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5.0 SuperMUSE Parallel Computing Hardware 
 

 
Evaluating uncertainty and sensitivity can be a difficult task, even for low-order, single-

medium environmental models driven by a unique set of site-specific data.  Quantitative 
assessment of integrated, multimedia models that simulate hundreds of sites spanning multiple 
geographical and ecological regions will ultimately require a comparative approach using several 
model evaluation techniques, coupled with sufficient computational power.  Efforts to address 
computational needs for 3MRA model evaluation are outlined here. 

 
Discussed in Section 2.5.3, in addition to total uncertainty imparted through model inputs 

and model error, sampling-based probabilistic analyses are also subject to random sampling error 
introduced in the output distribution(s) sought (i.e., OSE).  This is an aspect of computational 
constraint in propagating total uncertainty through the model.  If the model is large or complex, 
and overall runtimes needed to accurately describe the output distribution(s) are extensive, then 
output sampling error, itself not a function of lack of knowledge or data, can become a 
significant element of uncertainty in the final analysis.  The longer an individual deterministic 
run time is, the greater the influence that output sampling error would have in a probabilistic 
analysis for a given computational capacity.  This constraint affects all sampling-based designs, 
including both those investigating uncertainty or sensitivity of a modeling system.  As a general 
rule, the more thorough an uncertainty or sensitivity analysis is, the more individual model runs 
that are needed to establish it, and the greater the computational capacity required. 

 
Presented in Sections 3.3.1 and 4.5, the 3MRA modeling system includes a set of 17 

science modules that collectively simulate release, fate and transport, exposure, and risk 
associated with hazardous waste constituents disposed-of in land-based waste management units 
(WMU).  The 3MRA model currently encompasses 966 input variables, over 185 of which are 
explicitly stochastic.  A characteristic of both uncertainty analysis (UA) and sensitivity analysis 
(SA) for very high order models (VHOMs), like 3MRA, is their need for significant 
computational capacity to perform many relatively redundant simulations.  While UA/SA is 
emerging as a critical area for environmental model evaluation, investigating uncertainty and 
sensitivity in personal computer (PC) based, Windows-based models has been historically 
limited by a lack of computing capacity.  Equally, higher-order UA/SA algorithms (e.g., 
variance-based global techniques such as FAST or Sobol’s Method) warrant study to determine 
their efficacy in establishing requisite confidence in the use of VHOMs for regulatory decision-
making.    

 
Representing a robust solution to the computational dilemma imposed by sampling-based 

UA/SA for many Windows models, design of SuperMUSE, a 225 GHz PC-based, Windows-
based Supercomputer for Model Uncertainty and Sensitivity Evaluation, is presented.   
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The discussion in this section focuses primarily on the hardware elements of the 
SuperMUSE design approach.  Supporting software for facilitating use of SuperMUSE in model 
evaluation strategies (Babendreier and Castleton, 2002) along with key enhancements needed for 
3MRA model evaluation embodied in a pending release of 3MRA Version 1.x (Figure 1-1) are 
further described in Section 6.  
 
 
5.1 3MRA Model Evaluation Computational Needs 
 
 As part of an extensive model evaluation process, uncertainty and sensitivity analyses 
(UA/SA) are being undertaken by OSW and ORD to evaluate the 3MRA modeling system.  
These efforts will rely upon the use of tens of millions of 3MRA simulations to test effects of 
small and large changes in model inputs, and will require a computational capacity not 
practically achieved through use of one, or even several, desktop PCs.  For example, the UA/SA 
simulation set for a national assessment involving 43 chemicals, 419 site-WMU combinations, 5 
waste stream concentrations (Cw's), and 1000 iterations each, represents over 90,000,000 

individual model runs.  This analysis assumes that the 966 input variables will express sufficient 
variation and interaction within 1000 iterations to confidently describe the uncertainty and 
sensitivity of 3MRA model outputs.  Assuming an average model run time of 2 minutes, the 
effort of simulating 90x106 individual 3MRA model runs on a single, modern PC would take 
over 300 years.  Module-level and system-level verification activities can impose equally large 
requirements for stressing the modeling system over the allowable ranges of inputs needed to 
initially verify modeling system behavior (e.g., identification of unexpected model errors at 
runtime, etc.). 
 
