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ESTIMATE BACKGROUND CONCENTRATIONS FOR THE 

NATIONAL-SCALE AIR TOXICS ASSESSMENT 
 
 
1.0 INTRODUCTION 
 
 In the 1990 Clean Air Act Amendments (CAAA), Congress established a list of 188 toxic 
chemicals designated as hazardous air pollutants (HAPs), also known as air toxics.  These HAPs 
have been associated with a wide variety of adverse health effects and adverse environmental 
effects.  The sources of the air toxics include major point sources, area sources, mobile sources, 
and transport from other areas.  The resulting population exposures are typically a mixture from 
a multitude of sources emitting many different HAPs.  As a part of the implementation of the 
CAAA, EPA’s Office of Air Quality Planning and Standards (OAQPS) currently manages the 
multi-component Air Toxics Program (ATP).  One of the four key activities within the ATP is 
the National-Scale Air Toxics Assessment (NATA).  NATA seeks to quantify the impacts of air 
toxics emissions on public health and the environment, identify the areas of concern, and 
eventually track the progress of air toxics reduction strategies.  NATA includes several 
nationwide activities:  expanding ambient air toxics monitoring, improving and updating 
emissions inventories, multi-scale air quality modeling, exposure modeling, and risk assessment. 
 
 More specifically, NATA includes a nationwide study of the potential inhalation 
exposures and health risks associated with 32 HAPs and diesel particulate matter (i.e., diesel 
PM).  As the second of four major steps in the assessment, ambient concentrations are estimated 
using the Assessment System for Population Exposure Nationwide (ASPEN) air dispersion 
model.  In order to estimate total ambient concentrations, however, a value for background must 
be estimated and added to ASPEN’s modeled concentrations.  As defined, background accounts 
for natural sources, nearby sources (farther than 50 km), and unidentified sources. 
 
 In the recently completed NATA, corresponding to calendar year 1996 emissions and 
meteorological data, estimates for background were determined from open literature.  There are 
two limitations to this approach.  First, estimates based on literature (or data) corresponding to 
points in time that were far removed from the 1996 temporal scope of the recent NATA study 
may not have accurately represented backgrounds that had evolved over time.  Second, the 
literature was used to identify a constant, nationwide background estimate for each HAP under 
study.  It is currently believed that such an approach may not be realistic for those HAPs that are 
expected to exhibit spatially heterogeneous backgrounds across the U.S. 
 
 In future assessments, new and improved values for background must be determined.  
The purpose of this project is to develop a method to improve the estimation of background 
concentrations for future rounds of NATA.  The method, which is to be based on monitoring 
data, should satisfy the following two key objectives: 
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 1.  Use data more consistent with the temporal scope of a given NATA round 
(e.g., 1999); and  

 
 2.  Allow for the possibility of spatially heterogeneous backgrounds, as appropriate. 
 
 This report summarizes Battelle’s progress (approach and results) to date toward 
developing such a method.  Section 2 summarizes the data used for the effort, and describes 
some of the restrictions applied in order to satisfy objective (1).  Section 3 summarizes the 
approach, which seeks to satisfy objective (2), provides illustrative examples for clarity, and 
discusses the technical issues that have been encountered and how they have been addressed.  
Section 4 summarizes the suite of results obtained to date.  Section 5 highlights remaining issues 
and discusses the expected path forward.  Appendix A provides the extensive, detailed pollutant 
by countywide background results from Stage 1 of this project’s two stage approach.  
Appendix B presents the conversion factors applied to convert all monitoring data from their 
original units to units of :g/m3.  Appendix C summarizes the comments and responses 
associated with an internal review of this project by senior Battelle statisticians, as requested by 
EPA/OAQPS.  Finally, Appendix D lists the comments received from EPA/OAQPS on the 
August 15, 2002, draft report, and summarizes the approach to addressing each comment. 
 
 
2.0  DATA 
 
 The scope of data analyses for this project is limited to air toxics monitoring data and 
other explanatory information that might be necessary for use in developing statistical models.  
The following subsections provide further detail on the data included or considered for the 
project. 
 
2.1  Monitoring Data 
 
 The suite of air toxics measurements being considered for this project is restricted to the 
list of 33 urban HAPs, i.e., 32 HAPs and diesel PM.  (Refer to Table 1 of “Air Toxics 
Monitoring Concept Paper,” for the complete list; it is available at http://www.epa.gov/ttn/amtic/ 
airtxfil.html).  The focus of this project on these HAPs is consistent with the most recent round 
of NATA.  Subsection 2.1.1 provides an overview of the monitoring data pursued for this 
project, and the logic for including or excluding various data sources.  Subsection 2.1.2 
summarizes the final combined database used for analysis. 
 
2.1.1  Overview 
 
 In order to satisfy objective (1) above, recent air toxics monitoring data were sought.  It is 
important to recognize that the specification of “recent” is subjective.  Ideally, to estimate 
background concentrations for the 1999 round of NATA, for example, one would restrict 
available monitoring data to samples generated during calendar year 1999.  However, there 
exists a trade-off between the level of restriction (i.e., quality) applied when accepting or 
rejecting data for analysis versus the breadth and representativeness of results that might be 
obtained.  To balance these two competing needs, the decision was made to expand the range of 
acceptable monitoring data to samples generated between 1995 and 2002, inclusive.  By 
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widening the window of data acceptance to 1995 through 2002, results may be obtained for a 
greater number of observations, monitoring locations, U.S. counties, etc.  The implicit 
assumption associated with this decision is that background concentration levels throughout the 
country were, at least approximately, stable and consistent with 1999 levels during the years just 
prior to and subsequent to 1999.  Refer to subsection 3.1.6 of this report for a case study example 
that investigates this assumption further. 
 
 Given the window of data acceptance just defined, three major sources of air toxics data 
were sought: 
 

• Air Toxics 10-City Pilot Study Data (pilot data).  For background and further details, see 
“Final Report ― Pilot City Air Toxics Measurements Summary” or “Quarterly Air 
Toxics Monitoring Newsletter, Jan. 2001.”  Both are available at 
http://www.epa.gov/ttn/amtic/airtxfil.html . 

 
• EPA’s Air Toxics Data Archive (archive data).  For background and further details, see 

Rosenbaum, A.S., Stiefer, P.S., and Iwamiya, R.K. (1999), “Air Toxics Data Archive and 
AIRS Combined Data Set:  Database Descriptions,” Technical Report to U.S. EPA, 
Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 
September. 

 
• PAMS Air Toxics Data (PAMS data).  For background and further details, see 

http://www.epa.gov/oar/oaqps/pams/ . 
 
The inclusion of pilot data in this project was considered important because of their temporal 
relevance (collected in 2001 and 2002), expected high level of quality, and close association with 
future air toxics data to be generated as part of the developing national air toxics monitoring 
network.  The archive data, upon restriction to 1995 through 2002, quite simply provide the most 
comprehensive set of available, relevant data for this project and, hence, are critical to its 
success.  Finally, PAMS data provide yet another important source of air toxics monitoring data. 
 
 In terms of obtaining the above-described data for this project, first note that pilot data 
have been obtained, assembled, managed, and quality assured/quality controlled (QA/QC’d) by 
Battelle under contract with the Lake Michigan Air Directors Consortium (LADCO).  As of the 
writing of this report, however, note that the quality and completeness of the pilot data are still 
improving as additional data are received and reviewed.  Next, observe that the most recent, and 
possibly last, version of archive data (compiled January 2002) was provided to Battelle for this 
project by Systems Applications International (SAI), a wholly-owned subsidiary of ICF 
Consulting.  SAI is the EPA contractor historically responsible for generating the database of 
archive data.  Finally, after some initial limited efforts to obtain a comprehensive set of PAMS 
data for this project, discussions with SAI revealed that all such data, so long as they are 
classified as air toxics, are included by default within the archive as part of the algorithm to 
generate that database.  Thus, inclusion of archive data for this project, by default, leads to the 
inclusion of air toxics PAMS data as well. 
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 Observe that these three data sets are known to have different data collection procedures, 
analytical instruments, and data quality associated with them.  The archive itself includes an 
assortment of air toxics data from numerous monitoring programs and past research studies.  To 
the degree that data quality varies and biases or other differences exist between the various 
methodologies included in the combined database, uncertainties may be introduced into the final 
results of the project.  However, any attempt to significantly restrict the combined data to a 
smaller core of more consistent, and possibly higher quality, measurements could seriously limit 
the extent or expansiveness of the project’s Stage 1 results (see Section 3.1 below).  The ultimate 
consequence of such a decision would likely be the inability to adequately address or complete 
Stage 2 (see Section 3.2 below). 
 
 In particular, different data sets may exhibit varying degrees of uncertainty due to various 
laboratory sensitivities and specificities.  Different technologies for measuring the same 
pollutant, for example, may lead to different method detection limits (MDLs).  Furthermore, 
independent of the analytical technology, different laboratories may employ different protocols 
for calculating uncertainty in the form of an MDL.  Likewise, due to a range of semantics 
associated with laboratory uncertainties and measurement reporting thresholds, the specific 
definition or interpretation of an MDL may vary by laboratory (or data set).  All of these issues 
represent some form of uncertainty introduced into the combined data set.  For further discussion 
and an attempt to clarify some of these issues, refer to “Final Report ― Pilot City Air Toxics 
Measurements Summary” (http://www.epa.gov/ttn/amtic/airtxfil.html).  
 
 In addition to the above data sets, several other sources of air toxics data were 
investigated for inclusion in the project.  A summary of these data sources, and some of their 
potential limitations, is provided as follows: 
 

• The California Air Resources Board (CARB) provided air toxics data corresponding to 
the city of San Diego.  To date, these data have not been incorporated for analyses.  Note, 
however, that even without these data, a significant amount of Stage 1 background results 
have been obtained for the areas of San Diego and Southern California (see Section 4.1 
and Appendix A). 

 
• Sonoma Technologies, Inc., (STI) provided data from Arizona.  These data will not be 

included because it turns out they do not satisfy the 1995 through 2001 temporal 
requirement discussed above. 

 
• Some preliminary discussion took place regarding the inclusion of speciated metals data 

from the PM2.5 Chemical Speciation network.  These data could provide useful 
information to better understand urban background levels in the case of metals (fine).  
However, they would not provide direct background information for metals (coarse).  To 
date, these data have not been actively pursued because a significant amount of metals 
(fine) data is already included in the archive and pilot databases (see discussion on metals 
data in subsection 4.1.2 below). 

 
• Similar to the above comments on PM2.5 Chemical Speciation network data, Interagency 

Monitoring of Protected Visual Environments (IMPROVE) data might eventually be 
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considered to better understand rural background levels in the case of metals (fine).  
Limited primarily to PM2.5 measurements, however, these data would not provide direct 
background information for metals (coarse). 

 
• As with IMPROVE data, Clean Air Status and Trends Network (CASTNet) visibility 

data might be pursued to further expand on the results for metals (fine).  Subject to 
similar limitations as IMPROVE, CASTNet data have the further limitation of not 
possessing MDL information. 

 
• Using the secondary analysis approach described below in subsection 3.1.7, National 

Dioxin Air Monitoring Network (NDAMN) data could be incorporated to provide results 
for 2,3,7,8-tetrachlorodibenzo-p-dioxin.  To date, no background results have been 
obtained for this urban priority HAP under this project.  The NDAMN network consists 
of approximately 30 well-dispersed nationwide monitoring sites operating since 1999. 

 
• The Mercury Deposition Network (MDN) data could be incorporated to provide results 

for mercury.  The MDN data does not distinguish between fine and coarse mercury and, 
as with CASTNet, does not contain MDL information.  In addition, the MDN collects 
data on mercury deposition (e.g., by rain) rather than mercury concentrations in the air.  
The MDN network consists of approximately 70 monitoring sites located primarily in the 
eastern Unites States. 

 
• Inquiries were made within Battelle to identify air toxics monitoring data from past 

Battelle studies.  The most significant source of data identified was from a 1993 air toxics 
field study conducted in Columbus, Ohio, and Atlanta, Georgia.  Some of these data are 
already included within the air toxics data archive.  However, these data fall outside the 
temporal requirement discussed above and, therefore, are not included in the results of 
Section 4.1 and Appendix A. 

 
To date, the majority of the above data sources have not been actively pursued or incorporated 
into the database for analyses in this project.  The primary reason for not pursuing these data is 
current project time and resource constraints.  Their inclusion for obtaining updated or final 
results should be re-considered at a later date. 
 
2.1.2  Summary 
 
 Tables 2.1a and 2.1b together summarize the combined database of archive, PAMS, and 
pilot monitoring data as described above in subsection 2.1.1.  These data are used to conduct the 
Stage 1 analyses described below in Section 3.1 (see Section 4.1 for results).  Table 2.1a 
corresponds to the subset of data for which the primary quantitative statistical methodology of 
Stage 1 could be applied (see subsections 3.1.1 through 3.1.6).  Table 2.1b corresponds to the 
subset of data for which a less desirable and less quantitative statistical approach was required in 
Stage 1 due to small sample sizes or too much data reported below the MDL (see 
subsection 3.1.7).  These tables are presented separately for perspective on the relative amount of 
data analyzed by either statistical approach. 
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 Tables 2.1a and 2.1b provide summary information for each pollutant considered.  The 
“Number of Observations,” “Number of Sites,” and “Number of Counties” columns provide an 
indication of the amount of available data for pursuing the estimation of a given pollutant’s 
background.  With respect to each pollutant’s available data, the “Date Range of Data” column 
provides a rough sense of its temporal relevance to 1999.  The remaining columns summarize the 
distribution of concentrations observed in the combined database.  Under the general heading of 
“Method Detection Limit (MDL),” the minimum (min) and maximum (max) columns indicate 
the range of MDLs associated with a given HAP.  The “% of Data Below” column indicates the 
percentage of a pollutant’s data that fall below its respective MDL.  Under the general heading of 
“Above-MDL Distribution of Concentrations (:g/m3)”, the remaining columns of the tables 
summarize each pollutant’s observed distribution of concentrations for those data that lie above 
their respective MDLs.  When interpreting the Stage 1 results presented in Table 4.1 of 
subsection 4.1.1, the summary provided in these tables may be used for additional perspective. 
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Table 2.1a  Summary of combined archive, PAMS, and pilot monitoring data for conducting primary Stage 1 analyses. 1 

 
Method Detection Limit (MDL) Above-MDL Concentration Distribution (:g/m3) 

Class Pollutant 
Number 

of 
Observa-

tions 

Number 
of Sites 

Number 
of 

Counties 
Date Range of Data 

Min Max % of Data 
Below Mean Standard 

Deviation 
5th 

Percentile Median 95th 
Percentile 

ACETALDEHYDE 21721 204 94 01/02/95 - 06/25/02 0.0005 0.5405 2.27 2.3890 2.5015 0.5044 1.6214 6.8461 
ACROLEIN 1071 13 4 04/03/95 - 06/25/02 0.0030 0.1398 5.70 0.2698 0.3289 0.0080 0.1799 0.8709 Carbonyl 
FORMALDEHYDE 25259 234 106 01/02/95 - 06/25/02 0.0026 0.4813 1.20 4.1006 5.4634 0.6215 2.8073 10.1940 
1,1,2,2-TETRACHLOROETHANE 663 3 1 01/10/95 - 12/31/98 0.0090 0.0090 0.00 0.0591 0.1066 0.0309 0.0309 0.2059 
1,2-DIBROMOETHANE 784 4 2 01/03/95 - 12/31/98 0.0100 0.2535 11.22 1.2553 4.7749 0.0384 0.0384 9.7578 
1,2-DICHLOROETHANE 2839 16 9 01/03/95 - 03/26/01 0.0100 0.1619 13.00 0.5802 2.6976 0.0202 0.0809 1.9427 
1,2-DICHLOROPROPANE 680 5 4 01/03/95 - 12/26/99 0.0200 0.3697 29.71 1.1383 4.5584 0.0462 0.0462 4.0204 
1,3-BUTADIENE 19702 115 52 01/03/95 - 06/25/02 0.0177 0.3000 33.04 0.8424 3.1305 0.0664 0.3318 2.1459 
ACRYLONITRILE 1267 6 4 01/03/95 - 12/27/01 0.1302 0.2386 81.93 1.1271 0.8596 0.3688 0.8200 2.9700 
BENZENE 61069 410 154 01/01/95 - 06/25/02 0.0053 0.6400 2.64 1.8314 2.5877 0.2810 1.2118 5.2130 
CARBON TETRACHLORIDE 10930 99 46 01/03/95 - 06/25/02 0.0100 0.6291 2.65 0.7768 1.2490 0.1887 0.6417 1.1324 
CHLOROFORM 9321 71 38 01/03/95 - 05/26/02 0.0070 0.1000 13.76 0.2297 0.4140 0.0488 0.1465 0.5859 
CIS 1,3-DICHLOROPROPENE 
TRANS 1,3-DICHLOROPROPENE NO AVAILABLE DATA 

