...

Mercury Reductions through the VMRP

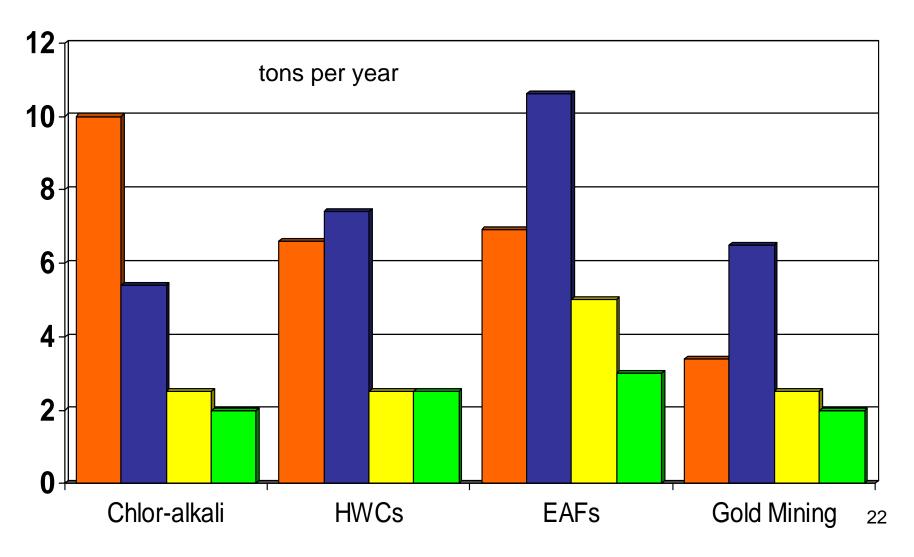
- These facilities apply various effective control technologies and pollution prevention measures to limit mercury emissions, including:
 - gas condensers
 - carbon adsorption units
 - wet scrubbers
 - fabric filters
 - mercurous chloride scrubbers
 - wet venturi scrubbers
 - chemical additives to improve mercury capture.

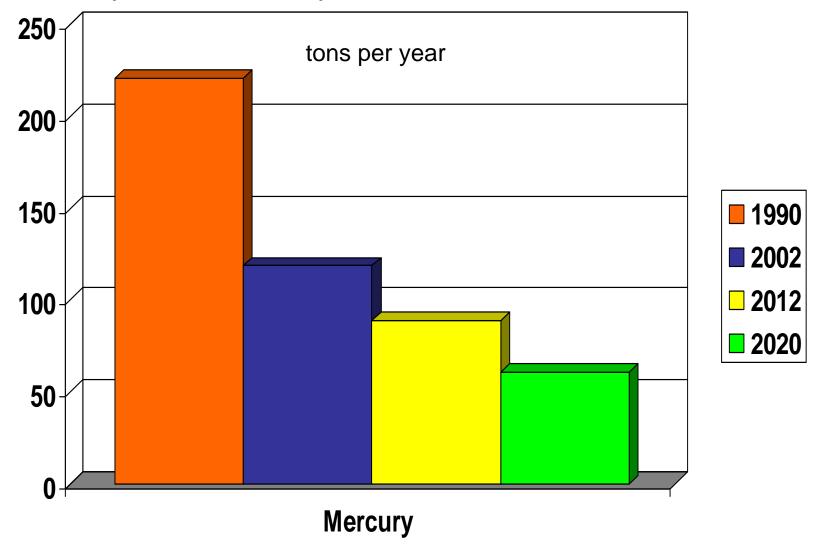
Nevada Mercury Regulatory Program


- In May 2006, Nevada established the Mercury Air Emissions Regulatory Program to further reduce emissions
- The mandatory program includes:
 - enhanced monitoring, testing, recordkeeping and reporting requirements;
 - expanded coverage to all primary gold and silver production operations in Nevada; and
 - additional controls.

Hazardous Waste Combustors

- EPA promulgated emissions regulations for hazardous waste combustion in October 2005, with compliance due in 2008.
- Following promulgation of the final rule, 5 entities filed petitions for judicial review of the rule.
 - Litigation is currently pending
- On September 27, 2007, EPA published a Notice in the Federal Register seeking public comment on several aspects of the 2005 rule.
 - After considering public comments, EPA plans to issue a final Notice by February 29, 2008.


Mercury Emissions Estimates and Projections in U.S.A. for 3 Categories for years 1990, 2002, 2012, and 2020



Mercury Emissions Estimates and Projections in U.S.A. for 4 Categories for years 1990, 2002, 2012, and 2020

Total Estimated and Projected Anthropogenic Emissions of Mercury in U.S.A. for years 1990, 2002, 2012 and 2020

Project about 72% reduction in mercury emissions between 1990 to 2020.

Glossary:

- MWIs = Medical Waste Incinerators
- MWCs = Municipal Waste Combustors
- HWCs = Hazardous waste Combustors
- Utilities = Coal-fired Electric Utility Power Plants
- I. Boilers = Industrial/Commercial/Institutional Boilers & Process Heaters
- Chlor-alkali = Mercury-Cell Chlor-Alkali Production

References:

- U.S. EPA Mercury Website: http://www.epa.gov/mercury
- U.S. EPA, 2006. EPA's Roadmap for Mercury. July 2006. Available at: http://www.epa.gov/mercury/roadmap.htm
- U.S. EPA, 2006. National Emissions Inventory (NEI) for 2002. Version 3.
 Available at: http://www.epa.gov/ttn/chief/net/2002inventory.html
- U.S. EPA, 2003. NESHAP for Mercury Cell Chlor-Alkali Plants; Final Rule.
 Dec. 2003. Available at: http://www.epa.gov/ttn/atw/mactfnlalph.html, and docket: EPA-HQ-OAR-2002-0017.
- Nevada, 2006. Nevada Mercury Air Emissions Control Program.
 Available at: http://ndep.nv.gov/mercury/index.htm
- U.S. EPA, 2005. CAMR. Available at: http://www.epa.gov/mercury
- U.S. EPA, 2006. NVMSRP. Available at: http://www.epa.gov/mercury
- Miller and Jones, 2005. Mercury and Modern Gold Mining in Nevada.