 Of course, not all 966 inputs of 3MRA are subject to uncertainty and sensitivity 
manipulations (Table 2-3).  Nonetheless, the UA/SA computational effort is significant for 
3MRA.  While more directed investigations of uncertainty analysis (e.g., a single site, 1 
chemical, etc.) become more feasible in stand-alone execution mode (i.e., using a single PC), a 
full model evaluation effort was recognized as not being readily distinguished as feasible from 
the outset.  For this reason, ORD undertook a concerted effort to deliver supercomputing 
capacity to Windows-based model evaluation problems, such as that needed for the 3MRA 
Version 1.0 modeling system. 
 
5.1.1 Massively Parallel Vs. Embarrassingly Parallel Modeling Problems 
 
 A fundamental characteristic of UA/SA, particularly for large or complex models, is their 
need for high levels of computational capacity to perform many relatively redundant computer 
simulations, where only model inputs change (only relatively slightly) during each simulation.  
Computational needs for UA/SA represent a fundamental departure from what is commonly 
referred to as "massively" parallel computing (Brightwell et al., 2000).   
 

Massively parallel computing divides a single simulation into several pieces for 
distributed execution across 2 or more clients (or nodes or PCs or CPUs).  This form of model 
parallelization can be described as having the characteristic of inter-nodal communication 
dependency, and presents significant challenges to computational organization for both hardware 
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and software components.  Massively parallel computational schemes are a practical tool, for 
example, in dealing with single scenario, single CPU runtimes on the order of days to decades.  
An example of this type of problem would be a regional watershed study conducted at a detailed 
spatial resolution.  One major hurdle that massively parallel problems face is the issue of solution 
scalability.  Massively parallel solutions can become inefficient, for example, when the grain-
size associated with model deconstruction results in more grains (or submodels per unit 
computational cycle) than available CPUs.  For example, significant inefficiencies are 
experienced if 28 CPUs are available, but the solution involves 29 parallel operations, each with 
similar runtimes. 

 
In comparison, the computational problem presented by UA/SA may be practically 

viewed as retaining a simpler characteristic of inter-nodal communication independency.  In 
juxtaposition, one might refer to the UA/SA problem as "embarrassingly" parallel, since, at first 
glance, it offers relatively insignificant challenges from the perspective of computer science, 
which is more squarely focused today on a dominant paradigm of massively parallel computing 
for highly complex, single-simulation problems.  There is typically not much point, for instance, 
in deconstructing a model for massively parallel operations when the number of full model runs 
needed is greater than the number of CPUs available.  An exception may be when only certain 
machines can be used to perform specific subtasks (e.g., remote servers with proprietary models 
or data, etc.).  

 
The term "embarrassing", as introduced here, is meant to draw attention to the distinction 

that the task of running a model over and over again for purposes of UA/SA is both abject in its 
relative redundancy, yet simple in its solution.  With only a single PC to leverage, there is utter 
hopelessness in the task for a complex problem statement such as a national site-based risk 
assessment, yet it remains a task of paramount importance to be completed. 

 
Unlike massively parallel problems, the issue of scalability is not necessarily an inherent 

problem in UA/SA sampling-based designs using several CPUs, where the number of model runs 
needed exceeds the number of CPUs available by some integral factor (e.g., 1000 model runs 
needed where 10 CPUs are available).  Here, a single model run serves as an efficient grain-size. 
 
5.1.2 Historic Responses to Embarrassingly Parallel Modeling Problems 
 
 When such an embarrassing problem is presented to most UA/SA researchers, the initial 
inclination is to accept the computational limitation of random sampling designs, and rely instead 
on approximations of the system (e.g., further simplified model constructions, LHS, etc.).  The 
overall approach represented is to reduce individual model runtimes, as well as the overall 
number of model runs needed, or both.  These approaches can be practical or more efficient in 
some cases, and should indeed be undertaken if feasible.  It becomes increasingly difficult 
though to justify such an approach at the outset as a matter of course for solving large or 
complex modeling problems, which may retain characteristics of non-linearity or non-
monotonicity, or in which model simplification significantly increases model error. 
 