ETHYLENE OXIDE 268 1 1 01/01/01 - 06/25/02 0.1189 0.1351 36.19 0.2576 0.1289 0.1369 0.2125 0.5205 
METHYLENE CHLORIDE 23162 171 85 01/03/95 - 06/25/02 0.0100 0.5000 19.92 1.8175 10.5251 0.1389 0.6947 4.5156 
TETRACHLOROETHYLENE 12400 100 43 01/03/95 - 06/25/02 0.0100 0.4748 14.40 0.7887 1.3421 0.0678 0.4069 2.7129 
TRICHLOROETHYLENE TCE 11115 78 36 01/03/95 - 06/25/02 0.0100 0.5374 24.38 0.5664 2.8505 0.0537 0.2149 1.6014 

VOC 

VINYL CHLORIDE 1211 4 2 01/03/95 - 12/20/99 0.0200 0.0511 18.25 0.1279 0.1561 0.0256 0.0665 0.4499 
ARSENIC 45 1 1 01/01/01 - 02/25/02 0.0000 0.0000 2.22 0.0018 0.0011 0.0002 0.0016 0.0033 
BERYLLIUM NO AVAILABLE DATA 
CADMIUM 53 2 1 01/07/01 - 02/25/02 0.0000 0.0000 0.00 0.0013 0.0009 0.0001 0.0011 0.0030 
CHROMIUM 575 3 2 01/03/95 - 02/19/02 0.0005 0.0010 50.78 0.0045 0.0050 0.0008 0.0030 0.0150 
LEAD 2422 14 9 01/03/95 - 02/25/02 0.0004 0.0020 31.63 0.0081 0.0090 0.0030 0.0050 0.0230 
MANGANESE 4303 21 15 01/03/95 - 02/25/02 0.0003 0.0012 35.74 0.0055 0.0076 0.0020 0.0030 0.0190 
MERCURY NO AVAILABLE DATA 

Metal 
(fine) 

NICKEL 612 4 3 01/03/95 - 02/25/02 0.0002 0.0010 38.73 0.0040 0.0040 0.0007 0.0030 0.0120 
ARSENIC NO AVAILABLE DATA 
BERYLLIUM 
CADMIUM NO AVAILABLE DATA 

CHROMIUM 3986 16 11 01/03/95 - 12/29/00 0.0010 0.0010 49.10 0.0035 0.0031 0.0020 0.0020 0.0090 
LEAD 3446 11 8 01/03/95 - 12/29/00 0.0020 0.0020 59.90 0.0044 0.0024 0.0030 0.0040 0.0090 
MANGANESE 3661 16 10 01/03/95 - 12/29/00 0.0010 0.0010 5.65 0.0135 0.0112 0.0020 0.0110 0.0360 
MERCURY NO AVAILABLE DATA 

Metal 
(coarse) 

NICKEL 2605 8 7 01/03/95 - 12/29/00 0.0010 0.0010 61.57 0.0031 0.0021 0.0020 0.0020 0.0070 

SVOC 1 HEXACHLOROBENZENE NO AVAILABLE DATA 
 
1  No data were available for all other SVOC pollutants.  
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Table 2.1b  Summary of combined archive, PAMS, and pilot monitoring data for conducting secondary Stage 1 analyses. 1 
 

Method Detection Limit (MDL) Above-MDL Concentration Distribution (:g/m3) 
Class Pollutant 

Number of 
Observa-

tions 
Number 
of Sites 

Number of 
Counties Date Range of Data 

Min Max 
% of 
Data 

Below 
Mean Standard 

Deviation 
5th 

Percentile Median 95th 
Percentile 

ACETALDEHYDE 1082 26 22 08/25/95 - 06/25/02 0.0007 1.2984 7.6710 1.5644 1.3612 0.3009 1.1476 3.9635 
ACROLEIN 2562 32 15 01/03/95 - 05/26/02 0.0070 1.3757 87.8610 0.3300 0.2910 0.0080 0.3161 0.7197 Carbonyl 
FORMALDEHYDE 479 10 7 08/25/95 - 06/25/02 0.0034 1.2989 32.9854 2.7200 1.8860 0.2579 2.3694 6.0182 
1,1,2,2-TETRACHLOROETHANE 9282 111 58 01/03/95 - 05/26/02 0.0200 13.7244 86.8132 0.3566 0.2402 0.1442 0.3432 0.5492 
1,2-DIBROMOETHANE 14889 177 96 01/03/95 - 05/26/02 0.0200 15.3606 75.8278 0.1656 0.1968 0.0768 0.0768 0.3842 
1,2-DICHLOROETHANE 28919 243 111 01/03/95 - 05/26/02 0.0100 8.0916 77.0324 0.1788 0.4925 0.0202 0.0809 0.4047 
1,2-DICHLOROPROPANE 25705 232 106 01/03/95 - 05/26/02 0.0100 9.2388 88.4925 0.1516 0.1377 0.0231 0.1386 0.2311 
1,3-BUTADIENE 10758 145 72 01/03/95 - 05/26/02 0.0100 10.0000 68.5722 0.4238 1.0971 0.0111 0.2654 1.1061 
ACRYLONITRILE 3218 48 32 01/03/95 - 05/26/02 0.0390 2.1693 85.7365 0.6432 0.6031 0.0824 0.4555 1.9965 
BENZENE 4360 69 44 01/03/95 - 04/26/02 0.0100 6.3868 33.0275 2.7325 15.9370 0.1917 0.9580 5.4308 
CARBON TETRACHLORIDE 21268 175 74 01/03/95 - 06/25/02 0.0200 12.5773 65.9112 0.6924 0.3069 0.3146 0.6917 1.0695 
CHLOROFORM 28793 252 113 01/03/95 - 06/25/02 0.0100 9.7612 78.9810 0.2607 1.0279 0.0488 0.1025 0.5859 
CIS 1,3-DICHLOROPROPENE 1619 28 13 01/01/01 - 05/26/02 0.0544 9.0736 99.8147 0.2420 0.1048 0.1815 0.1815 0.3629 
TRANS 1,3-DICHLOROPROPENE 1602 28 13 01/01/01 - 05/26/02 0.0590 9.0736 99.9376 3.1758 - 3.1758 3.1758 3.1758 
ETHYLENE OXIDE 343 5 2 01/01/01 - 06/25/02 0.1189 0.1351 35.5685 0.2658 0.1693 0.1315 0.2089 0.6051 
METHYLENE CHLORIDE 17241 171 87 01/03/95 - 06/25/02 0.0100 6.9444 65.1296 2.2236 14.3395 0.1355 0.7989 6.0069 
TETRACHLOROETHYLENE 24377 226 110 01/03/95 - 06/25/02 0.0100 13.5593 81.6343 1.0574 1.4143 0.0882 0.6782 3.1864 
TRICHLOROETHYLENE TCE 21332 195 91 01/03/95 - 06/13/02 0.0100 10.7433 82.6739 0.2993 0.3550 0.1021 0.2149 0.8061 

VOC 

VINYL CHLORIDE 32065 278 122 01/03/95 - 05/26/02 0.0100 5.1104 81.6560 0.2442 0.7501 0.0128 0.1022 0.3834 
ARSENIC 6522 49 19 01/03/95 - 02/25/02 0.0000 4.0000 96.0902 0.0029 0.0010 0.0007 0.0030 0.0040 
BERYLLIUM 
CADMIUM NO AVAILABLE DATA 

CHROMIUM 36706 124 84 01/03/95 - 02/25/02 0.0005 2.0000 99.0737 0.0026 0.0013 0.0020 0.0020 0.0050 
LEAD 34867 113 80 01/03/95 - 12/29/00 0.0020 3.0000 94.0832 0.0057 0.0038 0.0030 0.0050 0.0120 
MANGANESE 32977 106 78 01/03/95 - 12/29/00 0.0010 2.0000 96.2550 0.0032 0.0032 0.0020 0.0030 0.0060 
MERCURY 5984 26 15 01/03/95 - 12/29/00 0.0020 0.0020 99.8663 0.0030 - 0.0030 0.0030 0.0030 

Metal 
(fine) 

NICKEL 36675 123 84 01/03/95 - 12/29/00 0.0010 2.0000 98.7566 0.0030 0.0013 0.0020 0.0030 0.0055 
ARSENIC 5984 26 15 01/09/95 - 12/29/00 0.0020 0.0020 99.8830 0.0037 0.0015 0.0030 0.0030 0.0070 
BERYLLIUM 
CADMIUM NO AVAILABLE DATA 

CHROMIUM 1998 10 6 01/03/95 - 12/29/00 0.0010 0.0010 51.3514 0.0030 0.0012 0.0020 0.0030 0.0050 
LEAD 2538 15 10 01/03/95 - 12/29/00 0.0020 0.0020 65.8786 0.0052 0.0030 0.0030 0.0040 0.0120 
MANGANESE 2323 10 7 01/03/95 - 12/29/00 0.0010 0.0010 3.7882 0.0138 0.0103 0.0030 0.0110 0.0340 
MERCURY NO AVAILABLE DATA 

Metal 
(coarse) 

NICKEL 3379 18 12 01/03/95 - 12/29/00 0.0010 0.0010 80.7635 0.0023 0.0006 0.0020 0.0020 0.0030 
SVOC 1 HEXACHLOROBENZENE 255 7 2 04/19/01 - 12/27/01 0.0476 0.0951 100.0000 - - - - - 

 
1  No data were available for all other SVOC pollutants.  
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2.2  Other Data 
 
 As part of the project’s effort to predict a background estimate for each county in the 
United States, many different potential explanatory variables were examined from several data 
sets that were provided by EPA’s OAQPS.  Each of these variables was plotted against the 
background estimates for each county that had a stage one background estimate.  A simple 
regression was also run on each of the variables.  The plots and the results of the regressions 
were used to determine variables that may be useful in predicting spatially varying background 
estimates nationwide.  Table 2.2 is a list and brief description of all of the variables that were 
considered.  The variables that were initially chosen for modeling background are shown in 
italics.  The variable pop_density, which is shown in bold, was ultimately chosen to replace the 
initial four predictor variables as the sole independent variable in the regression as described in 
Section 3.2. 
 
Table 2.2  Variables considered for analysis (county-level aggregation). 
 

Variable Description 
total Total emissions (tons per year) 
lat_ctr County centroid latitude (degrees N) 
lon_ctr County centroid longitude (degrees W) 
county_area County area (km2) 
population County population 
pop_density Population density (people km2) 
housing County housing units 
forests County forest area (km2) 
forest_frac Fraction of county covered by forests 
ag_land County agricultural land area (km2) 
ag_frac Fraction of county covered by agricultural land 
urban County urban land area (km2) 
urban_frac Fraction of county covered by urban land 
rural County rural land area (km2) 
rural_frac Fraction of county covered by rural land 
land County land area (km2) 
land_frac Fraction of county covered by land 
water County water area (km2) 
water_frac Fraction of county covered by water 
commercial County commercial area (km2) 
Industrial County industrial area (km2) 
institutional County institutional area (km2) 
comm_frac Calculated variable: commercial/(commercial + industrial + institutional) 
com_ind_inst Sum of commercial, industrial, and institutional area (km2) 
avg_max Average maximum temperature (K) 
avg_min Average minimum temperature (K) 
mean_temp Average mean temperature (K) 
precip annual rainfall (cm) 
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3.0 APPROACH 
 
 The overall goal for this project is to estimate annual average background concentrations 
across the nation for the 33 urban HAPs.  As defined in the introduction, background accounts 
for natural sources, nearby sources (farther than 50 km), and unidentified sources.  Nearby 
sources include transport from distant cities, trans-border transport for locations near Canada and 
Mexico borders, and transport from around the globe.  Unidentified sources include sources not 
in the emissions inventory used by the model. 
 
 Before trying to indicate how background concentrations might vary spatially (or 
temporally) with respect to various explanatory factors, it is important to first consider how 
monitoring data from a given site or area can provide evidence of local background 
concentration levels.  Once this question has been answered, a statistical algorithm can be 
developed to estimate background levels at different localities.  This represents the first stage of 
the approach, which can be considered descriptive in nature and is discussed in further detail 
within Section 3.1.  With Stage 1 results in hand, it is then possible to investigate how estimated 
background levels might vary from one local area to the next and, in turn, extrapolate the results 
to obtain nationwide estimates.  This represents the second stage of the approach, which can be 
considered explanatory in nature and is discussed in further detail within Section 3.2. 
 
3.1  Stage 1:  Descriptive 
 
 Since the goal is to estimate annual (or typical) background concentrations, then by 
definition the approach should not seek to identify what occurs during exceptional events.  
Rather, the approach needs to identify the typical (or area-wide, long-term) background for a site 
or area. 
 
 With the above perspective in mind, the decision was made to avoid approaches that rely 
on severely restricting the monitoring data to a small subset of observations corresponding to 
certain events (e.g., days with persistent winds, sharp frontal passages, or the right wind 
trajectory).  The idea behind such approaches is that background levels are more clearly 
discernible under certain preconceived notions about ideal conditions.  The appeal of these 
approaches is the atmospheric science, or explanatory nature, underlying their logic.  See, for 
example, “Estimation of Hazardous Air Pollutant Background Concentrations Using Ambient 
Data:  A Pilot Study,” EPA Contract No. 68-D-98-052, Work Assignment No. 1-16, 
August 1999.  Their disadvantages include (1) the potential analysis burden associated with 
collecting meteorological or meta-information to identify extreme events and (2) a reduction in 
the extensiveness of results due to the failure of many sites or areas to exhibit the required 
extreme event data.  In addition, evidence of background concentration levels is likely contained 
within all measurements, so any approach that eliminates much of the monitoring data leads to a 
deliberate reduction of available information about background. 
 
 Another somewhat less desirable class of approaches might be described as empirical 
methods, which amount to calculating some percentile of a given set of monitoring data and 
treating the resulting threshold as an estimate of background.  For example, use the 5-10 percent 
lowest measurements from a given data set, calculate the mean and standard deviation of those 
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values, then treat the results as a background and uncertainty estimate, respectively.  The appeal 
of such approaches is their simplicity of application.  (This advantage should not be discounted 
given the multitude of HAPs and volumes of monitoring data to be analyzed in projects such as 
this.)  One disadvantage of such approaches is the fact that, a priori, they require an arbitrarily 
defined empirical metric to represent background.  Stakeholders must agree on such a metric, yet 
there will likely be no theoretical or intuitive justification for any given specification (e.g., What 
might best represent background, the 1st, 5th, or 10th percentile of a year’s worth of monitoring 
data?).  Although somewhat less appealing, note that this type of approach is pursued as a 
secondary (or back-up) analysis in this project to address the many cases of (1) too few 
observations or (2) too much below-MDL data, for which the primary analysis approach (see 
discussion below) could not be applied.  See subsection 3.1.7 for further discussion of this 
secondary analysis approach. 
 
 Considering the pros and cons of the above approaches, the decision was made to pursue 
(as a primary analysis approach) a method that:  (1) uses all the information about background 
that exists within a full set of monitoring data (above or below an MDL); (2) is simple enough to 
be applied on a routine basis in practice; and, most importantly, and (3) is intuitively consistent 
with the ASPEN model’s conceptualization and treatment of background levels.  Specifically, 
the conceptual view of the proposed approach is that local sources add to a constant background.  
How much the sources add will vary considerably from day-to-day and site-to-site in response to 
meteorological conditions, total source output, and other local factors.  For urban areas, for 
example, it is assumed that, except for very rare instances, all data values contain a constant 
background contribution and a varying, non-negative source-oriented contribution.  Similar 
behavior may be assumed for areas and sites that are more rural or background-like in nature, but 
to a lesser degree (i.e., source-oriented contributions will likely occur less often and typically be 
less noticeable).  Notice that this conceptual view of monitoring data is consistent with the 
ASPEN model approach of using source emissions and meteorology to estimate source-oriented 
concentrations, which are then thought of and modeled as additions to some persistent 
background level. 
 
 The first challenge in applying the above conceptual view to monitoring data is to 
identify a suitable parametric statistical distribution that is both appropriate for the monitoring 
data to which it is to be applied and capable of outputting the desired parameter of interest 
(i.e., background).  Non-parametric statistical approaches were not considered, due in part to the 
intent to treat background as a “parameter” to be estimated in the approach.  Subsection 3.1.1 
describes the distribution proposed for meeting these needs.  The next challenge lies in actually 
fitting such a distribution to a given set of data in order to obtain the desired parameter estimates.  
Subsection 3.1.2 describes the approach taken for this project.  Next, subsection 3.1.3 discusses a 
modification to the approach to address below-MDL data issues.  Then, subsection 3.1.4 
highlights several other issues that impact full-scale implementation of the proposed approach 
and, therefore, require treatment.  Subsection 3.1.5 provides a detailed example for benzene in 
Portland, Oregon.  Finally, in part to test the legitimacy of using data sampled before or after 
calendar year 1999, subsection 3.1.6 examines year-to-year consistency in background 
concentration estimates for a benzene case study example. 
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 As mentioned above, subsection 3.1.7 discusses in detail a secondary analysis approach 
that was necessarily pursued to address those air toxics monitoring data cases for which the 
primary analysis could not be applied.  Such cases typically consist of too few total observations 
or too many below-MDL observations. 
 
