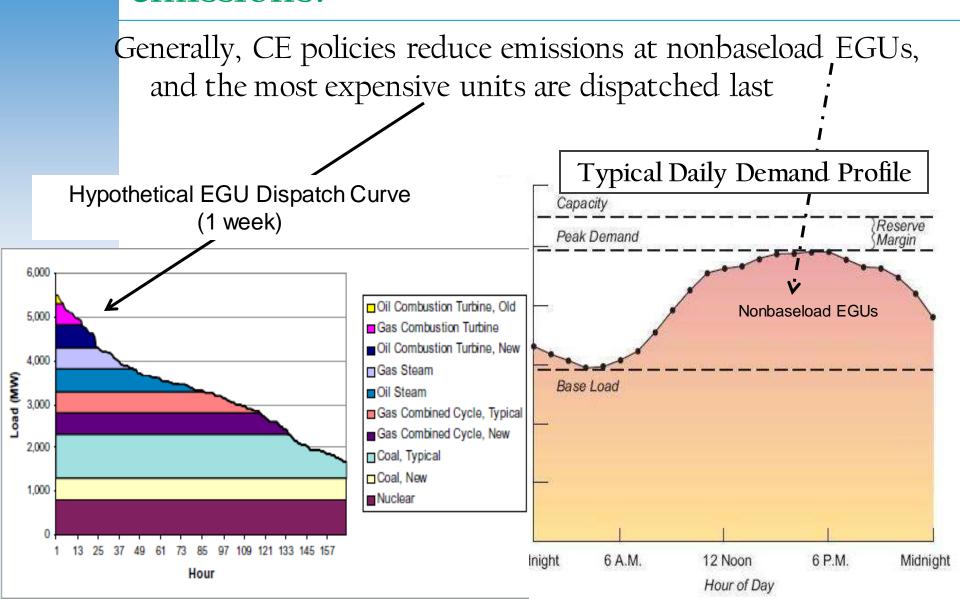
Approaches for Quantifying Emission Impacts of Clean Energy Policies and Programs

Robyn DeYoung
August 15, 2011
U.S. EPA
State Climate and Energy Program

Overview of Process & Today's Presentation

- Quantifying the emissions impacts of clean energy policies requires understanding:
 - 1. How clean energy policies reduce emissions at electric generating units
 - 2. Which clean energy policy will be analyzed and estimates of the energy impacts
 - 3. Where to access data on electricity generation and emissions of electric generating units in a State or Region
 - 4. The range of available quantification methods and when to use them:
 - eGRID subregion nonbaseload emission rates
 - EGU capacity factor emission rates approach
 - ☐ Historic hourly emission rate approach
 - Energy modeling


Common Terms and Abbreviations

- <u>Clean Energy</u>: no-to-low emitting options to meet energy demand, such as energy efficiency, combined heat and power, and renewable energy
- <u>Electric generating unit</u>: (EGU) a power plant or generator that produces electricity and is connected to the grid.
- <u>Baseload EGUs</u>: operate near maximum capacity most hours of day. (E.g., nuclear, in most cases coal & hydro plants)
- Nonbaseload EGUs: fluctuate generation based on changes in demand (E.g., gas combined cycle, gas turbines, oil-fired plants)
- <u>Peaking EGUs:</u> only operate during the highest demand periods (older oil combustion turbines, gas combustion)

Climate and Energy Program

Marginal Unit: the last (or next) EGU called upon to meet demand

How do Clean Energy policies reduce emissions?

Types of Clean Energy Policies and Their Impacts

Examples of State Energy Efficiency Policies:

- Energy Efficiency Resource Standards
- Public Benefits Funded EE programs

Example s of State Renewable Energy Policies:

Renewable Portfolio Standards (RPS)

\$EPA

- Renewable Energy Incentives (E.g., rebates)
- Clean Energy policy impacts are estimated in Megawatt-hours (MWh).
 - Capturing energy impacts of CE policies will provide the most emissions benefits.

