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Many Current Studies (e.g.)

LRTAP - Hemispheric Transport
of Air Pollutants

Royal Society - Ground-level
ozone in the 21st century:
future trends, impacts and
policy implications

NAS - Global Sources of Local
Pollution

UNEP - Opportunities to Limit
Near-Term Climate Change

IGAC/SPARC - Bounding the
role of black carbon in
climate
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Models Play a Critical Role in Linking
Emissions to SLCF Distributions and
Subsequent Radiative/Climate Effects

Models try to represent our present

understanding of the processes at play
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Large Scale Comprehensive Field
Experiments Like NASA Intex B
Experiment Explore Our
Understanding of Atmospheric

Processes Average BC concentration during INTEX-B
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O; (ppbv) over MBO

]

Observations at Mt.
Bachelor Provide
Valuable Insights
Into The Variability In
— Atmospheric
s s s s e Composition in the
Western US.
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Transport and Deposition
Processes in The Himalaya
Region Have Important V

Implications for Water and Food J= =2 rueis

Security
ABC Nepal Climate Observatory (NCO-P)
*Remote site in Himalayan region
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Cheju ABC Plume-Asian
Monsoon Experiment
(CAPMEX) —NSF/KOSEF
Providing Insights Into The
Impacts of Aerosols

Ramanathan, Yoon, et al.,
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Quantifying Aerosol
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Incorporation of Aerosol Into Weather Prediction Will
Provide Further Insights Into Processes

c) Atmosphere: F(A) ___unit=W/m* d
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Moving Forward We Need More
Analysis Related to Source
Sectors & Fuels and Policy

Relevant Scenarios
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Sector Focus Places Greater ,~  [em] gl (sl few]
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Due to the Complexity and

Observation Integration
Uncertainties in Calculating the
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Due to the Complexity and
Uncertainties in Calculating the
Sources, Formation, Transport

Observation Integration
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Fig. 1. Radiative forcing due to perpetual constant year 2000 emissions
grouped by sector at (a) 2020 (b) 2100 showing the contribution from
each species. The net sum of total radiative forcing is indicated by the title
of each bar. A positive RF means that removal will result in climate cooling
and vice versa.

2020 unger et al., PNAS 2020
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BC % change (+SA 20%)- Spring 2008 o BC % change (+EA 20%) — Spring 2008
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Summary of Major Sources of
Uncertainty in the Calculations

Multiplicative Uncertainties

Indoex
Fmnissions Wet Vertical Chemical Total
77 removal | Transport Formation Uncertainty
1SS .
ety 3 3 S 3 :
S04 | | 1 | 1.8
BC 3 2 1.5 -- 39 b
OC 35 2 15 3 6.4 =
Dust 5 2 1.5 -- 6.0 S
Son uper
Salt 5 1.3 1.5 54 micron

Note: for analysis of specific points some of these
terms are larger...
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