3.1.1  Statistical Distribution Assumptions 
 
 It is desired to identify a statistical distribution to represent monitoring data for this 
project.  The resulting distribution must adequately approximate the data’s behavior.  It must also 
provide an estimate for background.  To these ends, what might be described as a shifted gamma 
distribution, also known as a probability density function (pdf), was pursued.  A detailed 
description of the gamma pdf and its properties may be found in Cassella, G., and Berger, R. L., 
(1990), “Statistical Inference,” Duxbury Press, Belmont, California.  (See Figure 3.3a for an 
example.) 
 
 In general, an ordinary gamma distribution has support on the real interval [0, ∞).  That 
is, it applies to variables with a non-negative range of values.  The gamma distribution is defined 
by two parameters, a shape parameter typically represented by the symbol α and a scale 
parameter typically represented by the parameter β.  The specific values of the parameters α 
and β impact the appearance of the gamma pdf, and variations of these parameters provide for a 
very flexible family of data-modeling distributions.  The shifted gamma distribution introduces a 
third parameter, call it µ, which changes the support of the distribution from that of the ordinary 
gamma, i.e., from [0, ∞) to [µ, ∞).  The basic shape of the gamma pdf is left unchanged by such 
a shift.  In the current context, µ is assumed to be non-negative; however, this constraint is not 
required in general. 
 
 Although not substantiated explicitly in this document, it is widely accepted that 
environmental data in general, and air quality monitoring data in particular, can typically be well 
approximated by a log-normal statistical distribution.  Furthermore, the behavior modeled by a 
log-normal pdf, including non-negative support, asymmetry, and a heavy right-tailed distribution 
(i.e., occasional extreme large values), may be modeled similarly via a gamma distribution with 
an appropriate specification of α and β.  For these reasons, the gamma pdf was also identified as 
a reasonable statistical distribution choice for this stage’s approach.  Note that asymmetry in 
environmental data is by no means guaranteed, and the gamma family of pdfs is flexible enough 
to address both asymmetric and symmetric data.  Both models were considered explicitly, but 
early modeling efforts revealed application difficulties associated with fitting the parameters of 
the log-normal distribution in conjunction with addressing the other data analysis issues 
discussed below.  Further, the gamma distribution consistently fit the initial data used to develop 
the Stage 1 model (see the example below). 
 
 While an ordinary gamma (or log-normal) distribution might be used to statistically 
model monitoring data in general, the additional complexity of the shifted gamma distribution 
was chosen for this particular application.  The advantage of this choice is that the application of 
a shifted distribution is consistent with the conceptual approach of ASPEN discussed above.  
More specifically, statistically modeling monitoring data as a shifted gamma distribution yields 
an explicit and direct estimate of background concentration levels from ASPEN’s viewpoint ― 
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namely µ.  So, in summary, the shifted gamma distribution appears most appropriate for serving 
the dual purposes of adequately approximating monitoring data behavior and providing a direct 
estimate for background. 
 
 To illustrate the above discussion and support its logic, consider an example of benzene 
concentrations observed at five monitoring sites in Portland, Oregon, from July 1999 through 
July 2000.  Figure 3.1 summarizes the data via overlaid, site-specific time series plots.  While 
there are high and low concentration periods, there is no obvious seasonal trend in the Portland 
data.  Notice that there is a distinct lack of data below 0.3 µg/m3, about half of the data are 
between 0.3 and 2 µg/m3, and the remainder of the data are spread out progressively thinner from 
2 to 9 µg/m3.  Upon first glance, this behavior would appear consistent with a conceptual 
viewpoint and statistical approach of a constant background and a distribution of source-oriented 
additions to that background. 
 

 
Figure 3.1  Benzene monitoring data (µg/m3) from five Portland, Oregon, monitoring 

stations operating from July 1999 through July 2000. 
 
 
 Figure 3.2 presents a quantile-quantile plot (Q-Q plot) of a gamma distribution actually 
fit to the benzene data at the Downtown site.  In general, Q-Q plots demonstrate the fit, or lack 
thereof, of a proposed statistical distribution to the empirical behavior of a given set of data.  
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Straight lines in such plots are indicative of a good fit.  Other diagnostics include histograms or 
some type of statistical goodness-of-fit test (to date, not done for this example).  Figure 3.2 
supports the assertion that the shifted gamma pdf is, in fact, a reasonable choice for the statistical 
distribution to be used for the approach to this project.  It also shows that the data (all the data) 
contain a positive shift, or background.  All of the data for this site are shifted up approximately 
0.75 µg/m3 from a line through the origin.  This positive shift is the background in the proposed 
model.  (See Table 3.1 also.) 
 

 
Figure 3.2  Quantile-quantile plot demonstrating the fit of a gamma distribution to 

benzene data generated from the Downtown site in Portland, Oregon 
(July 1999 – July 2000). 

 
 
3.1.2  Applied Estimation Approach 
 
 In practice, the approach taken for this project is to fit the shifted gamma distribution 
model using the method of maximum likelihood estimation.  A detailed description of maximum 
likelihood estimation may be found in Cassella, G., and Berger, R. L. (1990), “Statistical 
Inference,” Duxbury Press, Belmont, California.  The method is based on the probabilistic 
structure of the model.  There are three parameters that are fit in the process:  the background 
(µ), the shape parameter (α), and the scale parameter (β).  These parameters define the shifted 
gamma distribution (or pdf) discussed in subsection 3.1.1.  The parameters may be fit (estimated) 
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through an iterative procedure using various softwares that optimize an object function.  The 
object function, called a likelihood, is a mathematical description of the probabilistic structure of 
the data.  For this project, the NLMIXED procedure in the SAS® software system was employed. 
 
 The likelihood has the same formula as the data’s assumed probability density 
(i.e., shifted gamma distribution), but with a different interpretation.  As a pdf, the parameters 
that are to be estimated are treated as fixed constants and the data treated as random variables.  In 
that setting, the formula describes the probability of observing data in any given range.  As a 
likelihood, the data are treated as fixed constants (i.e., the actual data observed via monitoring 
are fixed and known once observed) and the parameters are treated as variables.  The maximum 
likelihood estimates are the ones that maximize the likelihood, and essentially represent the 
parameter values that would assign the highest probability to the observed monitoring outcome. 
 
 For illustration, consider a simple example.  Suppose a weighted coin is flipped ten times.  
The probability that X out of the ten flips is heads is a function of X and the long-term 
probability that the coin comes up heads (say p).  When considering the probabilities associated 
with the different potential values of X, the parameter p is treated as a constant.  In maximum 
likelihood estimation, once data are observed, the X becomes a known value and p is treated as 
unknown.  To estimate p when in fact 8 out of 10 heads are observed, conceptually the 
probability of observing 8 heads out of 10 flips is calculated for many different candidate values 
of p.  The value of p that is most consistent with the observed data result of 8 is the maximum 
likelihood estimate.  For this example, 80 percent is the maximum likelihood estimate for the 
long-term probability, p, of obtaining a result of heads from the given coin.  That is, the evidence 
from the data are suggestive of a coin that yields heads 80 percent of the time, although for this 
example a mere ten flips is obviously not strong evidence. 
 
3.1.3  Handling Data Below the Minimum Detection Level (MDL) 
 
 Recall the discussion of the shifted gamma distribution in subsection 3.1.1.  The form of 
such a model and likelihood/distribution may be written as follows: 
 
    L(µ, α, β) = “shifted gamma” (i.e., yi = µ + εi ) ,  (Model 1) 
 
where yi represents the ith individual HAP concentration; µ represents the true unknown 
background concentration level; and εi represents short-term, source-oriented “shocks” that 
produce positive deviations from the long-term background.  (See Figure 3.3a.)  The εi’s are 
assumed to behave according to an ordinary gamma distribution with parameters α and β, 
implying the yi’s have a shifted gamma distribution.  (See subsection 3.1.1 above for further 
details.) 
 
 More generally, the effects of measurement detection limits must also be considered.  
Model (1) above ignores MDL issues, hence, it holds only part of the time.  Furthermore, MDL 
values are difficult to quantify.  The usual laboratory method involves relating the MDL to a 
measurement error.  For modeling purposes here, such a point of view is adopted.  Specifically, it 
was decided that any data within a threshold of background plus two times the reported MDL 
(µ+2*MDL) should be treated as random noise, or at least too imprecise to use individually for 
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estimating the parameters of the assumed shifted gamma distribution.  Note that this viewpoint is 
consistent with what is commonly referred to as a lowest calibration level (LCL), often defined 
by laboratories as 3*MDL.  Many laboratories do not report below-LCL data due to apparent 
high uncertainties.  In effect, all such data are censored and treated simply as an indicator of 
“below a threshold.”  Although non-numerical in nature, such censored data may still be used in 
the statistical modeling process by making the proportion of the data below the threshold 
consistent with the data above the threshold. 
 
 In general, careful consideration of how to treat below-MDL data (or, more generally, 
censored data) allows for the entire data set to be used in the statistical analysis regardless of 
MDL related issues.  However, the data must be treated in a dichotomous fashion due to the 
MDL issues (or, more generally, laboratory uncertainty issues) and the associated censoring 
threshold discussed above.  Specifically, Model (1) is first modified as follows:  
 

L µ α, β,( ) "shifted gamma" yi µ 2 MDL⋅+≥if

"constant" otherwise

=

   
 (Model 2) 

 
where yi and µ are defined to be the same as in Model (1).  (See Figure 3.3b.)  In application, the 
NLMIXED procedure in the SAS® software system iteratively searches until converging to a 
numerically stable solution for the parameters α, β, and µ. 
 
 Note that during the initial model development phase, it was recognized that the 
numerical model fitting procedure of SAS® did not always converge.  The decision to censor 
data up to a threshold of (µ+2*MDL) served to stabilize this procedure, yielding consistent 
results for virtually every data set considered.  The problem came from needing to know if the 
censoring threshold was larger or smaller than the shift (background) before fitting the models, 
in particular, when the difference between them was small.  By using (µ+2*MDL), the censoring 
threshold is always greater than the shift (background).  Sensitivity analyses were conducted, 
which suggested that background conclusions were qualitatively unaffected under a range of 
censoring thresholds, including (µ+1*MDL) and (µ+1.5*MDL).  Also note that when, in reality, 
µ is large relative to the data’s MDL, then this approach approximately simplifies to that of 
Model (1).  In other words, if a given data set does not include data near or below its reported 
MDL, then the statistical modeling approach for addressing below-MDL data reduces to the 
simpler approach for addressing data without MDL issues. 
 
 While the above model can be fit numerically, the dichotomous treatment of the data 
results in a discontinuity in the likelihood.  This discontinuity at (µ+2*MDL) can cause a 
numerical instability in the estimate of the standard error of the background parameter.  Hence, a 
slight modification to the likelihood was introduced.  The modification introduced was to 
connect the two portions of the likelihood with a positive, finitely-sloped line over a short range; 
namely, a range of one MDL.  (See Figure 3.3c.)  This ensures that the object function discussed 
in subsection 3.1.2 is continuous.  Since the function being optimized is now different than for 
Model (2), the estimates are different from Model (2) as well.  However, in most of the test cases 
considered, the estimates obtained without the continuity correction [i.e., Model (2)] were within 
a 95 percent confidence interval of the estimates obtained with the continuity correction.  
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Moreover, the uncertainty of each background estimate is now estimable for almost all cases.  In 
summary, the likelihood used to model the data is modified slightly from that of Model (2) to 
take the following form: 
 

L µ α, β,( ) "shifted gamma" yi µ 2 MDL⋅+≥if

"linear" µ MDL+ yi≤ µ 2 MDL⋅+<if

"constant" otherwise

=

   

 (Model 3) 

 
 Note that there are still some cases where the background estimate’s associated standard 
error estimate is not calculable or is flagged by SAS® as highly uncertain.  In these cases, the 
decision was made to report the standard error for the background estimate as the maximum of:  
(1) the uncertain standard error given by SAS®, (2) one-half of the background estimate, and 
(3) one-half of the MDL.  This approach provides a conservative uncertainty estimate in such 
cases.  That is, uncertainty will tend to be over-estimated. 
 
 Consider Figures 3.3a, 3.3b, and 3.3c to illustrate the approach and the differences among 
Models (1), (2), and (3).  Figure 3.3a displays a shifted gamma pdf for uncensored data, or data 
having no MDL issue, with parameters α=1.5, β=0.75, and µ=0.4.  The appearance of the 
distribution in Figure 3.3a corresponds to Model (1).  In comparison, Figure 3.3b displays a 
shifted gamma pdf as modified for censored data, or data having an MDL issue, with the same α, 
β, and µ parameters as above.  The appearance of the pdf in Figure 3.3b corresponds to 
Model (2).  Finally, Figure 3.3c displays a continuous, shifted gamma pdf as modified for 
censored data, again with the same α, β, and µ parameters as above.  The appearance of the pdf 
in Figure 3.3c corresponds to Model (3).  (Note that the values of the α, β, and µ parameters in 
these examples were chosen as reasonable values for benzene based on the data used during 
Stage 1 model development.) 
 
 Of note, the lower portion of the solid curve in Figures 3.3b and 3.3c represents the 
modeling of all the censored data, jointly, as a random probability of concentrations falling 
below the (µ+2*MDL) threshold.  In modeling the data’s entire distribution, the total area under 
this portion of the curve in these two cases is fixed so that the total area under the entire pdf 
curve is equal to one, as required for a pdf.  However, as discussed above, observe that the 
associated likelihood has a discontinuity at the censoring threshold of (µ+2*MDL) in the case of 
Model (2) as depicted by Figure 3.3b.  As stated above, in application, this modeling approach 
typically lacked the ability to estimate the uncertainty of background estimates, hence, the 
decision was made to apply Model (3) as depicted by Figure 3.3c. 
 
 Also of note, recognize that the distributions (pdfs) displayed in Figures 3.3a, 3.3b, 
and 3.3c are, conceptually at least, no more complicated than the shape and associated 
interpretation of the familiar bell-shaped curve of the normal distribution (pdf).  Any perceived 
complexities arise from (1) the asymmetry of the curves, (2) the positive shift of the curves to 
values above zero, and (3) the need to work with censored data.  Respectively, these 
complexities are considered necessary in the Stage 1 approach to (1) reasonably model the true 
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nature of the monitoring data, (2) explicitly estimate background, and (3) properly handle 
below-MDL data and associated issues. 
 
 In closing this subsection’s discussion, it is noted that the primary statistical methodology 
discussed thus far, while attempting to address below-MDL data, will likely fail to provide a 
solution when too much below-MDL data are present.  Regardless of MDL issues, it will also 
suffer from too few total observations in a given data set.  Specifically, the decision was made to 
apply this primary approach only in those cases for which at least 20 above-MDL observations 
are present for a given pollutant at a given monitoring site.  This decision was made based on 
preliminary model development using benzene and carbon tetrachloride data.  Subsection 3.1.7 
below discusses the secondary data analysis approach necessary to address monitoring data cases 
not handled by the preferred primary approach, mainly cases of too few total observations or too 
many below-MDL observations. 
 

 
Figure 3.3a  Example of a shifted gamma distribution (pdf) with parameters α=1.5, 

β=0.75, and µ=0.4:  i.e., Model (1). 
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Figure 3.3b  Example of a censored, shifted gamma distribution (pdf) with parameters 

α=1.5, β=0.75, µ=0.4, MDL=0.1, and a censoring threshold of µ+2*MDL:  
i.e., Model (2). 

 
 

 
Figure 3.3c  Example of a continuous, censored, shifted gamma distribution (pdf) with 

parameters α=1.5, β=0.75, µ=0.4, MDL=0.1, and a censoring threshold of 
µ+2*MDL:  i.e., Model (3). 
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3.1.4  Other Issues 
 
 The purpose of this subsection of the report is to describe two other important decisions 
that were made during the development of the Stage 1 approach.  Both decisions were arrived at 
from the perspective of routine, large-scale implementation.  That is, the reality of this project is 
that the approach is to be applied to approximately one-half million monitoring observations, 
spanning hundreds of monitoring sites and associated counties, and covering up to 33 distinct 
HAPs.  Given budget and time constraints, this level of analysis burden requires a practical 
approach or algorithm that, in some sense, can be routinely applied over and again without 
repetitive, painstaking oversight on the part of the responsible data analyst.  With that 
perspective in mind, the following two decisions were made. 
 