State and Local The Clean Energy-Environment Guide to Action: Policies, Best Practices, and Action Steps for States (April 2006) http://www.epa.gov/statelocalclimate/resources/action-guide.html

Available Data Sources for EGU generation and emissions

- EPA's eGRID (Emissions Generation Resource Integrated Database)
 - ➤ Annual emissions for NOx*, SO₂, Hg, CO₂, CH₄ and N₂0
 - Different aggregation levels boiler to subregions
 - Capacity factors the ratio between generation and max capacity
- EPA's Clean Air Markets Division (CAMD) database
 - ➤ Monitored NOx, SO2, CO2 emissions for EGUs reporting to EPA
 - > Emission unit level
 - Temporal scales 5min hourly annual emissions data
- State emissions inventories
 - Emissions for EGUs permitted by State DEPs
 - Includes units not captured in EPA data collection
 - Scale of emissions varies depending upon permitting requirements

*Ozone season emissions available for NOx

Summary of Emission Quantification Approaches

Four Emission Quantification Approaches

Approach	Emission Rate	Temporal Scale	Geographical Scale
eGrid subregion nonbaseload approach	lbs/MWh	Annual and ozone season	Regional averages of nonbaseload EGUs
EGU Capacity factor approach	lbs/MWh	Annual and ozone season	EGU specific
Reported Hourly emissions approach	Lbs/MWh	Hourly, daily, monthly, annual	EGU and emission unit level specific
Energy modeling approach	lbs.MWh Or lbs	Varies depending upon model	EGU and emission unit level specific

Deciding which approach to use depends on policy objectives, analytical questions as well as time and resource constraints

* Note: This does not cover the full scope of all possible approaches

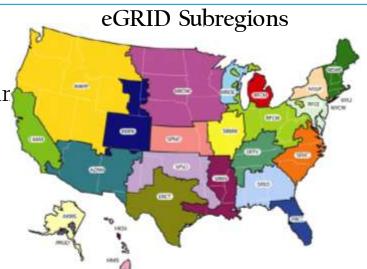
eGRID subregion nonbaseload emission rates approach

How it works:

Uses emission rates that represent average emissions of nonbaseload units in an eGRID subregion.

Examples for when to use:

- > Estimate emission reduction potential
- Captures average emission reductions


Advantages:

- Requires low resources easy calculation
- Great for annual emissions reductions, regional and national estimates

Limitations:

Does not specify which power plant is reducing emissions

Based on historical data

CALCULATION USING eGRID

Energy saving of EE (MWh)

eGRID nonbaseload emission rate (lbs/MWh)

(Account for Grid loss factor)

emissions avoided by EE (lbs)

eGRID subregion nonbaseload emission rates approach

Informational resources:

- eGRID website:
 - http://www.epa.gov/cleanenergy/energyresources/egrid/index.html
- eGRID summary tables:
 - http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2010V1_1_year07_SummaryTables.pdf
- eGRID overview presentation:
 - http://www.epatechforum.org/documents/2010-2011/March%2031/Diem-eGRID-2011-03-11.pdf
- New Mexico example using eGRID:
 - http://www.epatechforum.org/documents/2010 2011/March%2031/DeYoung eGRID 3.31.11.pdf

USERS of eGRID

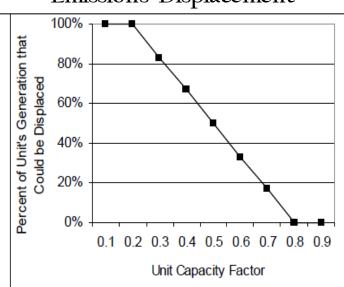
- EPA's Power profiler
- •EPA's CHP calculator
- •Energy Star Portfolio Manger
- •EPA's Personal GHG calculator
- •EPA's GHG equivalency calc.
- •EPA's Wastewise GHG calc.