Another common response to the embarrassingly parallel problem of UA/SA is to turn 
the problem over to proprietary knowledge bases with expertise in supercomputing, for example 
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national computing centers with either PC-based or mainframe supercomputing infrastructures  
(the term “mainframe” is used loosely here with respect to current terminology in computing 
sciences).  Such an approach currently relies almost exclusively on operating system paradigms 
based in Linux or Unix, respectively.  Solution in this vein for a Windows-based model requires 
either complete conversion of the model software to Unix/Linux, or development and 
maintenance of two versions of the modeling system (e.g., a Windows-based version and a 
Linux-based version).  For complex Windows-based models, or even simple models with many 
runs needed, this solution approach can be fraught with problems including: 

 
• Initial cost of software system conversion to Linux or Unix,  
 
• Assurances that the two software versions represent the same model,  
 
• Cost of dual-track software development over time,  
 
• Reduced ability to independently verify quality assurance,  
 
• Delays involved in arranging for national computing center assistance, and  
 
• Significant distancing of model developers and users from the process of model 

evaluation. 
 

Reliance on “supercomputing center” assistance may involve significant annual 
competition with other large modeling systems for runtime (e.g., competition with massively 
parallel problems), months to years of planning simulation experiments, and continual budgetary 
constraints.  Should a significant logical error be detected during runtime once the model reaches 
the actual execution stage in this process, the process may also have to be restarted.  This 
approach and process severely limits the modeler in quickly adapting to knowledge gained 
during early experiments.  While clearly there will always be a complementary role for non-
Windows-based supercomputing centers (e.g., massively parallel problems, Unix/Linux models, 
massive data piping, etc.), the current onus of their use for Windows-based modeling problems 
can serve as a deterrent to conducting thorough model evaluation.   

 
To reduce the distance of model developers and users from the tasks of UA/SA remains a 

desirable goal in supporting realistic expectations that model developers and users will 
thoroughly, and enthusiastically, evaluate models.  The Office of Research and Development is 
continuing to evaluate the benefits of creating innovative hardware and software modeling 
system solutions that can more efficiently tie researchers, model developers, assessors, and 
decision-makers directly together in a seamless environment.  Such efforts support the Agency’s 
long-standing goal of infusing quality assurance in all aspects of model development and their 
use in regulatory contexts. 
 
5.1.3 PC-Based Parallel Computing Clusters 
 
 While UA/SA is emerging as a critical area for environmental model evaluation, 
resources to conduct “embarrassingly parallel” computations for Windows-based models have 
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been limited by an associated lack of supercomputing capacity.   In addition to the general 
inaccessibility to technologies that deliver UA/SA capability (e.g., integrated random sampling 
design in software, advanced SA algorithms, etc.), PC computing capacity has been a driving 
factor in the typical avoidance by Windows modelers to perform extensive model evaluation.   
 

Increasingly common, particularly for Linux-based systems and massively parallel 
problems, distributed PC-based supercomputing has expanded rapidly in recent years (e.g., 
Linux-based Beowulf clusters).  Less common though are PC-clusters that support Windows-
based models for massively parallel problems or “embarrassingly parallel” problems like UA/SA 
for 3MRA.  Dual-boot systems that facilitate both Linux-based and Windows-based parallel 
computing are even less common.  Also uncommon are associated hardware systems offering 
dedicated KVM (keyboard, video, mouse) control, which can provide more efficient capabilities 
in managing many nodes (i.e., PC clients) with relatively unstable operating systems such as 
Windows.  Stability in Windows environs is less and less a problem since the arrival of Windows 
2000 and Windows XP, in large part due to better memory management that has reduced 
memory fragmentation problems in long-running programs.   
 

While it is possible to emulate Windows-based models within Linux OS, three features of 
this solution approach are: 

 
• There is still the same basic need to solve the embarrassing problem of UA/SA,  
 
• It is not the same modeling environment the user or decision-maker wants to run, 

or that most stakeholders would be able to run, and  
 

• Extensive compositional validation would still have to be undertaken to ensure 
precision and accuracy between OS solutions.   