 First, it was decided that the approach summarized in subsections 3.1.1 through 3.1.3 
would always be applied on a site-specific basis.  Meanwhile, to be consistent with ASPEN 
model predictions and to facilitate the approach of Stage 2 (see discussion in Section 3.2 below), 
background estimates in the current stage are sought on a countywide scale.  As a result, final 
Stage 1 background estimates are obtained from an average of site-specific estimates within a 
given county in those cases where multiple monitors provide data for that county.  Based on 
initial efforts to develop Stage 1, the advantage of this approach is that reliable background 
estimates can be obtained routinely in almost every case without concern for convergence or 
other issues associated with using the NLMIXED procedure in the SAS® software system.  Note 
that other approaches for addressing below-MDL data, such as imputation via simulation, were 
considered.  Such approaches might lead to application methods that do not suffer from 
convergence issues, and could be considered further in the future. 
 
 A more appealing approach from a statistical perspective would be to jointly model all 
the sites within a given county; however, such an approach is more complex as it requires 
additional model parameters to account for differences between the data distributions of multiple 
sites (i.e., site effects).  Initial modeling development efforts revealed that this more appealing 
but more complex approach could lead to convergence difficulties for a larger number of cases 
during application.  Therefore, the decision was made to pursue the simpler approach of 
obtaining site-specific background estimates and then averaging across sites within counties.  In 
general, we expect the final background estimation results to be similar for the two approaches. 
 
 The second decision made with large-scale implementation in mind was to eliminate the 
highest measurement or top one percent of the data (whichever is greater) from each site’s data 
set prior to analysis.  The reason for this decision was to provide an improved fit of the shifted 
gamma distribution (see subsection 3.1.1) to some of the data sets being analyzed.  Recall the 
quantile-quantile plot of Figure 3.2.  As discussed in detail in “Selecting Inorganic Constituents 
as Chemicals of Potential Concern at Risk Assessments at Hazardous Waste Sites and Permitted 
Facilities,” deviations from a straight line in such plots are suggestive of multiple populations 
contributing to the overall distribution of a given data set (California EPA, 1997).  For example, 
under the right environmental or atmospheric conditions (e.g., wind direction, day of week, etc.), 
a given monitoring site may experience a wholly different range or distribution of concentrations 
from what might be considered more typical for that site.  It is these more typical concentrations 



Final Background Concentrations Report 21 June 13, 2003 

(i.e., the lower portion or lowest distinct line of a quantile-quantile plot like Figure 3.2) that are 
most relevant to the goals of this project. 
 
 A potentially more appealing approach would be to fit a shifted gamma distribution to 
each data set, study the resulting quantile-quantile plot, determine whether a differential 
population effect is in fact present, and, if so, determine the optimal cut-off point for excluding 
extreme data at the high end of the distribution.  Obviously such an approach would be 
extremely time consuming and, therefore, impractical for applying across hundreds of 
monitoring sites and up to 33 distinct HAPs.  Moreover, initial efforts to develop Stage 1 using 
benzene and carbon tetrachloride data, including the investigation of a number of 
quantile-quantile plots, suggested that such differential population effects were typically 
confined to a single outlier or very few observations at the high end of a given data set’s 
distribution.  These few observations simply did not match well with the distributional behavior 
of the remainder of the data or the shifted gamma distribution used to model that behavior.  
Hence, the decision was made to eliminate the highest concentration or top one percent of the 
data as part of the approach’s automated procedures.  In general, as the goal of this project and 
primary purpose of the chosen statistical models is to obtain a sound characterization of the 
lower portion of each data set’s distribution (i.e., background), this decision regarding the 
highest few observations is expected to have very little impact on any of the final background 
estimation results. 
 
3.1.5  Example:  Estimating Background for Benzene in Portland, Oregon 
 
 The approach summarized in subsections 3.1.1 through 3.1.4 was applied to benzene 
monitoring data in Portland, Oregon.  Table 3.1 provides a numerical summary of the data 
(mean, standard deviation, minimum, and maximum concentration by site), and the results 
(estimate and standard error) of estimating background in this case.  Figure 3.4 provides similar 
information visually (see Figure 3.1 also).  The box plots in Figure 3.4 indicate each site’s 
minimum, 25th percentile, median, 75th percentile, and maximum concentration.  The horizontal 
reference line in the figure identifies the resulting countywide background estimate for Portland 
(0.6282 µg/m3).  As stated in subsection 3.1.4, the countywide background estimate is simply an 
average of the site-specific background estimates within a given county.  To obtain an 
approximate 95 percent confidence interval for any of the background estimates provided in 
Table 3.1, add and subtract from the estimate a multiple of 1.96 (or 2) times its associated 
standard error.  (Note that such a confidence interval assumes a normal distribution, which may 
not be true.) 
 
 For this example, notice that the Beaverton site-specific background estimate is lower 
than the background estimates of the other sites.  The site-specific background estimates for the 
remaining four sites, with the possible exception of the Downtown site, are quite consistent.  
This is true despite the differences between the lower portions of their respective data 
distributions, as evidenced by the minimum values of Table 3.1 and the box plots of Figure 3.4.  
The similarity of background estimates among these four sites lends some credence to the 
approach presented in subsections 3.1.1 through 3.1.4.  Furthermore, the difference in the 
Beaverton site’s background result is to be expected based on Battelle’s prior understanding of 
this site.  Specifically, Beaverton is in a different, and more rural, county with a series of hills 
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separating it from the primary downtown area of Portland and the rest of the monitoring sites.  
Inclusion of this site in this example serves to pull down the Portland-wide background estimate 
to a value of 0.6282 µg/m3.  However, based on the approach summarized above in 
subsection 3.1.4, the Beaverton result is ultimately attributed to a different county, namely 
Washington county.  The results from the remaining sites are averaged and attributed to their 
associated county, namely Multnomah.  Refer to Table A.10 of Appendix A for the project’s 
complete set of countywide benzene background results in Oregon counties (recognizing that 
data from other sites or years may be incorporated as well.) 
 
 Also of note, observe the relatively large standard error for the Beaverton background 
estimate in Table 3.1.  This site’s model, as applied in SAS®, did not produce a reliable standard 
error estimate by default.  As discussed in subsection 3.1.3, an alternative standard error was 
therefore reported in this case, which led to the inflated (conservative) uncertainty result for 
Beaverton’s background in Table 3.1 (and, implicitly, in Table A.10 of Appendix A). 
 
Table 3.1  Numerical summary of July 1999 through July 2000 Portland, Oregon, 

benzene monitoring data (µg/m3) and background modeling results 1 
 

Site Sample 
Size Mean Standard 

Deviation Max Min Background 
Estimate 

Standard 
Error 

Beaverton 56 1.3840 0.6948 3.5127 0.3832 0.4067 0.2034 
Downtown 60 1.8953 0.8908 5.1094 0.5429 0.5491 0.0593 

NW_Post Office 59 1.9204 0.8738 4.4707 0.1000 0.7359 0.0563 
N_Roselawn 52 2.0972 1.2321 7.6641 0.6067 0.7127 0.0644 
SE_Lafayette 55 2.4844 1.5601 8.9415 0.6387 0.7364 0.0784 

All Sites 282 1.9511 1.1342 8.9415 0.1000 0.6282 0.0483 
 
  1  Sample sizes and summary statistics correspond to the complete Portland benzene data set.  As 

described above in subsections 3.1.1 through 3.1.4, a small number of these observations may not be 
included in the calculation of the background estimate and associated standard error. 
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Figure 3.4  Graphical summary of July 1999 through July 2000 Portland, Oregon, 

benzene monitoring data (µg/m3) and background modeling results. 
 
 
3.1.6  Year-to-Year Consistency of Background Estimates for Benzene 
 
 The statistical approach in Stage 1 assumes that, for a given monitoring program and site, 
the background does not change substantially from year-to-year within the 1995 through 2002 
time frame of the data.  If the data were only collected for a 1-year span, as is the case for the 
Portland example, this is a non-issue (within-year variation is a different issue).  However, for 
some of the data there are sites with observations across multiple years.  In particular, the 
database contains 77 sites in 45 counties with sufficient benzene observations in each year from 
1997 through 2000 to obtain separate background estimates for each site and year.  This 
subsection considers applying the Stage 1 approach to these data on a year-specific basis in an 
effort to test the assumption of relatively constant backgrounds across the time frame in question 
(at least in the case of benzene within these 45 counties). 
 
 Table 3.2 shows summaries of both the concentration data from the 77 case study sites 
and the distribution of the county-level benzene background estimates.  Figure 3.5 shows box 
plots of the yearly concentration data from those sites and box plots of the background estimates 
by year.  There is a slight downward trend in both the mean and median concentration levels 
across the sites, which argues against an assumption of constant background levels from 1995 
through 2002.  However, the downward trends apparent in Figure 3.5 are statistically 
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insignificant in the cases of both the mean concentration level and mean background level across 
sites.  Furthermore, the magnitude of any apparent background trend, whether statistically 
insignificant or otherwise, is relatively small according to the results of Table 3.2.  In summary, 
these case study results, while important, do not cause enough concern to merit restricting the 
project’s data to calendar year 1999 only.  Such a decision would cause far more serious 
concerns for the project; namely, a significant reduction in the expansiveness of results obtained 
in Stage 1.  This issue may warrant further investigation. 
 
 The authors also note that one of the issues raised during this project has been the 
feasibility of conducting source apportionment, or another relatively straightforward statistical 
methodology, in an effort to better understand the sources contributing to background 
concentrations.  Ultimately, such findings may help determine the degree to which background 
concentration levels are impacted by emissions reductions.  The approach to this case study 
example may begin to provide some evidence toward this end.  For example, assuming that the 
slight downward trend in mean benzene levels within these 45 case study counties can indeed be 
attributed to emissions reductions, Table 3.2 and Figure 3.5 suggest that such reductions may 
have a residual effect on background levels as well.  This assertion should be viewed with 
extreme caution, however, since the results of Table 3.2 and Figure 3.5 are still in draft form.  
Also, based solely on this type of data analysis, any apparent trends cannot necessarily be 
attributed to emissions reductions.  This issue needs to be considered further.  In particular, it 
might prove useful to apply more sophisticated source apportionment techniques to obtain more 
definitive answers.  To date, the feasibility of such a source apportionment application has not 
been considered in detail. 
 
 In closing this subsection, it is noted that during discussions with the Work Assignment 
Manager (WAM) and another EPA/OAQPS Technical Advisor, it was suggested that the sort of 
exercise conducted and presented in this subsection might be worthwhile pursuing for HAPs 
other than benzene.  In particular, a longer time series for metals was mentioned.  Along with the 
issues highlighted above for benzene, such an exercise might reveal other information, such as 
trends in metals MDLs over time.  Due primarily to time and resource concerns, such activities 
have not been pursued to date.  They may be explored in the future, and are worthy of further 
consideration. 
 
Table 3.2  Numerical summary of 1997 through 2000 benzene monitoring data (µg/m3) 

and background modeling results (from the same 77 sites in 45 counties) 
 

Concentration Distribution Background 
Year Number of 

Observations Mean Standard 
Deviation Min Median Max Mean Standard 

Deviation 
1997 4,008 2.095 2.645 0.014 1.330 41.594 0.539 0.412 
1998 4,267 1.772 1.866 0.009 1.211 19.327 0.515 0.301 
1999 4,426 1.767 1.917 0.003 1.150 26.675 0.453 0.298 
2000 4,540 1.637 1.954 0.003 1.054 21.819 0.445 0.313 
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Figure 3.5  Distribution by year of benzene concentrations (top) and distribution by 

year of the countywide benzene background estimates (bottom). 
 



Final Background Concentrations Report 26 June 13, 2003 

 
3.1.7  Secondary Analysis Approach 
 
 Model (1), as discussed above, will provide a reasonable background estimate when all 
monitoring data are above their respective MDLs and enough total observations are available in a 
given data set for conducting the statistical analysis.  Models (2) and (3) extend this capability to 
address cases when some of the monitoring data are below their respective MDLs.  While these 
models extend the methodology to provide more expansive Stage 1 results, they do not handle all 
cases.  In particular, as discussed throughout this document, the primary statistical analysis 
approach presented and highlighted in subsections 3.1.1 through 3.1.6 will often fail when 
presented with too few total observations or too many below-MDL observations in a given data 
set.  Either scenario effectively amounts to too few above-MDL observations.  This primary 
methodology may also fail in a few cases when the size of the data set would appear to be 
adequate and the data are mostly above their respective MDLs, yet the given application still 
does not adequately converge to a solution.  A secondary analysis approach is required to 
provide background estimates in all of these cases. 
 
 A specific secondary approach is motivated and proposed in this subsection.  This 
approach was applied and the results are included with the results in Section 4.  The approach is 
referred to as secondary because it has not received the same level of review as the primary 
methodology discussed and highlighted above (see the discussion at the beginning of 
Section 3.1), and by necessity cannot have the same level of precision.  For the combined data 
used in Stage 1 of this project, Table 2.1a summarizes the subset of data for which the primary 
statistical approach could be applied.  Table 2.1b summarizes the remaining data for which the 
secondary, or back-up, approach was required, as discussed below. 
 
 Motivation.  Laboratory analytical sensitivity, which in turn leads to a lack of reported 
monitoring data below associated MDL thresholds, is generally viewed as a nuisance during data 
analysis applications.  The need for Models (2) and (3) as discussed above represents just one 
example of this issue.  However, in the current context, this apparent nuisance can be capitalized 
on to provide potentially valuable information about background.  To see this, consider a simple 
example.  Suppose a rural background site monitors formaldehyde once every three days for a 
year, yielding approximately 120 observations.  Suppose further that every single observation at 
this site is reported as below its respective MDL; and, for simplicity, the associated MDLs are all 
reported as the same value of 0.2 µg/m3.  So what is known about background in a case like this?  
The information provided by these data is evidence that background for this pollutant in this 
particular area of the country must lie somewhere between 0 and 0.2 µg/m3.  While this may not 
be ideal quantitative information, it nonetheless gives a very informative bound on background.  
While the primary statistical methodology of this project cannot be applied in a case like this, a 
reasonable approach can still be applied to provide some background estimate. 
 
 At the opposite extreme of the above example, consider a case where all the observations 
in a given data set are above their respective MDLs, but the data set consists of only a small total 
number of observations, say 10, for example.  The primary statistical methodology of this project 
will likely fail to provide a background solution in this case as well.  Again, however, potentially 
useful information is available for estimating background in some manner in a case like this.  
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Likewise, there will be cases somewhere in between the two extremes of (1) strictly below-MDL 
data or (2) too few strictly above-MDL observations.  The secondary analysis approach 
discussed below is an attempt to address all such cases in a reasonable and consistent manner.  It 
also recognizes that, intuitively, a reasonable background solution should look somewhat 
different depending on which of the above two extremes (or somewhere in between) occurs. 
 
 So, considering the above examples, how might one use a relatively limited amount of 
monitoring information to still provide a reasonable estimate of background?  Also, how might 
one characterize the uncertainty of such an estimate?  At the same time, to remain consistent 
with the goals of this project, the approach to addressing these two questions should be relatively 
straightforward for the sake of large-scale application. 
 
 Details of Approach.  The approach is to first recognize two extremes in the amount of 
source activity, and then look for a reasonable means for continuously choosing a background 
value between those extremes.  For both cases, assume that MDL/2 substitution has been done 
for any data below the MDL prior to investigation. 
 
 The first extreme is when a site is not affected by sources and is only measuring 
background.  In this case, the median, or 50th percentile, of the data is considered to provide a 
reasonable upper bound estimate for the annual mean background concentration.  By using the 
median, outliers will have very little influence on the estimate. 
 
 The second extreme is when a site is frequently affected by sources and is rarely 
measuring just the background.  If the site has measured only background on a given day, then 
that observation would be among the lowest measurements available for the given site.  As above 
with the median, a robust estimator is desired in this case.  The minimum is not a robust estimate 
for the annual mean background.  Beyond the statistical properties of the minimum, it may not 
yield the correct value because conditions that resulted in extremely low source measurements 
may also have resulted in extremely low background.  Further, if the background has some 
seasonality, then that could also result in the minimum being below the target annual-based 
background value.  For these reasons, the 5th percentile of the data was chosen in this case as a 
better, hopefully more robust, estimate of the mean annual background. 
 