(The emission rates may vary within each tool depending upon the purpose)

EGU Capacity Factor Emission Rates Approach

How it works:

- An EGU's capacity factor is indicative of how much emissions could be displaced
 - EGUs with ~ high capacity factors are generally baseload EGUs
 - EGUs with ~ low capacity factors are generally nonbaseload EGUs
- Distribute emissions reductions to each EGU based on 1) displaceability 2) CE impacts 3) annual EGU emission rates
- Examples for when to use:
 - Approximate EGU dispatch orderUnderstand which EGUs arenonbaseload and where emissions


could most likely be displaced

AN EGU'S CAPACITY FACTOR IS A RATIO:

The actual electricity produced

The available electricity production at maximum capacity

Capacity Factors Relationship to Emissions Displacement

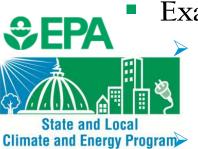
EGU Capacity Factor Emission Rates Approach

Advantages:

- Emissions can be distributed to each EGU
- Relatively easy calculation
- Great for preliminary analysis

Limitations:

- Capacity factors are approximate and don't account for maintenance, outages, etc.
- Dynamics of electric grid not captured (E.g., exports, imports)
- Based on historical data future generation not represented


• Examples using this approach:

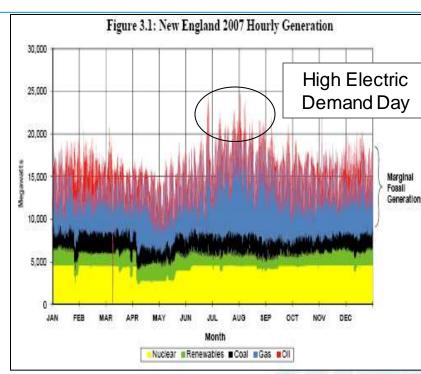
Energy efficiency policy analysis in Texas (S.B. 5)

• Estimated how much and where emission reductions occur within TX

(See illustrative example at the end of presentation)

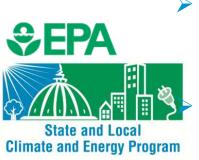
Capacity
Factors can
be found in
eGRID's
excel
workbooks

Historical Hourly Emission Rates Approach


How it works:

- Use reported hourly generation and emissions information to derive hourly emission rates.
- Historical hourly emissions rates can be aggregated to any temporal scale to answer policy questions.

• Examples for when to use:


- Regulatory analysis
- Analyze emission impacts during high electric demand days

Analyze how RE technologies reduce emissions

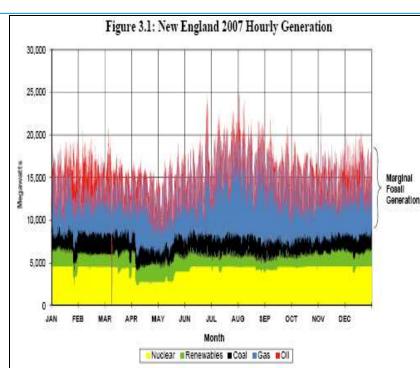
Reported Hourly Emissions information can be found at EPA's Clean Air Market's Division website:

http://camddataandmaps.epa.gov/gdm/index.cfm?fuseaction=iss.progressresults

Historical Hourly Emission Rates Approach

Advantages:

- Approach uses monitored emissions data
- Can select emission rates for any group of hours


Limitations:

- Data intensive w/out infrastructure
- > Based on historical data

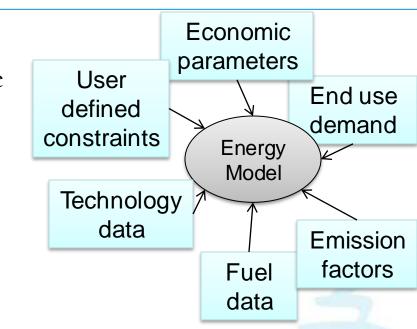
• Examples of this approach:

Washington Council of Governments calculator

http://www.mwcog.org/environment/air/E ERE/default.asp

➤ Mid-Atlantic Regional Air Management Association Report

http://www.marama.org/RegionalEmissionsInventory/2007hourlypoint/FinalDoc_mar201l_Analysis_of_Hrly_CAMD_Emissions_Data.pdf.