 
The above statements focus on the primary dilemma of familiarity with OS.  The idea 

that it’s a Windows-based problem is, on most levels, immaterial.  The problem derives simply 
from the fact that most people wanting to use regulatory models today only have familiarity with 
Windows operating systems.  Evidence of this is found in the overwhelming trend within the 
Agency to develop Windows-based models for its client base (e.g., Program and Regional 
Offices, stakeholders, etc.), and the ubiquitous use of Windows OS in most office environments.  
If most model developers and users were using Linux, the argument would merely shift to the 
OS of the day, and the “embarrassingly parallel” problem would still need to be solved.  In the 
latter case with Linux, a richer set of software tools and hardware configurations are more 
readily available.  The latter aspect, however, has not brought about a rush by the masses of 
model developers and users to convert to Linux OS, and deploy their models on associated 
Beowulf clusters in order to perform UA/SA. 

 
 
5.2 ORD’s Supercomputer for Model Uncertainty and Sensitivity Evaluation 
 
 To facilitate UA/SA model evaluation tasks for EPA's PC-based modeling systems, 
which use Windows operating systems extensively, ORD recently developed a 225-GHz 
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Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE).  This approach 
was matched with companion efforts to develop a supporting software infrastructure to conduct 
“embarrassingly parallel” computations.  Designed and constructed at NERL’s Ecosystems 
Research Division (ERD) in Athens, Georgia, the current system is shown in Figure 5-1.   
 

The SuperMUSE development approach has sought to support, in theory, the capability 
for dual-boot operation, supporting either Windows-based or Linux-based modeling systems.  
The initial effort focused on Windows-based operations for 3MRA.  SuperMUSE supporting 
management software has been strategically designed in Java, a platform independent 
programming language (i.e., independent of PC operating system choice), to deliver a Linux-
based capability simultaneously. 
 
5.2.1 SuperMUSE Initial Design, Cost, and Effort 
 
 Major components of the existing SuperMUSE (Figure 5-2) include a front-end program 
server, a back-end data server, and 176 client PCs, each with a minimum of 256 MB RAM.  A 
variety of Windows operating systems are supported (i.e., Windows 95, 98, NT 4.0, 2000, etc.).  
Interconnections were achieved through use of 16-port Raritan KVM switches, and 24-port 
Linksys (10/100) network switches, the latter branching-up to a master CISCO 3550-24/2 
enterprise network switch.  The system network communication protocol is based on TCP/IP.  
The system design currently provides for gigE channel (1000 megabits/sec) data flow to and 
from servers, and allows for single-user KVM remote access.  A picture of the actual network 
and KVM switches in use is shown in Figure 5-3.  Example cabling layout is shown in Figure 5-
4, where the blue category 5 (i.e., Cat5, Cat5e) cabling is used for network switching, and the 
larger white cabling for KVM connections. 
 
 Various combinations in the cluster design are easily achieved, and depend on the 
financial resources available (e.g., client speeds, server storage capacities, etc.).  Representing a 
capacity to support 192 clients, the initial SuperMUSE switch layout (with 121 actual client PCs) 
was acquired for $125,000 in 2001.  This cost excludes servers and 16 older 333 to 450 MHz 
processors initially used to seed the project.  Optimal purchasing based on $/GHz for client PCs 
will typically identify 3 to 6 month-old CPU technology.  Current processors in SuperMUSE 
range from 333MHz to 2.3GHz.  Typical PC costs to fill-out the remaining capacity of the switch 
system are on the order of $900 per PC.  One of the great potentials of the SuperMUSE scheme 
is the exploitation of older PCs no longer in use, or in the eventual use of grid-based computing 
configurations to leverage dormant PC-based computational cycles within an organization, or 
across organizations (e.g., SETI at Home). 
 

Electrical Service and Heat Dissipation 
 
 Pre-design considerations include available space, and room heating and cooling 
requirements versus capacities.  Plated wire shelving is best for ease of cabling and heat 
dissipation.  The 192-PC shelf-system shown in Figure 5-1a is currently supplied by a 100 amp 
three-phase electrical service.  An important aspect in specifications for new PCs was the 
acquisition of “small-form” factor designs, which use 100 watt (W) power supplies for Pentium-
3 chips and 160W supplies for Pentium-4 chips.  This is compared to standard, larger form 
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factors, such as typical workstation units found at your desk that normally use 200W and 330W 
power supplies, respectively.  Heat dissipation issues are typically equivalent between small-
form and large-form factor designs, owing to the fact that the CPUs are the primary source of 
heat output in a single PC. 