 What about estimating background for cases in between the above two extremes?  We 
start by further distinguishing the above two extremes by the amount of variability in the data, as 
derived from sources (or lack thereof).  In the first case (few source impacts), the data’s standard 
deviation may be assumed to be small, say on the order of two times the MDL, because it is 
derived mostly from laboratory imprecision and not source-influenced environmental variability.  
In the second case (many source impacts), the standard deviation is expected to be relatively 
large, say on the order of the mean of the data, due mostly to the presence of source-influenced 
variability.  So, in between these two extremes, we consider a background estimate that again is 
some percentile of the data, where the chosen percentile is linearly interpolated to fall 
somewhere between the 5th and 50th percentile of the data (i.e., somewhere between the 
estimates chosen for the two extreme cases discussed above).  Furthermore, based on the 
variability differences between the two extreme cases, it seems reasonable to choose an 
interpolation scheme that is a function of the data’s variability.  In other words, the interpolated 
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background estimate between the two extremes of the 5th and 50th percentile of the data should 
fall closer to the extreme whose presumed variability more closely matches the variability of the 
data at hand. 
 
 This still leaves an ambiguous case.  Suppose the mean is less than two times the MDL.  
In this case, the basis for declaring the standard deviation small or large is backwards.  However, 
the only way for the data to yield this case is for almost all of the data to be less than two times 
the MDL.  Since data within two times the MDL are often considered to be not significantly 
different from zero, it was decided that the median (as opposed to a lower data percentile) would 
be the most conservative choice in this case. 
 
 Hence, the algorithm for estimating the annual mean background, when Model (3) could 
not be used, is the following.  First, any data below the MDL are replaced by MDL/2.  Next, the 
mean and standard deviation of the data are computed.  Then: 
 
 Case 1.  If the mean is less than two times the maximum MDL, then the background 

estimate is the median of the data (after MDL/2 substitution). 
 
 Case 2.  If two times the maximum MDL is less than the mean, then the background 

estimate is a percentile of the data (after MDL/2 substitution).  The specific percentile is a 
function of the standard deviation, denoted by STD, and is determined as follows: 
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where the ceil() function rounds the result up to the nearest whole number. 
 
 In all of these cases, the standard error of the resulting background estimate was set to 
one-half of that background estimate.  Hence, the usual confidence interval becomes 0 to 2 times 
the estimate.  So, for example, if all of the data are below the MDL then the estimate becomes 
MDL/2 and the confidence interval ranges from 0 to MDL.  Note that this estimate of uncertainty 
could not be determined using a statistical argument due to the limitations of the data sets being 
addressed in this secondary analysis. 
 
 Attributes and Limitations of Estimator.  This secondary methodology was pursued 
based on discussions with the Work Assignment Manager and a Technical Advisor, and the 
expressed desire to obtain background estimates in all cases (i.e., whenever monitoring data are 
not available, including cases when the more rigorous approach may not apply).  Further 
refinement of this proposed approach should be based on additional review and be cognizant of 
some initial points regarding the properties (or limitations) of the approach described above: 
 

• The estimator yields an estimate in all cases, but that estimate is thought of as an 
upper bound to the background (conservative). 
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• The estimate is consistent with intuition as an upper bound for background when 

most of the data are below the MDL. 
 

• If separate programs both yield essentially below-MDL data, then the one with the 
smaller MDL will be the one with the sharper background estimate (i.e., the one with 
the smallest confidence interval). 

 
• Consider a pollutant where background is spatially uniform and all available 

monitoring data across the country are below their respective MDLs.  Suppose further 
that different MDLs are associated with different counties.  This will show up as 
variability in the background across the country.  After accounting for the uncertainty 
of each estimate, however, the final conclusion would likely be that background is not 
observed as statistically significantly varying over space. 

 
3.2  Stage 2:  Explanatory 
 
 The second stage of the approach involves investigating how the background varies 
spatially with respect to various possible explanatory variables (the “why” question).  These 
potential variables were discussed in Section 2.2.  In this stage, the site-specific and 
county-specific background estimates developed in Stage 1, together with the explanatory 
variables discussed in Section 2.2, were employed to see how the county estimates change with 
respect to the explanatory factors.  Various multiple regression models of the background as a 
function of the explanatory factors were explored, thereby enabling the extrapolation of 
background estimates nationally according to the relationships implied by such models. 
 
 In general, these models took the following form: 
 

Bi = β0 + β1X1i + β2X2i + … + βpXpi + εi     (Model 4) 
 
where Bi represents the ith background concentration estimate from Stage 1; the βj’s represent the 
effect on background due to the jth explanatory variable Xji associated with the ith background 
estimate (j = 1, …, p); and εi represents residual error in the model due, in part, to any behaviors 
in Bi that are left unexplained by the model.  Once Model (4) is fit, values of [X1, …, Xp] for 
areas of the country without monitoring data can be used together with the model to estimate any 
area’s background. 
 
3.2.1 Outlier Cleanup and Responses to Stage 1 Comments 
 
 Peer review of the approach and results from Stage 1 suggested that the spatial gradients 
for some of the background estimates may be too steep.  Specifically, the observed background 
gradients appear to track closer than expected with ambient (or average) conditions in some 
cases.  One interpretation of this phenomenon is that some of the sites used in estimating 
background may have been overly influenced by local source emissions.  The statistical 
methodology used to estimate background in Stage 1 may not be able to overcome such outlier 
cases. 
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 As such, Stage 2 begins by attempting to address the above described issue.  Given the 
limited resources for this effort, an in depth investigation of each site’s (or county’s) background 
estimate for each pollutant can not be conducted.  Instead, a simpler and far less resource 
intensive procedure is required.  To that end, Figures 3.6 and 3.7 below provide an example, 
using benzene, of the results of the chosen approach for Task 1.  Specifically, the approach was 
to eliminate from the analysis, as an outlier, any site whose background estimate from Stage 1 
appears extreme in the upper tail of the overall distribution of Stage 1 background estimates.  
Given the nature of the problem, it seems appropriate to focus on outliers in the upper tail of the 
distribution.  Such results are perhaps due to extreme local emission sources affecting the ability 
to obtain a relatively pure background estimate based on the sites(s) providing data in such cases.  
This approach is intended to address the primary technical issue identified from the peer review 
of the Stage 1 report. 
 
 In general, the chosen approach was to eliminate outliers visually, and then to recalculate 
a county background estimate with the “clean” data set.  For benzene, there were initially 
177 counties that had a Stage 1 background estimate.  Two of those counties (from Puerto Rico) 
were removed because they had no corresponding explanatory variables.  In addition, five sites 
from five different counties were removed due to high end extreme data.  Three of those sites 
were the only site for their respective counties; therefore, three additional counties were removed 
for a total of 172 counties.  Data on the two remaining affected counties are presented in 
Table 3.3.  The shaded rows in Table 3.3 are the three counties that were removed from the 
analysis.  The comparison of the benzene background estimates in Figures 3.6 and 3.7 illustrates 
the choice to eliminate the five sites with the highest background estimates.  Figure 3.6 displays 
the distribution of benzene background estimates by site before the outliers were removed, while 
Figure 3.7 shows the distribution of benzene background estimates by county after the removal 
of outliers at a site level and after the recalculation of affected county estimates. 
 
Table 3.3  Recalculation of countywide benzene background estimates for affected 

counties. 
 

State County 
Stage 1 

Number of 
Sites 

Stage 1 
Background 

Estimate 

Revised Stage 1 
Number of Sites 

Revised Stage 1 
Background 

Estimate 

California Los Angeles 27 0.8089 26 0.7049 

Colorado Denver 1 3.0349 0 NA 

Idaho  Nez Perce 13 0.7916 12 0.6396 

Kansas Sedgwick 1 4.7919 0 NA 

Ohio Scioto 1 4.7200 0 NA 
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Figure 3.6  All 479 sites with (Stage 1) benzene background estimates. 
 

 
 
Figure 3.7  172 counties with benzene background estimated from Stage 1 (high 

outliers have been identified visually and removed). 
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 As described above, peer review of the results from Stage 1 suggested that the observed 
background gradients may track closer than expected with ambient (or average) conditions in 
some cases.  In other words, it is suspected that some monitoring locations were overly 
influenced by local source emissions.  As a brief investigation of this observation, the correlation 
between background estimates and emissions was compared to the correlation between ambient 
concentrations and emissions.  This investigation was limited solely to benzene, as the scope and 
budget of the work assignment did not allow for an in depth investigation of each pollutant. 
 
 The approach for the investigation was to run a regression using PROC GLM in SAS®, 
where total emissions served as the predictor (independent) variable, and background estimates 
or the average concentration for each county served as the response (dependent) variable.  The 
results of these regressions revealed that, as expected, average benzene concentrations were 
somewhat correlated with benzene emissions (r2 = 0.10, p < 0.0001) while benzene background 
estimates showed a much weaker correlation, which was not statistically significant (r2 = 0.013, 
p = 0.145).  These relationships are represented graphically in Figure 3.8, which plots benzene 
emissions against benzene background estimates (top graph), and benzene emissions against 
average benzene concentrations (bottom graph). 
 
 In summary, it is felt that this result is very important evidence in favor of the efficacy of 
the Stage 1 statistical approach, coupled with the outlier removal described in this section of the 
report.  Specifically, as expected, ambient average concentrations correlate with nearby 
emissions; whereas, as desired, estimated ambient background concentrations do not.  That is, 
the statistical methodology used to estimate background in Stage 1 would appear to have 
removed from the data the influence of nearby sources, as desired. 
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Figure 3.8  Relationship between benzene emissions and background (top), 

concentrations (bottom). 
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3.2.2  Initial Development of Explanatory Variables 
 
 As discussed in Section 2.2, many different potential explanatory variables were 
investigated as possible predictors of countywide background estimates.  Based on preliminary 
analyses, it was determined that the variables ag_frac, urban_frac, land_frac, and comm_frac 
would be good candidates to be predictors of background.  Refer to Section 2.2 for a more 
complete description of these variables. 
 
 Once the above variables were chosen as potential predictors, a correlation analysis was 
conducted to ensure that the variables were not too greatly correlated (i.e., collinearity).  
“Proc Corr” in SAS® was used to check for correlations between significant variables.  Table 3.4 
below shows the results, and indicates that it was not necessary to remove additional variables 
due to collinearity.  Note also that although pop_density was initially not directly included in the 
analysis, it has a reasonably strong positive correlation with urban_frac, which suggests that 
pop_density is somewhat influential on the spatial variation observed in nationwide background 
concentrations, as one might expect. 
 
Table 3.4  Correlation between potential predictor variables. 
 
 Land_Frac Ag_Frac Urban_Frac Comm_Frac Pop_density 

Land_Frac 1.000 0.241 -0.104 -0.007 -0.207 

Ag_Frac 0.241 1.000 -0.150 -0.077 0.013 

Urban_Frac -0.104 -0.150 1.000 0.112 0.515 

Comm_Frac -0.007 -0.077 0.112 1.000 0.027 

Pop_density -0.207 0.013 0.515 0.027 1.000 

 
 Having determined that the correlations between the variables were not problematic, a 
primary background analysis was conducted.  For this analysis, the decision was made to convert 
the continuous explanatory variables into categorical variables in order to remove uncertainty 
that arises at the extremes of the continuous variables (i.e., unusual background predictions due 
to extrapolation outside the observed range of the predictor variable values used to develop the 
regression model).  Therefore, each of the four variables was divided into two categories.  The 
categorical variables were named AgCnty, UrbanCnty, LandCnty, and CommCnty.  Counties 
with percentages greater than or equal to 50 percent represent one category, while counties with 
percentages less than 50 percent represent another category.  Figures 3.9 through 3.12 are plots 
comparing the original continuous explanatory variable (top graph), to the derived categorical 
variable (bottom graph). 
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Figure 3.9  Comparison of continuous and categorical explanatory variable (ag). 
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Figure 3.10  Comparison of continuous and categorical explanatory variable (urban). 
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Figure 3.11  Comparison of continuous and categorical explanatory variable (land). 
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Figure 3.12  Comparison of continuous and categorical explanatory variable (comm). 
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3.2.3  Regression on Candidate Explanatory Variables 
 
 The four categorical variables created in Section 3.2.2 were used in a regression as inputs 
to Model 4.  The results of the regression are an intercept value, which serves as a starting point, 
along with a positive or negative adjustment which is applied to the intercept depending on the 
values of each county’s categorical variables.  Therefore, since the value of each categorical 
variable for every county in the United States is known, it is possible to compute a background 
estimate for every county in the country.  After following through on this approach and 
reviewing the results, it was decided to drop the four candidate explanatory variables in favor of 
relying on (the log of) pop_density as the sole predictor. 
 
3.2.4 Population Density 
 
 Subsections 3.2.2 and 3.2.3 describe how the initial four candidate explanatory variables 
were used as potential predictors of background.  As indicated in subsection 3.2.3, these four 
variables were dropped in favor of pop_density (i.e., population density).  Preliminary analysis 
revealed that MDL limitations could have a significant effect on the results, therefore, prior to 
commencing the analysis using pop_density, the MDL limitations were dealt with for all 
pollutants, as described in Section 3.2.5.  Instead of converting pop_density into a categorical 
variable, as with the initial four candidate explanatory variables, it was decided to take the 
natural log (ln) of pop_density (logPopDens) and leave it as a continuous variable.  Next, a 
regression was run using logPopDens such that the specific form of Model 4 became: 
 
   BackgroundEstimate = β0 + β1 * logPopDens + ε, 
 
where β0 is the y-intercept, β1 is the slope of the regression line, and ε is the residual error.  As an 
example of how the model translates into a background estimate, consider Harris County Texas 
and benzene.  Harris County has a population density (pop_density) of 1,086,710.29 people 
per km2.  Therefore, logPopDens = 13.899.  The intercept (β0) for benzene is 0.124, and the 
slope (β1) is 0.024.  Therefore, the background estimate for benzene in 
Harris County Texas = 0.124 + (0.024 * 13.899) ≈ 0.46 :g/m3. 
 
 The slope and intercept values for 13 pollutants are given in Table 4.2.  By using the 
values from Table 4.2 along with known population density data, a background estimate can be 
calculated for each of the 13 pollutants for every county in the United States.  In addition, the 
data for some pollutants were insufficient for spatial analysis through regression.  In these cases, 
only the intercept value and the number of counties are provided in Table 4.2.  This intercept was 
calculated in a secondary Stage 2 analysis, as summarized below, and represents the constant 
nationwide background estimate for the entire U.S. for the given pollutant. 
 
3.2.5  Secondary Stage 2 Analysis 
 
 In some cases, there were not enough data for a given pollutant to calculate background 
based on explanatory variables.  In each of these instances, a secondary analysis approach was 
employed to arrive at a Stage 2 background estimate.  There were two issues that prevented these 
pollutants from being analyzed as described in Section 3.2.3 and Section 3.2.4. 
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 The first issue is that there was not an equal enough distribution of counties among 
categorical variable values.  For example, of the 84 counties for which there are background data 
for Chromium (fine), only two counties fall into the category of greater than or equal to 
50 percent ag_frac.  This makes it too uncertain to predict background for every county in the 
country based on, in this case, the explanatory variable’s distribution. 
 
 The second issue is that most of the data for some pollutants were recorded as below the 
MDL.  As part of the Stage 1 secondary analysis, an MDL/2 substitution was employed (see 
Section 3.1.7), and a resulting percentile of the data (often the median) was used as the 
background estimate.  For pollutants with a large amount of below MDL data, this resulted in 
most counties having the same background estimate.  Figure 3.13 illustrates the low variability of 
background estimates for Chromium (fine), a representative example of this issue.  The low 
variability of background estimates again makes it unreasonable to predict background 
nationwide based on, in this case, the response variable’s distribution. 
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Figure 3.13  Distribution of background estimates by county agricultural land 

percentage. 
 
 
 A secondary analysis approach was employed to deal with the pollutants that were 
affected by either or both of the above described issues.  The approach first dealt with any MDL 
issues for the pollutants in question.  The first step was to calculate the percentage of the data at 
each site that were less than or equal to the MDL.  The minimum and maximum MDL at each 
site were identified as well.  If the percentage of the data that were below the MDL at any given 
site was greater than or equal to 50 percent, the background estimate for that site was set to zero.  
In addition, if the background estimate equaled one-half the minimum or the maximum MDL for 
the site, the estimate was also set to zero.  The reason for setting the MDL to zero in these cases 
is that data below the MDL are interpreted as not reliably detected.  This implies that there is not 
enough of a given pollutant present within a sample to be able to quantify a non-zero 
concentration.  This interpretation is consistent with the derivation and statistical interpretation 
of MDLs, i.e., that measurements less than the MDL do not provide sufficient evidence of 
non-zero concentration.  Thus, a decision was made to set the estimate to zero.  This decision 
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also serves to protect against the case of estimating higher (biased) nationwide background 
concentrations simply because of MDL/2 substitution and imprecise monitoring technologies. 
 