Energy Modeling Approach

How it works:

- Dynamic simulation models are used to forecast emissions
- Models account for complex interaction of the electric grid
 - Dispatch Models
 - Capacity Expansion Models

Examples of when to use:

- > Regulatory analysis
- When policy assumptions are well defined, detailed input data

EPA uses the
Integrated Planning
Model (IPM) for all
electric sector
regulatory analysis

Climate and Energy Program

*NEMS - National Energy Modeling System

**IPM - Integrated Planning Model includes dispatch capabilities

*** MARKAL - Market Allocation Model

Energy Modeling Approach

- Examples of this approach:
 - Energy Information Administration's (EIA) Annual Energy Outlook (AEO) Projections (NEMS) http://www.eia.gov/forecasts/aeo/
 - ➤ U.S. EPA's Regulatory Analysis (IPM)
 http://www.epa.gov/airmarkets/progsregs/epa-ipm/index.html
 - Emission reductions of clean energy policies in California's Air Management Districts (PROSYM)

http://www.epatechforum.org/documents/2010 2011/June%2014/Fisher%206-14 2011%20EPA%20Tech%20Forum.pdf

Advantages and Disadvantages of Energy

Mode	Models					
Energy Model	Advantages	Disadvantages				
Dispatch Models	■Provides very detailed	■Often lacks transparency.				
■ Prosym,	estimations about specific	■Requires technical experience				
■ Promod,	plant and plant-type effects	■Labor- and time- intensive.				
■ Ventyx	within the electric sector.	■Often high labor and software				

geographically specific, hourly data. Capacity Expansion ■ Model selects optimal changes in generation mix based on Models assumptions and energy system ■ NEMS, ■ IPM,

■ Provides highly detailed, (10-30 years).■ Captures emission changes from ■ Energy 2020, new power plants and retirements ■ MARKAI ■ May provide plant specific detail and perform dispatch simultaneously (IPM).

licensing costs. ■Requires establishment of specific operational profile of the clean energy resource. ■Often lacks transparency ■Requires significant technical experience ■ Labor- and time- intensive. ■Often high labor and software licensing costs. ■Requires assumptions that have large impact on outputs (e.g., future fuel costs).

Choosing an Emission Quantification Approach

- Basic approaches are useful when:
 - > time or resources are short
 - > High-level, preliminary analyses are needed
 - > A long list of options need to be shortened
- Sophisticated approaches are useful when:
 - Policy options are well-defined

\$EPA

Climate and Energy Program

- high degree of precision and analytic rigor is desired
 - sufficient time, data and financial resources are available.

Contact Information


Robyn DeYoung

U.S. EPA's State Climate and Energy Program

202-343-9080

Deyoung.robyn@epa.gov

Capacity Factor Approach - Example

There are seven generating units in this hypothetical power system, labeled A - G.

- •Column [2] shows the % of each unit's production that could be displaced by the EE program (based on and EGU's capacity factor relationship to displacement)
- •Column [3] shows each unit's actual generation in the historical year
- •Column [4] shows the amount of energy that could be displaced [2] x [3]
- •Column [5] shows the % of the energy saved by the EE program (1,000 MWs)
- •Column [6] shows the MWhs displaced at each generating unit.

•Last step: multiply emission rate of each EGU by column [6] to get displaced emissions (not shown below)

	(1)	Displaceable (2)	Generation (MWh) (3)	Displaceable (4)	Saved Allocated to Unit (5)	Displaced (6)
	Α	100%	50,000	50,000	7%	65
	В	82%	65,000	53,000	7%	69
\$EPA	C	79%	120,000	94,800	12%	123
	D	48%	500,000	240,000	31%	312
	Е	22%	1,500,000	330,000	43%	430
	F	0%	1,800,000	0	0%	0
State and Loca	G	0%	2,000,000	0	0%	0
Climate and Energy F	Totals		6.035,000	768,100	100%	1,000