 
The cost of initial SuperMUSE hardware and software development was relatively small 

compared to costs that would be incurred in 3MRA software conversion to Linux/Unix alone. A 
key cost-saving multiplier of this approach is that the initial costs of SuperMUSE hardware and 
supporting software development can also be leveraged for use in evaluating other Windows-
based (or Linux-based) models, without additional individual model or modeling system OS 
conversion costs.   

 
The fundamental philosophy in the SuperMUSE design approach was fitting 

supercomputing needs with existing trends in model development, as opposed to fitting models 
to existing trends in supercomputer development. 
 

KVM (Keyboard, Video, Mouse) Switches 
 
KVM switches allow the user to view the desktops of individual PCs in the system from a 

single terminal (or several remote terminals), which is a boon in assessing runtime environment 
failures and performing various quality assurance checks during runtime.  While it is possible to 
view individual PC desktops through server software and network adapter cards in the PCs (i.e., 
through NICs and without KVM switches), any failure in the communication system between 
PCs necessitates physical removal of the PC to a bench for further evaluation (i.e., the “crash 
cart” approach).   

 
For example, if certain failures occur (e.g., hard-disk problems, NIC failure/conflicts, 

model lock-up, etc.), one can only immediately determine that an errant PC failed to boot or 
crashed after boot, or has otherwise failed to return, but not the reason for failure.  Such failures 
are usually easily diagnosed with system messaging sent to the PC’s desktop screen, accessed 
through KVM switches.  Less expensive solutions, forgoing KVM switches, are manageable, 
slightly less expensive overall, and far easier to wire-up, requiring only Cat5 cabling between 
NICS and network switches.  A non-KVM switch approach is increasingly more feasible as 
operating systems become increasingly more stable.  The capital investment for KVM switches 
can range from $20 to $120 per PC client, where this must be balanced against long-term labor 
and project delay costs incurred in forgoing this approach. 

 
For Windows environs, simple “software KVM” approaches may require use of 

Windows “server” licensing schemes, which the SuperMUSE design approach purposefully 
avoided.  A notable feature is that one does not need to purchase Windows Server software or 
client “CALs” to implement the SuperMUSE scheme if the model itself under evaluation does 
not require this licensing.  Such licensing would, for example, be needed to create multiple client 
connections or mappings to a centralized Access database server for certain model applications.  
One advantage in accepting the cost of Windows Server licensing is the increased capability to 
manage system security, which becomes more important with multiple users in the system.    
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SuperMUSE-type designs should be cognizant that not all KVM switching systems 
perform equally.  In larger systems, many problems can be avoided if the switch design provides 
for unique emulation circuitry per KVM channel (i.e., a unique emulation circuit is designated 
for each PC in the system).  Each KVM switch in SuperMUSE offers 16 separate emulation 
circuits (i.e., 1 PC hookup per channel). 

 
5.2.2 Runtime Management Issues 

 
Only servers and the master CISCO network switch currently use uninterrupted power 

supplies (UPS).  The integral software design employed for managing SuperMUSE is capable of 
handling system level power failures with minimal loss of information for the given 
experiment(s) underway.  Such power failures are relatively infrequent, but can invalidate long 
running experiments, should they occur.  In SuperMUSE, a system-level power failure in the 
middle of a month-long experiment would result in only the current set of model runs underway 
having to be restarted (e.g., for 3MRA, an average loss of 2 minutes of computation time per 
PC). The SuperMUSE software system automatically handles resumption of the experiment as 
power is restored, without user intercession. 

 
A major consideration in construction and subsequent hardware management is human 

capital.  The effort required for hardware construction is relatively minor; SuperMUSE was 
easily wired together once power was supplied to the shelving units.  SuperMUSE uses custom-
length Cat5 cabling made on-site, but off the shelf Cat5 patch cables would also work just as 
easily.  The Linksys network switches used here offer a push-button switch on Channel 1 for 
“cross-over” to the master CISCO switch, where all Cat5 cabling used can be “straight-through”.  
If you can plug in a PC, you can build SuperMUSE.  Subsequent PC hardware management is 
most effectively dealt-with using typically available service contracts from PC suppliers that are 
extremely cheap, especially when negotiating bulk purchases of PCs.   