 The next step was to recalculate the countywide background estimates from these revised 
site estimates.  Once this was done, the best way to deal with the lack of spatial distribution in 
the data, given the limited resources of the project, was simply to take the median of all available 
recalculated Stage 1 background estimates as the constant nationwide estimate.  For most of the 
pollutants addressed in this manner, due to the MDL issue, this resulted in a nationwide 
background estimate of zero. 
 
 Three of the pollutants involved in the secondary Stage 2 analysis, however, had 
non-zero background estimates (i.e., medians).  Two of these three pollutants, ethylene oxide 
(median = 0.077) and manganese (coarse) (median = 0.014), were investigated one step further 
to compare emissions in the counties providing data with emissions in all remaining counties.  
The reason for the continued investigation with these pollutants is that both ethylene oxide 
(2 counties) and manganese (coarse) (15 counties) had a limited number of counties providing 
data.  Furthermore, it was assumed that the reason for monitoring in these counties was that 
significant sources of emissions were present in each of the counties. 
 
 Figure 3.14 plots total emissions for ethylene oxide (top graph) and for manganese 
(bottom graph).  Note that the emissions data for manganese are not broken down into PM 2.5 
and coarse, but are for total manganese.  As shown in Figure 3.14, the counties providing data 
for both ethylene oxide and manganese are in the upper tail of the distribution of total emissions.  
The mean total emissions for counties with background estimates is 3.09 tons per year and 
25.3 tons per year for ethylene oxide and manganese, respectively, while the mean total 
emissions for counties without background estimates is 0.42 tons per year and 1.06 tons per year 
for ethylene oxide and manganese, respectively.  Therefore, it may not be reasonable to predict 
non-zero nationwide background estimates for these two pollutants based solely on a very 
limited number of county estimates that appear to continue to be influenced by high emissions 
(despite the methods used for Stage 1 and the further adjustments described in Section 3.2.1).  As 
a result, the background estimate (intercept in Table 4.2) for both ethylene oxide and manganese 
(coarse) was set to zero. 
 
 The third pollutant that was estimated to have a non-zero background was carbon 
tetrachloride.  Carbon tetrachloride was initially analyzed using the primary stage 2 analysis 
(i.e., regression with population density).  The results of that regression, however, were 
counter-intuitive in that the slope was negative (i.e., background estimates decreases as 
population density increases).  In addition to being counter-intuitive, the negative slope (-0.012) 
was not statistically significant (p=0.142).  Therefore, the decision was made to employ the 
secondary Stage 2 analysis for carbon tetrachloride as well.  The result was a uniform nationwide 
carbon tetrachloride background estimate of 0.027.  Unlike ethylene oxide (2 counties) or 
manganese (coarse) (15 counties), carbon tetrachloride had 105 counties contributing to this 
nationwide estimate.  See Table 4.2 for the results of the secondary Stage 2 analysis, along with 
the results of the analysis described in Section 3.2.4. 
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Figure 3.14  Total emissions for counties with and without background estimates. 
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4.0  RESULTS 
 
 This section presents the suite of results obtained to date for this project.  Section 4.1 
provides the Stage 1 results.  The associated data analysis approach of Stage 1 is described in 
further detail above in Section 3.1.  Section 4.2 provides the Stage 2 results, which amount to the 
final results sought for satisfying the goals of the project.  The associated data analysis approach 
of Stage 2 is described in further detail above in Section 3.2. 
 
4. 1  Stage 1 Results 
 
 This section presents the results of the Stage 1 approach, as applied to a combined 
database of archive, PAMS, and pilot monitoring data collected during 1995 through 2002.  
These descriptive results, namely countywide annual average background estimates for many of 
the 33 urban priority HAPs, are provided as inputs for Stage 2 of the project.  Subsection 4.1.1 
below summarizes the actual Stage 1 results to date.  This is followed by subsection 4.1.2, which 
provides further discussion addressing a number of relevant issues. 
 
4.1.1  Summary of Stage 1 Results 
 
 Recognize that a large volume of results is generated on application of the Stage 1 
approach to the database, summarized in Tables 2.1a and 2.1b.  As such, it is useful to condense 
all the individual outputs down to a more convenient reporting summary.  The following 
describes the summary of Stage 1 results for this project.  Appendix A provides the more 
detailed results, including uncertainty characterization, for every combination of pollutant by 
county that was modeled. 
 
 Table 4.1 provides an overall results summary.  Each row of the table presents Stage 1 
results for an individual HAP, with the first column of the table indicating compound class.  In 
an effort to remain consistent with the approach of the ASPEN model, metals results are 
provided for both the fine and coarse size fractions (see discussion on metals data in subsection 
4.1.2 below).  Following compound class and pollutant, the next two columns of Table 4.1 offer 
information on the breadth of results (i.e., number of sites and counties).  The next column gives 
the nationwide background estimate used in the 1996 NATA, which may be of interest for 
comparison.  Next, the various columns provided under the heading of “Variability of 
Background Estimates Across Counties” summarize the distribution of background estimates 
obtained across all the counties with sufficient data.  This information indicates the degree of 
spatial, or county-to-county, variability in background for each pollutant.  However, one should 
caveat these results based on the uncertainty information provided in the more detailed tables of 
Appendix A. 
 
 From Table 4.1, observe that at least one background result is obtained for all three 
carbonyls, all sixteen volatile organic compounds (VOCs), seven of eight metals (fine), five of 
eight metals (coarse), and one of seven semi-volatile organic compounds (SVOCs).  In some 
cases, the results span fewer than 20 counties.  It is expected that at least 20 county estimates, 
and likely more, will be required in order to pursue Stage 2 for a given HAP (see discussion on 
insufficient data in subsection 4.1.2 below). 
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 To better understand Table 4.1’s information, consider a discussion of the acetaldehyde 
results.  A total of 230 monitoring sites provide acetaldehyde background estimates.  These 
site-specific results are combined to form 107 distinct countywide estimates.  The 
107 countywide background estimates for acetaldehyde have a mean and standard deviation of 
0.5551 µg/m3 and 0.4744 µg/m3, respectively.  Individual countywide estimates range from a 
minimum of 0.0000 µg/m3 to a maximum of 3.1267 µg/m3, with a median estimate of 
0.4832 µg/m3 across counties with sufficient data. 
 
 Next, observe that there may be a number of ways to evaluate the reasonableness of the 
results in Table 4.1.  For example, the table’s 1996 NATA column provides one benchmark for 
comparison.  Focusing on benzene, the updated 1999-based mean and median background 
estimates roughly match the 1996 estimate.  This might be viewed as an affirmation of the 
benzene results considering that model-to-monitor evaluations of 1996 ASPEN predictions were 
generally favorable for benzene relative to the other modeled HAPs.  Furthermore, the 1996 
NATA background estimate is slightly higher than the updated 1999-based median estimate, 
which agrees with the slight downward trend observed in the case study example presented in 
subsection 3.1.6 (the 1999-based mean is nearly the same as the 1996 NATA background). 
 
 Another approach to evaluating the validity of Table 4.1’s results is to compare results 
across pollutants.  For example, more than one study has suggested that, in the absence of 
short-term source-oriented influences, typical ambient acetaldehyde to formaldehyde ratios are 
approximately 0.7 (e.g., “Air Toxics Monitoring Data:  Analyses and Network Design 
Recommendations,” Battelle’s revised draft report under contract to LADCO, October 2001).  
Observe that the acetaldehyde to formaldehyde ratio for the mean and median background 
estimates of Table 4.1 is 0.713 and 0.721, respectively.  Obviously, these ratios compare quite 
favorably to a benchmark of 0.7, and note that similar ratios between these two pollutants are 
observed for the various percentiles of Table 4.1, as well.  Keeping in mind that each pollutant’s 
background estimates are obtained separately from the others, this comparison provides some 
support for both the acetaldehyde and formaldehyde background results. 
 
 Other evaluations based on different types of comparisons are certainly a possibility.  
Likewise, many other characterizations and interpretations can be offered based upon further 
study of the Table 4.1 results.  (See discussion on further interpretation in subsection 4.1.2 
below.)  Ideally, these results will be input into the Stage 2 analyses for extrapolation to obtain 
nationwide background estimates.  This may not be possible for those pollutants with no results 
or those with results spanning very few counties.  (See discussions on worst-case scenario and 
insufficient data in subsection 4.1.2 below.)  Appendix A provides more detailed results for 
every pollutant by county combination modeled. 
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Table 4.1  Summary of Stage 1 results for background (based on archive, PAMS, and pilot monitoring data). 1 
 

Variability of Background Estimates Across Counties 
Class Pollutant Number of 

Sites 
Number 

of 
Counties 

1996 
NATA Mean Standard 

Deviation Min 25th 
Percentile Median 75th 

Percentile Max 

ACETALDEHYDE  230 107 0 0.5551 0.4744 0.0000 0.2897 0.4832 0.7008 3.1267 
ACROLEIN  45 18 0 0.1423 0.1231 0.0000 0.0550 0.1146 0.1524 0.4620 Carbonyl 
FORMALDEHYDE  244 109 0.25 0.7782 0.5894 0.0000 0.3665 0.6706 1.0130 3.0853 
1,1,2,2-TETRACHLOROETHANE  114 59 0 0.3626 0.6110 0.0137 0.0686 0.0686 0.3431 3.4500 
1,2-DIBROMOETHANE  181 97 0.0077 0.3802 0.6462 0.0230 0.0384 0.1921 0.3072 3.8500 
1,2-DICHLOROETHANE  259 115 0.061 0.1775 0.2844 0.0000 0.0405 0.0809 0.1821 2.0000 
1,2-DICHLOROPROPANE  237 106 0 0.2110 0.3127 0.0127 0.0462 0.1216 0.2311 2.3000 
1,3-BUTADIENE  260 104 0 0.1322 0.2379 0.0000 0.0221 0.1007 0.1524 2.2122 
ACRYLONITRILE  54 34 0 0.1719 0.1960 0.0000 0.0651 0.0651 0.2278 0.8135 
BENZENE  479 177 0.48 0.5067 0.5665 0.0000 0.2396 0.3854 0.6138 4.7919 
CARBON TETRACHLORIDE  274 107 0.88 0.5027 0.2833 0.0916 0.3146 0.4698 0.6228 1.5500 
CHLOROFORM  323 134 0.083 0.2034 0.2707 0.0000 0.0586 0.1220 0.2441 1.5624 
CIS 1,3-DICHLOROPROPENE  28 13 0 0.3628 0.3621 0.0295 0.1134 0.2268 0.6805 1.2703 
TRANS 1,3-DICHLOROPROPENE  28 13 0 0.3931 0.3466 0.0363 0.2495 0.2495 0.6805 1.2794 
ETHYLENE OXIDE  6 2 0 0.1394 0.0214 0.1243 0.1243 0.1394 0.1545 0.1545 
METHYLENE CHLORIDE  342 145 0.15 0.3812 0.3821 0.0000 0.1216 0.2049 0.5346 1.7368 
TETRACHLOROETHYLENE  326 135 0.14 0.3772 0.4654 0.0000 0.1665 0.2374 0.3391 3.4000 
TRICHLOROETHYLENE TCE  273 112 0.081 0.2769 0.3896 0.0000 0.0984 0.1612 0.2687 2.7000 

VOC 

VINYL CHLORIDE  282 124 0 0.1772 0.1914 0.0000 0.0256 0.1144 0.2556 1.3000 
ARSENIC 50 19 0 0.2943 0.5906 0.0004 0.0010 0.0010 0.0296 1.7500 
BERYLLIUM NO AVAILABLE DATA 
CADMIUM 2 1 0 0.0015 . 0.0015 0.0015 0.0015 0.0015 0.0015 
CHROMIUM 127 84 0 0.2625 0.1570 0.0005 0.2850 0.2850 0.2850 1.0000 
LEAD 127 84 0 0.0608 0.1642 0.0000 0.0300 0.0300 0.0300 1.0000 
MANGANESE 127 84 0 0.2428 0.1546 0.0000 0.2600 0.2600 0.2600 1.0000 
MERCURY 26 15 0.0015 0.0010 0.0000 0.0010 0.0010 0.0010 0.0010 0.0010 

Metal 
(fine) 

NICKEL 127 84 0 0.0471 0.1223 0.0003 0.0250 0.0250 0.0250 0.7500 
ARSENIC 26 15 0 0.0010 0.0000 0.0010 0.0010 0.0010 0.0010 0.0010 
BERYLLIUM 
CADMIUM NO AVAILABLE DATA 

CHROMIUM 26 15 0 0.0007 0.0014 0.0000 0.0000 0.0000 0.0005 0.0052 
LEAD 26 15 0 0.0012 0.0015 0.0000 0.0000 0.0010 0.0010 0.0045 
MANGANESE 26 15 0 0.0153 0.0098 0.0030 0.0063 0.0141 0.0210 0.0341 
MERCURY NO AVAILABLE DATA 

Metal 
(coarse) 

NICKEL 26 15 0 0.0005 0.0007 0.0000 0.0003 0.0005 0.0005 0.0028 
SVOC 2  HEXACHLOROBENZENE  7 2 0.000093 0.0382 0.0036 0.0357 0.0357 0.0382 0.0408 0.0408 

 
1 Refer to Appendix A for a detailed summary of background estimates by pollutant and county, including uncertainty characterization. 
2 No data were available for all other SVOC pollutants. 
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 Although Table 4.1 provides results across a number of sites and counties, which give 
some sense of the expansiveness of the Stage 1 results, it does not provide an indication of the 
spatial representativeness of these results.  To this end, Figure 4.1 completes the results summary 
begun by Table 4.1, providing a Geographical Information Systems (GIS) summary of results.  
Figure 4.1 gives the results specific to benzene.  Other corresponding figures of results for the 
remaining HAPs that were studied are not provided in this draft of the report, but could be 
provided in future versions.  Each shaded polygon within Figure 4.1 represents a distinct county 
from within the 48 conterminous United States for which a benzene background estimate is 
obtained.  The legend of the figure indicates benzene’s specific range of estimated background 
concentrations, in µg/m3, using percentile-based cut-offs (i.e., minimum to 25th, 25th to 50th, 
50th to 75th, 75th to 1 :g/m3, and 1 :g/m3 to maximum).  Note that the legend’s specific 
breakpoint at 1 :g/m3, between the 75th percentile and maximum benzene background estimate, 
was added to the figure to provide additional resolution for the purposes of interpretation.  A 
comparison of unshaded areas versus shaded counties provides an indication of the spatial 
representativeness of results. 
 
 The reason for using percentile-based cut-offs in the figure is to provide the greatest 
amount of visual content in the resulting countywide shadings.  Another approach would be to 
determine the color shading legend according to equally-spaced concentration ranges with 
respect to the overall range of results.  This may result in a different interpretation of results by 
the reader. 
 
 As expected, Figure 4.1 indicates that California, Texas, and parts of the North-East and 
East Coast are relatively well represented with results.  Also as expected, several states are not 
represented at all, with Regions 7, 8, and 10 being particularly sparse on results.  Maybe not as 
expected, Minnesota’s counties are rather well represented.  To date, an explanation for this 
unexpected result has not been obtained by Battelle.  In general, no obvious trends are 
discernible according to the shading scheme provided by the figure’s legend. 
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Figure 4.1  GIS summary of Stage 1 results for benzene background. 
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4.1.2  Further Discussion of Stage 1 Results 
 
 A number of topics or issues have come to light during the application of the Stage 1 
approach to the combined archive, PAMS, and pilot monitoring database.  In no particular order, 
the following discusses these issues in further detail. 
 
 Metals Data.  As stated above, in an effort to remain consistent with the approach of the 
ASPEN model, metals results were pursued, and are provided, for both the fine and coarse size 
fractions.  (Note that fine is typically taken to represent PM2.5 and coarse to represent PM10 
minus PM2.5.)  However, due to the limited amount of available fine and coarse data, it may be 
more preferable to conduct analyses on total suspended particulate (TSP) metals.  The archive 
and pilot databases both provide a richer set of TSP data.  Although, it is not clear at this time to 
what degree this alternative would provide for a more expansive set of metals results.  
Nonetheless, it may be worthy of pursuit at some point in the future. 
 
 Further Interpretation.  Table 4.1, Figure 4.1, and Appendix A provide only a general 
summary of the Stage 1 results.  Certainly more time and effort could be put into a more careful, 
detailed exploration and interpretation of these results.  For example, county-specific GIS plots 
might be explored to identify within-county spatial trends or the extent to which monitors 
providing data for a given county are spatially or otherwise representative of that county.  
Likewise, various types of outlier analyses might be pursued in an effort to improve the quality 
of the Stage 1 results.  However, it is expected that many such issues will be encountered or 
revealed as part of the approach to and application of Stage 2.  Furthermore, any effort to pursue 
a more detailed understanding of the Stage 1 results would obviously require resources.  The 
scope and budget of this project could only support the development of an approach and the 
provision of general results summaries such as those in subsection 4.1.1 and Appendix A. 
 