 
The failure rate of SuperMUSE PC hardware (roughly 1 PC hardware failure every three 

to four weeks) appears to be slightly higher than expected, and may be due to their grueling work 
schedule, which is basically non-stop, 24 hours/day.  The failure rate decreased rapidly after the 
first year of operation per PC.  One issue not expected was the occurrence of several intermittent 
RAM memory failures observed on Windows 98 units (half of all hardware failures were related 
to bad RAM memory).  These intermittent type failures may be prevalent on all PCs, but have 
only been noticeable to date for PCs running Windows 98.  Unrelated, PCs running Windows 98 
typically need to be rebooted on a weekly basis to mitigate (presumably) memory fragmentation 
problems.   “Soft” rebooting of the entire PC client group is easily handled by the SuperMUSE 
software management scheme with a single mouse click.  Windows 2000 OS has shown itself to 
be extremely stable in the SuperMUSE computing environment; Windows NT 4.0 has been the 
least workable. 
 
 Virus Protection and PC-Client Hard-Disk Image Ghosting 
 

SuperMUSE currently employs virus protection and hard-disk ghosting using Norton 
software products, which have worked well.  Homogeneity across PC clients in both hardware 
and OS provides simpler management, but it is not a necessity.  The machine used for ghosting is 
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an older, low-end PC (shown by itself on the last shelf in Figure 5-1b).  Currently, SuperMUSE 
is physically separate from EPA’s local and wide area networks, to avoid the onus of increased 
security demands associated with such connectivity.  However, the system can easily be 
connected with a single cable, if desired.  Overhead costs associated with ERD’s LAN/WAN 
security issues currently outweigh any advantages, for the time being, in establishing such 
connectivity.  The system also uses a DLT-IV back up tape drive system to secure the larger 
volumes of data on the backend servers (Figure 5-2).   

 
The ghosting approach is used primarily to secure OS and model application 

configurations on each representative PC-class in the system (i.e., a single PC and image is used 
to back-up a set of PCs with similar hardware configurations).  Currently, SuperMUSE maintains 
7 such classes for various PC clients in use.  For example, if a PC client’ s hard-drive fails, the 
roughly 3 GB (gigabyte) ghosted software image containing the PC’s OS and the 3MRA model 
application files can be restored onto a newly installed hard-drive in less than 6 minutes, 
rebooted, and put back to work.  Any locally stored data for the experiment (i.e., ELP1 output 
data for model runs not yet collected; see Section 6) would, of course, need to be re-simulated. 
 
5.2.3 SuperMUSE Expansion and Life-Cycle 
 

Representing a desired maximum capacity, contingent on capital funding resources 
available, SuperMUSE at ERD will be expanded in the near future to 384 client nodes, plus 
addition of supporting servers for multiple experimentation, totaling approximately 1000 GHz of 
computing capacity based on today’s CPU speeds.  Multi-user KVM access would also be 
implemented in such an expansion, further complementing an existing SuperMUSE software 
capability that allows multiple experiments (i.e., multiple model evaluations) to be simulated 
concurrently.  Different models, or different experiments upon a single model can be 
concurrently evaluated on SuperMUSE.  Without the more expensive “multi-user” KVM access 
switching systems, only a single user can monitor individual PC-client desktops at any one time, 
though this can be done from several local or remote terminals in a “single-user” KVM system.   

 
The hardware design approach for NERL-ERD’s SuperMUSE seeks a feasible cycle of 

PC upgrading based on a 3 to 4 year PC life cycle, while maintaining a system machine speed 
100 to 1000 times faster than the standard desktop PC typically available to model developers 
and users at any given time.  A general trend dealt-with in SuperMUSE-type designs, for the 
time being anyway, is that model developers typically maintain a relatively constant tolerance for 
runtime, over time, for complex problem statements.  As PCs become faster, model developers 
often leverage this speed with more complex solutions of a given problem statement, offsetting 
the gains in CPU speed.  This is referred to here as a “developer runtime tolerance” for 
individual model runtimes, which tends to be more constant than not for a given model developer 
over a period of several years.  This is, of course, a gross generalization; the term “constant” is 
used loosely here.  Nonetheless, the phenomenon is apparent.  The result is that the 
computational burden of UA/SA will tend to remain constant for models and modeling systems 
over time, despite predictable gains in CPU speed over the same period. 
 