 Worst-Case Scenario.  Consider an outcome under which no reliable results are obtained 
for Stage 2.  This is a possibility given that the broadest results currently in Table 4.1 correspond 
to benzene, and these results span only 177 counties.  Meanwhile, the approach in Stage 2 seeks 
to extrapolate such Stage 1 results to the approximately 3,000 counties spanning the 
48 conterminous United States.  Under this worst-case scenario, the Stage 1 results by 
themselves can provide an alternative, albeit less appealing, option for obtaining nationwide 
background estimates. 
 
 Specifically, some measure from the set of countywide estimates for each pollutant 
(e.g., mean, median, etc.) can be treated as a nationwide constant background estimate.  Like the 
approach in the 1996 NATA, the obvious disadvantage of this approach is that it does not 
directly address spatial variability in background concentrations.  However, spatial variability 
can still be addressed indirectly by using a measure of the variation between different 
background estimates (e.g., between-county standard deviation) to explicitly quantify the 
uncertainty associated with using a constant background for ASPEN.  Furthermore, unlike the 
approach in the 1996 NATA, this approach relies exclusively on temporally relevant monitoring 
data.  For these reasons, even under this worst-case scenario, an improvement over the 1996 
NATA approach to background estimation can still be made based on Stage 1 results alone. 
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 Insufficient Data.  Ideally, available air toxics monitoring data would have provided 
some background information for every HAP on the urban list of 33.  As Table 4.1 indicates, this 
is not the case, as a number of HAPs have no Stage 1 results due to insufficient data.  Obviously, 
Stage 2 cannot be applied, at least not directly, in these cases.  Nonetheless, background 
estimates are still needed for these HAPs.  A number of possibilities should be explored.  One 
possibility is to conduct an updated literature review from that of the 1996 NATA.  This could 
yield some form of background estimate for the HAPs in question.  It might also provide other 
information that serves to confirm or refute the results of Table 4.1.  Another possibility, likely 
related to any literature review findings, would be to use known or typical ambient ratios of 
HAPs to infer a missing pollutant’s background from that of a non-missing pollutant.  The above 
suggestions are by no means exhaustive.  This discussion merely serves to provide an initial 
stimulus toward further investigation into alternative methods of estimating background for those 
pollutants with insufficient monitoring data.  The current scope and budget of this project cannot 
support any detailed investigation toward this end. 
 
4.2  Stage 2 Results 
 
 This section presents the updated results provided by the Stage 2 analysis.  These results 
build on those that were presented in Section 4.1.1.  Using the results from Section 4.1.1 and the 
explanatory variables (i.e., population density) from Section 2.2, background estimates were 
obtained for every county in the United States for all but eight of the 33 urban HAPs.  For those 
eight, mostly SVOCs, no data were available in Stage 1 of this project. 
 
4.2.1  Summary of Stage 2 Results 
 
 The results of the Stage 2 analysis are presented in Table 4.2.  Each row in the table 
presents Stage 2 results for an individual HAP, with the first column of the table indicating 
compound class.  The second column indicates the HAP.  The third column is the number of 
counties included in the analysis for the respective pollutant.  The fourth column is the R2 from 
the regression for each of the pollutants that were analyzed as described in Section 3.2.4.  The 
fifth column is the intercept (along with the associated p-value, if applicable) or, in the case of 
those pollutants analyzed in the secondary Stage 2 analysis, the median of the recalculated 
countywide background estimates (refer to Section 3.2.5).  Note that there is no p-value for each 
of these pollutants, nor is there a slope or its associated p-value.  In these cases, the background 
estimate is uniform nationwide.  Note that many of the pollutants from the primary Stage 2 
analysis have negative intercept values.  The sixth column is the slope of the regression line and 
the associated p-value. 
 
 Table 4.2 can be used to calculate background estimates for any county in the United 
States.  The following three examples demonstrate using Table 4.2 to calculate a background 
estimate.  Note that due to the number of significant digits used in calculations, the examples 
given here are approximate. 
 

• Consider Acetaldehyde, which was analyzed using the primary Stage 2 approach as 
described in Section 3.2.4.  The intercept for Acetaldehyde is 0.460 µg/m3 and the 
slope is 0.005 µg/m3.  The background estimate for a given county for Acetaldehyde 
is calculated by multiplying the slope (0.005) times the natural log of pop_density, 
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and adding the intercept (0.460).  For example, Butler County, PA, has a population 
density of 21,987.87 people per km2.  Therefore, logPopDens = ln(21,987.87) = 
10.00.  Thus, the background estimate for Acetaldehyde in Butler County, PA, is 
(0.005 * 10.00) + 0.460 = 0.51 µg/m3. 

 
• Next, consider Carbon Tetrachloride, which was analyzed using the secondary Stage 

2 approach as described in Section 3.2.5.  In this case, the intercept given in Table 4.2 
is the median of the revised Stage 1 background estimates.  The result is a 
background estimate of 0.270 µg/m3 for Carbon Tetrachloride that applies uniformly 
to every county in the United States. 

 
• Finally, consider Cadmium (coarse).  No Stage 1 data were available for Cadmium; 

however, a background estimate was inferred from similarly behaved pollutants.  For 
example, all of the metals for which data were available resulted in a background 
estimate of zero.  Therefore, it seems reasonable to infer that Cadmium (coarse) also 
has a background estimate of zero that applies uniformly to every county in the 
United States. 

 
Refer to Section 3.2.4 for an additional example of calculating background based on Table 4.2. 
 
 Note that no data were available for 6 of the 33 HAPs, and are, therefore, not presented in 
the table.  We believe that the results presented in Table 4.2 are an accurate representation of 
background estimates based on the data available; however, one should caveat these results 
based on a relatively small amount of source data, much of which have large uncertainties.  For 
example, in the case of cadmium (fine), only a single county contributed to the nationwide 
background estimate.  In fact, even in the case of benzene, which had more contributing counties 
than any other pollutant, there were only 172 out of the 3,141 counties in the United States (less 
than 5.5 percent) that contributed data. 
 
 Figure 4.2 is a GIS map of the Stage 2 results for benzene.  Note that every county in the 
48 conterminous United States is represented in the figure.  In addition, note that the results of 
the regression on (the log of) population density as shown in Table 4.2 result in some identifiable 
patterns on the map.  For example, it is possible to pick out a number of cities (e.g., Chicago, 
Indianapolis, Atlanta, etc.) due to their higher background estimates (a darker shade on the map), 
due to the high population density in those areas. 
 
4.2.2  Further Discussion of Stage 2 Results 
 
 The results of the Stage 2 analysis should be viewed as an estimate of background.  The 
results represent a likely background level for any given county, given that county’s population 
density.  Obviously, many other factors could potentially influence background levels; therefore, 
it is possible that a given county’s background estimate does not reflect the actual background 
level in that county. 
 
 Despite that caveat, the Stage 2 results are a step forward from the 1996 NATA for two 
reasons.  First, only temporally relevant data contributed to Stage 2 results.  Therefore, Stage 2 
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results can be viewed as a more accurate estimate of current background levels than the 1996 
NATA.  Second, spatially varying background estimates were obtained for 13 pollutants.  These 
estimates vary spatially depending on population density, and allow for a potentially more 
precise estimate than is possible when restricted to a uniform nationwide estimate. 
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Table 4.2  Summary of Stage 2 results for background 
 

Class Pollutant Number of Counties R2 from Regression Intercept (p-value) Slope (p-value) 
Acetaldehyde 103 0.002 0.460 (<.001) 0.005 (0.620) 
Acrolein1 18  0.000  Carbonyl 
Formaldehyde 107 0.174 -0.053 (0.762) 0.074 (<.001) 
1,1,2,2-Tetrachloroethane 56 0.038 -0.040 (0.525) 0.009 (0.152) 
1,2-Dibromoethane 94 0.049 -0.030 (0.203) 0.005 (0.033) 
1,2-Dichloroethane 112 0.038 -0.020 (0.454) 0.005 (0.038) 
1,2-Dichloropropane 103 0.017 -0.012 (0.612) 0.003 (0.185) 
1,3-Butadiene 101 0.162 -0.127 (0.002) 0.015 (<.001) 
Acrylonitrile1 32  0.000  
Benzene 172 0.062 0.124 (0.125) 0.024 (0.001) 
Carbon Tetrachloride 105  0.270  
Chloroform 132 0.002 0.027 (0.261) 0.001 (0.570) 
Cis 1,3-Dichloropropene1 11  0.000  
Trans 1,3-Dichloropropene1 11  0.000  
Ethylene Oxide1 2  0.000  
Methylene Chloride 143 0.101 -0.187 (0.102) 0.042 (<.001) 
Tetrachloroethylene 132 0.096 -0.123 (0.040) 0.020 (<.001) 
Trichloroethylene TCE 109 0.007 0.031 (0.442) 0.003 (0.004) 

VOC 

Vinyl Chloride 121 0.080 -0.068 (0.056) 0.011 (0.002) 
Arsenic1 19  0.000  
Beryllium2   0.000  
Cadmium1 1  0.000  
Chromium1 84  0.000  
Lead1 84  0.000  
Manganese1 84  0.000  
Mercury1 15  0.000  

Metal (fine) 

Nickel1 84  0.000  
Arsenic1 15  0.000  
Beryllium2   0.000  
Cadmium2   0.000  
Chromium1 15  0.000  
Lead1 15  0.000  
Manganese1 15  0.000  
Mercury2   0.000  

Metal (coarse) 

Nickel1 15  0.000  

SVOC3 Hexachlorobenzene1 2  0.000  
 

1 Result obtained from secondary analysis.  Due in large part to MDL issues, the data for these pollutants were insufficient for spatial analysis through regression. 
2 No data were available on these pollutants, result implied from pollutants of similar behavior. 
3 No data were available for 2,3,7,8-tetrachlorodibenzo-p-dioxin, coke oven emissions, hydrazine, polycyclic organic matter, polychlorinated biphenyls, nor quinoline.  

Background was not estimated for these pollutants. 
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Figure 4.2  GIS summary of Stage 2 results for benzene background. 
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5.0  REMAINING ISSUES AND PATH FORWARD 
 
 There are several issues that remain to be resolved.  All of these issues stem from 
insufficient data.  The first of these issues is that eight HAPs have no background estimate.  
Secondly, 18 HAPs have a uniform background estimate (i.e., no spatial variability).  Finally, all 
of the background estimates in Stage 2 of the analysis are based on a limited dataset. 
 
 In order to improve upon the existing results, the first step on the path forward should be 
to build a more comprehensive, more diverse dataset.  This would result in a larger number of 
counties contributing to the result, and would allow for each of the 33 HAPs to be analyzed with 
a single method.  Ideally, the data would come from a single lab with a constant MDL, however, 
that may not be a practical option. 
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Appendix A:  Detailed Summaries of Stage 1 Results for Background 
           (background estimates given in µg/m3) 
 