 Important to the hopeful exploitation of this ORD effort, a PC cluster can be scaled to 
any user’s needs (i.e., 2 to 1000+ PCs), and can be constructed and configured by relative novices 
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using off-the-shelf hardware technology and familiar Windows operating systems.  The approach 
in hardware and software design was envisioned to foster development of similar SuperMUSE 
capabilities across the Agency to fit individual researcher’s or programmatic needs.  Together 
with FRAMES 3MRA Version 2.0 (see Section 6.8 and Figure 1-1), and supporting Java 
software code developed for the SuperMUSE concept, this “commodity-based” solution for 
“embarrassingly parallel” problems for Windows-based models becomes easier to reach for a 
wide array of model developers and users.  Discussed in Section 6.2, a given model can go 
directly into SuperMUSE implementation, exclusive of FRAMES 2.0, with the separate creation 
of a model-dependent “Model Tasker”. 
 
5.2.4 MiniMUSE – Staging Software Enhancements for SuperMUSE 
 
 SuperMUSE is currently configured into two groups of PCs, a core set of SuperMUSE 
PCs, and a smaller set of PCs referred to as MiniMUSE, shown in Figure 5-5.  This smaller set of 
8 PCs, with companion servers, was initially segregated to allow for staging software 
modifications (both changes to SuperMUSE management software, and changes in models being 
evaluated), while allowing concurrent experimentation on SuperMUSE.  MiniMUSE is used, for 
example, to work out the wrinkles in the application of a new model or modeling system. 
 

More recently, the older set of 16 (333 to 450 MHz) PCs in the main lab (Figure 5-1b) 
have been allocated to MiniMUSE due to their small hard-drive sizes (4 to 6 GB) and the storage 
demands for post-processing (i.e., ELP) schemes being employed in 3MRA for longer 
experiments (i.e., > 25 national realizations).  Currently, SuperMUSE “proper” employs 152 1+ 
GHz client PCs with 10+ GB hard-drives, and MiniMUSE employs 24 (333 to 450 MHz) PCs.  
This new alignment has been helpful in managing ongoing experimentation while facilitating 
continual advances in software design, for example, in the ongoing development and testing of 
components of 3MRA Version 1.x, discussed in Section 6. 
 
 The segregation of MiniMUSE network connectivity is not physical, even though 
portions of it are housed in a separate room adjacent to the main SuperMUSE lab.  The entire set 
of PCs (SuperMUSE and MiniMUSE clients and servers) is actually interconnected using the 
same communication network backbone.  Described in Section 6.2.1, segregation of 
SuperMUSE and MiniMUSE is effected through use of two “CPU Allocators” running 
concurrently on two different front-end servers.  A simple software switch in every PC client’s 
boot-up file is set to assign a given PC client to any CPU Allocator currently in use.  The entire 
SuperMUSE system can be reconfigured to segregate several PC groups, or to combine all 
clients into a single PC group, in a matter of minutes. 
 
 
5.3 Identification of Software Toolset Needed for SuperMUSE 
  
 To exploit capabilities of the SuperMUSE parallel computing environment, several 
software tools were needed.  Key functionalities required that were identified included: 

 
• Facilitating the distribution of workloads among PCs, 
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• Managing files and data across PCs,  
 
• Facilitating model-specific data analysis tasks, and 

 
• Extension of alternative model input sampling tools. 

 
Together, the items of key software functionality requirements noted are grouped, as 

such, into a pending release of 3MRA Version 1.x.  Alternate sampling tools (e.g., LHS, etc.) are 
not currently available in 3MRA Version 1.x, but are to be incorporated in future software 
releases (i.e., FRAMES 2.0, etc.).  The categories of software development supporting the 
SuperMUSE hardware design are described in further detail in Section 6.   

 
Three key points are: (1) the combined SuperMUSE hardware and software management 

components that support parallelization of models are amenable to facilitating model evaluation 
needs for all PC-based models (Windows and Linux); (2) the 3MRA Version 1.x model-specific 
enhancements are crucial to implementing the planned UA/SA experimentation for 3MRA; and 
(3) SuperMUSE hardware and management software, together with 3MRA Version 1.x, provide 
for a powerful capability to perform millions of 3MRA model simulations per month. 
 
 
5.4 Benefits of Integrated SuperMUSE Hardware and Software 
 

The following materials summarize key points underlying the motivation behind the 
SuperMUSE hardware (Section 5) and software (Section 6) design approach described herein for 
evaluating PC-based environmental models, and, in particular, those characterized as very high 
order models (VHOMs). 

 
• Why is Model Evaluation Becoming Increasingly Important? 

 
o We need to better communicate prediction uncertainty to decision-makers. 
o We need to improve identification of critical gaps in knowledge and data. 
o We need to address the increasing technical focus in regulatory-driven litigation. 
o Because we are increasingly called upon to establish the validity, trustworthiness, 

and relevance in model predictions. (Chen and Beck, 1999) 
 
• Uncertainty and Sensitivity Analysis for VHOMs – How Is It Done Today? 

 
o Many techniques and methods are available, and are improving constantly. 
o Current knowledge and execution capabilities are usually limited to a select few, 

and are often out of reach from most model developers and model users. 
o UA/SA represents an “embarrassingly parallel” computational problem; solutions 

involve running a model over and over with slightly different inputs. 
o Thorough PC-based model evaluation is often avoided due to a lack of 

computational capacity. 
o Many EPA models are written for Windows OS, but most supercomputing 

solutions today require mainframes or Linux-based PC supercomputing clusters. 
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• Key Aspects of the UA/SA Runtime Problem 
o As model complexity, time and space grid density, or types of uncertainty and 

sensitivity analyzed increases, computational burden (i.e., overall model runtime) 
typically increases geometrically. 

o A primary reason UA/SA techniques are not widely applied to EPA models today 
is the lack of Windows-based computational processing capacity. 

o As a general trend, it is typical to see PC-based model developers increase model 
complexity over time, offsetting concurrent gains in CPU speed. 

o Depending on the EPA model/application, one may need 100’s to 100’s of 
millions of model simulations. 

 
Associated benefits of the integrated SuperMUSE hardware and software design are 

directly applicable to the task at hand of evaluating 3MRA, and are readily extendable to similar 
tasking for other PC-based models and modeling systems.  Figure 5-6 summarizes the benefits of 
SuperMUSE type approaches in supporting model evaluation tasking for PC-Based VHOMs.  
Common tasking supported generally includes predictive uncertainty analysis, sensitivity 
analysis, parameter estimation (PE), and model verification and performance validation efforts. 
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Figure 5-1a.  SuperMUSE Parallel Computing Cluster at ORD/NERL/ERD. 
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Figure 5-1b.  SuperMUSE Parallel Computing Cluster at ORD/NERL/ERD.
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Figure 5-2.  Conceptual Layout for PC-Based SuperMUSE Parallel Computing Cluster.
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Figure 5-3.  SuperMUSE Network and KVM Switching.
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Figure 5-4.  Example SuperMUSE Cabling.
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Figure 5-5.  MiniMUSE Parallel Computing Cluster at ORD/NERL/ERD. 



Section 5.0  SuperMUSE Parallel Computing Hardware 
 

 
 5-19 

 

Figure 5-6.  Benefits of the SuperMUSE Hardware and  
Parallel Management Software Scheme. 

 
 

Beneficial  Impacts of PC-Based SuperMUSEing
SuperMUSE is scalable to individual user (or program & 
regional office) needs; clustering from 2 to 1000+ PCs.
Supports Windows or Linux based modeling systems.
Can handle PC models with 10’s to 1000’s of variables.
Solves “embarrassingly parallel” computing problems.
A local solution empowers model developers and users.
Autonomy from supercomputing centers, removes barriers.
Simple, inexpensive, can be built/operated by PC novices. 
Ideal for debugging models and performing UA/SA/PE.
For an average model runtime of 2 minutes, ERD’s 
SuperMUSE can run over 4 million simulations/month.