Table A.1  Summary of Countywide Acetaldehyde Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 44 1 0.2702 0.0004 Minnesota Itasca 21 1 0.2496 0.1147 
Arkansas Pulaski 41 1 0.4350 0.0936 Minnesota Koochiching 140 2 0.4369 0.1597 
California Alameda 147 1 0.2392 0.0590 Minnesota Lake 40 1 0.6351 0.3175 
California Butte 156 1 0.2042 0.0731 Minnesota McLeod 45 1 0.8504 0.4252 
California Contra Costa 233 3 0.2285 0.0488 Minnesota Morrison 55 1 0.5531 0.2765 
California Fresno 148 1 0.1747 0.0661 Minnesota Nicollet 23 1 0.5513 0.2756 
California Humboldt 19 1 0.9008 0.4504 Minnesota Olmsted 59 1 0.2937 0.1468 
California Imperial 166 1 0.4892 0.0642 Minnesota Otter Tail 97 2 0.5855 0.2140 
California Kern 333 2 0.4351 0.0465 Minnesota Pine 44 1 0.6477 0.3238 
California Los Angeles 1626 21 0.9973 0.0945 Minnesota Pipestone 53 1 0.7819 0.0006 
California Orange 48 2 0.2513 0.1281 Minnesota Ramsey 509 3 0.3563 0.0250 
California Placer 153 1 0.4486 0.0482 Minnesota Roseau 58 1 0.5459 0.2729 
California Riverside 650 8 0.7826 0.1080 Minnesota Sherburne 60 1 0.2468 0.1234 
California San Bernardino 158 4 0.7654 0.1442 Minnesota St. Louis 505 4 0.3558 0.1268 
California San Diego 365 3 0.3998 0.0381 Minnesota Stearns 55 1 0.4326 0.0696 
California San Francisco 134 1 0.0662 0.0568 Minnesota Swift 56 1 0.6270 0.3135 
California San Joaquin 312 2 0.2518 0.0373 Minnesota Washington 676 3 0.2244 0.0388 
California Santa Barbara 169 2 0.4777 0.1343 Minnesota Winona 58 1 0.6161 0.3081 
California Santa Clara 157 1 0.2451 0.0574 Minnesota Wright 44 1 0.7729 0.3864 
California Stanislaus 123 2 0.7008 0.0783 Minnesota Yellow Medicine 49 1 0.1903 0.0585 
California Ventura 144 1 0.3923 0.0670 New Jersey Camden 286 3 0.7496 0.0683 
Colorado Denver 25 1 2.9555 0.1402 New Jersey Union 22 1 0.5690 0.1707 
Colorado Mesa 170 2 1.0314 0.0678 New Mexico Sandoval 52 2 0.1621 0.0699 
Connecticut Hartford 46 2 0.9787 0.3725 New York Bronx 409 2 0.5301 0.0873 
Connecticut New Haven 20 1 0.7502 0.3751 New York Queens 248 2 1.4348 0.5669 
Florida Hillsborough 243 3 0.2957 0.1479 New York Richmond 504 7 0.4780 0.1246 
Florida Pinellas 258 3 0.0000 0.0045 North Dakota Mercer 59 1 0.3783 0.0957 
Georgia DeKalb 178 2 0.5500 0.2753 Oregon Multnomah 234 4 0.8888 0.1932 
Georgia Fayette 200 2 0.6037 0.2469 Oregon Washington 58 1 0.2590 0.0816 
Illinois Cook 196 2 0.4054 0.1396 Pennsylvania Philadelphia 308 1 0.5901 0.0390 
Indiana Lake 259 4 0.3944 0.0620 Puerto Rico Barceloneta  25 1 0.0000 0.0079 
Iowa Linn 45 1 0.4558 0.2279 Puerto Rico San Juan  26 1 0.0000 0.0079 
Louisiana East Baton Rouge Parish 784 3 0.5893 0.2594 Rhode Island Kent 88 1 2.0170 1.0085 
Louisiana St. Charles Parish 109 1 0.3063 0.1531 Rhode Island Providence 1272 7 0.7811 0.1693 
Louisiana St. John the Baptist Parish 125 1 0.6522 0.0770 South Carolina Hampton 493 2 0.0000 0.0424 
Maine Cumberland 19 1 0.5405 0.2702 South Carolina Lexington 259 1 0.0000 0.0600 
Maryland Baltimore 283 1 0.0000 0.0901 South Carolina Richland 517 4 0.0000 0.0300 
Maryland Baltimore city 232 2 0.4504 0.1067 Texas Cameron 56 1 0.0000 0.0901 
Massachusetts Essex 221 2 1.0050 0.3991 Texas Dallas 63 1 0.4832 0.1995 
Massachusetts Hampden 226 2 1.2195 0.5501 Texas El Paso 368 2 0.7541 0.1871 
Michigan Allegan 51 1 0.8717 0.0562 Texas Galveston 58 1 1.1952 0.0572 
Michigan Kalamazoo 336 4 0.7296 0.1659 Texas Harris 445 4 0.4506 0.0851 
Michigan Kent 196 2 0.4329 0.0697 Texas Jefferson 62 1 0.0000 0.0901 
Michigan Missaukee 100 2 0.4651 0.2030 Texas Tarrant 27 1 1.1218 0.0706 
Michigan Oakland 49 1 0.5655 0.0741 Utah Salt Lake 58 1 0.5945 0.1199 
Michigan Washtenaw 33 1 0.5655 0.2827 Vermont Chittenden 265 2 0.5670 0.1155 
Michigan Wayne 996 8 0.6235 0.1005 Vermont Rutland 133 1 0.5810 0.0735 
Minnesota Beltrami 54 1 0.7314 0.3657 Vermont Windham 113 1 0.7026 0.0560 
Minnesota Clay 57 1 0.3208 0.0834 Virginia Fairfax 119 1 0.5225 0.2612 
Minnesota Dakota 1196 7 0.2168 0.0174 Washington Clark 19 1 0.0901 0.0450 
Minnesota Douglas 73 2 0.4414 0.1288 Washington King 367 6 0.5681 0.0940 
Minnesota Freeborn 59 1 0.2897 0.0667 Washington Whatcom 64 2 3.1267 1.8127 
Minnesota Goodhue 52 1 0.6216 0.3108 Wisconsin Milwaukee 242 1 0.2898 0.0481 
Minnesota Hennepin 620 5 0.3454 0.0490         
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Table A.2  Summary of Countywide Acrolein Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Maine Cumberland 19 1 0.1146 0.0573 New York Queens 176 2 0.4012 0.1743 
Maryland Baltimore 233 1 0.1146 0.0573 New York Richmond 504 7 0.0010 0.0013 
Maryland Baltimore city 149 1 0.1146 0.0573 Oregon Multnomah 182 4 0.0550 0.0149 
Michigan Kalamazoo 336 4 0.0459 0.0152 Oregon Washington 46 1 0.0400 0.0200 
Michigan Kent 163 2 0.1398 0.0502 Pennsylvania Philadelphia 230 1 0.1146 0.0573 
Michigan Missaukee 71 2 0.1284 0.0456 Rhode Island Kent 80 1 0.1581 0.0791 
Michigan Oakland 2 1 0.1524 0.0762 Rhode Island Providence 521 5 0.4620 0.1072 
Michigan Wayne 352 7 0.1341 0.0255 Virginia Fairfax 119 1 0.1146 0.0573 
New York Bronx 421 3 0.2702 0.1162 Washington Whatcom 29 1 0.0000 0.0015 
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Table A.3  Summary of Countywide Formaldehyde Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 44 1 0.0000 0.0614 Minnesota Hennepin 678 6 0.5424 0.0523 
Arkansas Pulaski 41 1 0.7015 0.1206 Minnesota Itasca 32 1 0.7962 0.0804 
California Alameda 147 1 0.5517 0.0453 Minnesota Kandiyohi 32 1 0.3697 0.0005 
California Butte 156 1 0.6890 0.0659 Minnesota Koochiching 140 2 0.2205 0.0444 
California Contra Costa 233 3 0.8691 0.2057 Minnesota Lake 53 1 0.2082 0.0770 
California Fresno 148 1 0.7876 0.0825 Minnesota McLeod 60 1 0.4491 0.0632 
California Humboldt 19 1 1.2282 0.6141 Minnesota Morrison 55 1 0.2923 0.0624 
California Imperial 166 1 0.3681 0.2287 Minnesota Nicollet 39 1 0.0381 0.0614 
California Kern 333 2 0.7871 0.0494 Minnesota Olmsted 59 1 0.1572 0.0974 
California Los Angeles 1749 21 1.5907 0.2337 Minnesota Otter Tail 112 2 0.4379 0.0410 
California Orange 49 2 0.7597 0.3807 Minnesota Pine 44 1 0.3375 0.0943 
California Placer 153 1 0.9406 0.0373 Minnesota Pipestone 53 1 0.4154 0.0785 
California Riverside 689 8 0.3481 0.0394 Minnesota Ramsey 553 3 0.6888 0.0790 
California San Bernardino 159 4 1.4352 0.3884 Minnesota Roseau 58 1 0.1911 0.0577 
California San Diego 365 3 0.7907 0.0339 Minnesota Sherburne 60 1 0.1639 0.0824 
California San Francisco 134 1 0.6646 0.0404 Minnesota St. Louis 585 5 0.3405 0.0323 
California San Joaquin 312 2 0.6036 0.0371 Minnesota Stearns 55 1 0.3869 0.0003 
California Santa Barbara 169 2 1.1491 0.0298 Minnesota Swift 56 1 0.8536 0.4268 
California Santa Clara 157 1 0.9107 0.0446 Minnesota Washington 752 3 0.2784 0.0292 
California Stanislaus 123 2 1.0565 0.3095 Minnesota Winona 58 1 0.6374 0.0769 
California Ventura 144 1 0.4091 0.0720 Minnesota Wright 59 1 0.0000 0.0614 
Colorado Denver 25 1 2.3952 0.6590 Minnesota Yellow Medicine 49 1 0.2432 0.1175 
Colorado Mesa 168 2 2.4128 0.9464 New Jersey Camden 366 3 1.3596 0.3875 
Connecticut Fairfield 45 1 0.6698 0.1171 New Jersey Union 22 1 0.9826 0.4913 
Connecticut Hartford 99 2 1.7829 0.1540 New Mexico Sandoval 52 2 0.0715 0.0273 
District of Columbia District of Columbia 265 1 3.0853 0.0514 New York Bronx 512 2 1.0130 0.0675 
Florida Hillsborough 243 3 1.3787 0.3629 New York Queens 249 2 0.8270 0.1050 
Florida Pinellas 256 3 1.4645 0.3251 New York Richmond 504 7 0.3588 0.0970 
Georgia DeKalb 258 3 0.4683 0.1191 North Dakota Mercer 59 1 0.6552 0.0525 
Georgia Fayette 202 2 0.6706 0.2572 Oregon Multnomah 234 4 1.2555 0.1441 
Illinois Cook 419 3 0.9901 0.2129 Oregon Washington 58 1 0.0000 0.0333 
Indiana Lake 258 4 0.8566 0.0442 Pennsylvania Philadelphia 579 2 1.7744 0.0460 
Iowa Linn 45 1 0.1344 0.2761 Puerto Rico Barceloneta  25 1 1.9726 0.9863 
Louisiana East Baton Rouge Parish 974 3 0.5891 0.0477 Puerto Rico San Juan  26 1 1.9235 0.9617 
Louisiana St. Charles Parish 109 1 1.0440 0.5220 Rhode Island Providence 945 7 1.6001 0.1320 
Louisiana St. John the Baptist Parish 125 1 1.2475 0.0462 South Carolina Hampton 626 2 0.4704 0.0263 
Maine Cumberland 19 1 0.6141 0.3070 South Carolina Lexington 337 1 0.7600 0.3800 
Maryland Baltimore 461 2 0.3665 0.0521 South Carolina Richland 571 4 0.2050 0.0985 
Maryland Baltimore city 501 4 1.0010 0.0696 Texas Cameron 56 1 0.5685 0.0676 
Massachusetts Essex 392 2 0.5525 0.0632 Texas Dallas 63 1 0.4421 0.2211 
Massachusetts Hampden 327 2 0.8203 0.1391 Texas El Paso 534 3 0.4994 0.1737 
Michigan Allegan 50 1 1.1133 0.1199 Texas Galveston 58 1 1.2122 0.1172 
Michigan Kalamazoo 336 4 0.9430 0.2255 Texas Harris 597 5 1.4188 0.2179 
Michigan Kent 196 2 1.1629 0.1272 Texas Jefferson 62 1 2.5726 0.1575 
Michigan Missaukee 101 2 0.3924 0.2877 Texas Tarrant 27 1 1.5230 0.1299 
Michigan Oakland 50 1 0.8053 0.1089 Utah Salt Lake 58 1 0.9183 0.1170 
Michigan Washtenaw 33 1 0.8228 0.2185 Vermont Chittenden 265 2 1.4870 0.3082 
Michigan Wayne 1044 9 1.1265 0.1371 Vermont Rutland 133 1 0.9932 0.0672 
Minnesota Beltrami 54 1 0.4385 0.0655 Vermont Windham 113 1 0.8106 0.4053 
Minnesota Clay 57 1 0.3403 0.0878 Virginia Fairfax 119 1 0.5650 0.0715 
Minnesota Crow Wing 36 1 0.4826 0.0732 Washington Clark 19 1 0.0614 0.0307 
Minnesota Dakota 1314 8 0.2329 0.0199 Washington King 364 6 0.3582 0.0266 
Minnesota Douglas 90 2 0.1019 0.0674 Washington Whatcom 64 2 0.0000 0.0307 
Minnesota Freeborn 59 1 0.0000 0.0614 Wisconsin Milwaukee 246 1 0.9664 0.0220 
Minnesota Goodhue 52 1 0.0000 0.0614       
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Table A.4  Summary of Countywide 1,1,2,2-Tetrachloroethane Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Riverside 1 1 0.3431 0.1716 Minnesota Douglas 57 1 0.0687 0.0343 
Colorado Mesa 163 2 0.2059 0.0728 Minnesota Goodhue 53 1 0.0687 0.0343 
Delaware New Castle 55 1 0.0687 0.0343 Minnesota Hennepin 427 4 0.0687 0.0172 
District of Columbia District of Columbia 169 1 0.0687 0.0343 Minnesota Koochiching 139 2 0.0687 0.0243 
Florida Broward 52 2 0.2746 0.0971 Minnesota Morrison 55 1 0.0687 0.0343 
Florida Hillsborough 37 3 0.0915 0.0268 Minnesota Olmsted 55 1 0.0687 0.0343 
Florida Pinellas 514 7 0.2591 0.0552 Minnesota Otter Tail 47 1 0.0687 0.0343 
Georgia Dawson 25 1 1.7000 0.8500 Minnesota Pine 50 1 0.0687 0.0343 
Georgia Fayette 207 2 0.2059 0.0728 Minnesota Pipestone 46 1 0.0687 0.0343 
Georgia Fulton 22 1 1.7000 0.8500 Minnesota Ramsey 378 3 0.0687 0.0198 
Georgia Glynn 20 1 1.7000 0.8500 Minnesota Roseau 46 1 0.0687 0.0343 
Georgia Hall 21 1 1.7000 0.8500 Minnesota Sherburne 57 1 0.0687 0.0343 
Indiana Lake 277 2 0.1716 0.0607 Minnesota St. Louis 377 3 0.0687 0.0198 
Indiana Porter 22 1 0.1716 0.0858 Minnesota Stearns 51 1 0.0687 0.0343 
Iowa Linn 36 1 0.2059 0.1030 Minnesota Swift 53 1 0.0687 0.0343 
Kansas Sedgwick 54 1 0.6865 0.3432 Minnesota Washington 304 2 0.0687 0.0243 
Maine Oxford 25 1 3.4500 1.7250 Minnesota Winona 50 1 0.0687 0.0343 
Maryland Anne Arundel 406 2 0.0687 0.0243 Minnesota Yellow Medicine 42 1 0.0687 0.0343 
Maryland Baltimore 347 1 0.0687 0.0343 Ohio Hamilton 25 1 0.3432 0.1716 
Maryland Baltimore city 1398 6 0.0687 0.0140 Oregon Multnomah 277 5 0.3432 0.0768 
Maryland Harford 109 1 0.0687 0.0343 Pennsylvania Delaware 663 3 0.0219 0.0063 
Michigan Alpena 130 5 0.3383 0.0757 Pennsylvania Philadelphia 269 1 0.0687 0.0343 
Michigan Kent 163 3 0.8006 0.2493 Puerto Rico Barceloneta 37 1 0.2059 0.1029 
Michigan Missaukee 87 2 0.6863 0.2713 Puerto Rico San Juan 26 1 0.2059 0.1029 
Michigan Oakland 43 1 0.2059 0.1029 Rhode Island Kent 51 1 0.0137 0.0069 
Michigan Washtenaw 54 2 0.6863 0.2713 Rhode Island Providence 352 5 0.0192 0.0049 
Michigan Wayne 877 7 1.4313 0.5027 Texas Nueces 55 1 0.6865 0.3432 
Minnesota Beltrami 54 1 0.0687 0.0343 Virginia Fairfax 117 1 0.0687 0.0343 
Minnesota Clay 51 1 0.0687 0.0343 Washington Whatcom 30 1 0.5492 0.2746 
Minnesota Dakota 337 5 0.0687 0.0154       
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Table A.5  Summary of Countywide 1,2-Dibromoethane Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Pulaski 19 1 0.1921 0.0960 Minnesota Koochiching 139 2 0.0384 0.0136 
California Alameda 463 4 0.0768 0.0192 Minnesota Morrison 55 1 0.0384 0.0192 
California Contra Costa 454 6 0.0768 0.0157 Minnesota Olmsted 55 1 0.0384 0.0192 
California Marin 223 2 0.0768 0.0272 Minnesota Otter Tail 47 1 0.0384 0.0192 
California Napa 120 1 0.0768 0.0384 Minnesota Pine 50 1 0.0384 0.0192 
California San Francisco 121 1 0.0768 0.0384 Minnesota Pipestone 46 1 0.0384 0.0192 
California San Mateo 120 1 0.0768 0.0384 Minnesota Ramsey 378 3 0.0384 0.0111 
California Santa Clara 239 2 0.0768 0.0272 Minnesota Roseau 46 1 0.0384 0.0192 
California Solano 120 1 0.0768 0.0384 Minnesota Sherburne 57 1 0.0384 0.0192 
California Sonoma 119 1 0.0768 0.0384 Minnesota St. Louis 377 3 0.0384 0.0111 
Colorado Denver 19 1 0.1921 0.0960 Minnesota Stearns 51 1 0.0384 0.0192 
Colorado Mesa 163 2 0.3072 0.1086 Minnesota Swift 53 1 0.0384 0.0192 
Delaware New Castle 55 1 0.0384 0.0192 Minnesota Washington 304 2 0.0384 0.0136 
District of Columbia District of Columbia 169 1 0.0384 0.0192 Minnesota Winona 50 1 0.0384 0.0192 
Florida Hillsborough 28 3 0.0896 0.0264 Minnesota Yellow Medicine 42 1 0.0384 0.0192 
Florida Pinellas 491 7 0.1123 0.0212 New Jersey Camden 60 1 0.1921 0.0960 
Georgia Dawson 25 1 1.9000 0.9500 New Jersey Union 22 1 0.1921 0.0960 
Georgia Fayette 207 2 0.3072 0.1086 North Dakota Cass 60 1 0.1921 0.0960 
Georgia Fulton 22 1 1.9000 0.9500 North Dakota Mercer 56 1 0.1921 0.0960 
Georgia Glynn 20 1 1.9000 0.9500 Ohio Hamilton 25 1 0.3842 0.1921 
Georgia Hall 21 1 1.9000 0.9500 Oregon Multnomah 309 6 0.3521 0.0734 
Indiana Lake 277 2 0.0317 0.0653 Pennsylvania Delaware 643 3 0.0284 0.0082 
Indiana Porter 22 1 0.0634 0.0317 Pennsylvania Philadelphia 269 1 0.0384 0.0192 
Iowa Linn 36 1 0.3073 0.1537 Puerto Rico Barceloneta 37 1 0.3072 0.1536 
Kansas Sedgwick 31 1 1.2500 0.6250 Puerto Rico San Juan 26 1 0.3072 0.1536 
Louisiana Ascension Parish 125 1 0.1921 0.0960 Rhode Island Kent 59 1 0.0230 0.0115 
Louisiana Bossier Parish 263 1 0.1921 0.0960 Rhode Island Providence 360 5 0.0269 0.0063 
Louisiana Calcasieu Parish 258 1 0.1921 0.0960 South Dakota Minnehaha 41 1 0.1921 0.0960 
Louisiana East Baton Rouge Parish 186 2 0.3842 0.1358 Texas Bexar 69 1 0.1921 0.0960 
Louisiana Ouachita Parish 104 1 0.1921 0.0960 Texas Brazoria 129 1 0.1921 0.0960 
Louisiana St. Charles Parish 24 1 0.1921 0.0960 Texas Cameron 127 1 0.1921 0.0960 
Louisiana St. John the Baptist Parish 27 1 0.1921 0.0960 Texas Carson 41 2 0.0500 0.0177 
Maine Oxford 25 1 3.8500 1.9250 Texas Dallas 83 1 1.8824 0.9412 
Maryland Anne Arundel 406 2 0.0384 0.0136 Texas Ector 110 1 1.8824 0.9412 
Maryland Baltimore 347 1 0.0384 0.0192 Texas El Paso 231 4 0.6147 0.2389 
Maryland Baltimore city 1398 6 0.0384 0.0078 Texas Ellis 111 1 1.8824 0.9412 
Maryland Harford 109 1 0.0384 0.0192 Texas Galveston 124 2 0.1921 0.0679 
Michigan Alpena 130 5 0.3847 0.0860 Texas Harris 570 6 0.4738 0.1609 
Michigan Kent 163 3 0.8961 0.2790 Texas Jefferson 426 4 0.1921 0.0480 
Michigan Missaukee 87 2 0.7681 0.3036 Texas Nueces 169 2 0.1921 0.0679 
Michigan Oakland 43 1 0.3072 0.1536 Texas Orange 78 1 0.1921 0.0960 
Michigan Washtenaw 54 2 0.7681 0.3036 Texas Smith 75 1 1.8824 0.9412 
Michigan Wayne 877 7 1.6239 0.5630 Texas Tarrant 96 3 1.3190 0.4448 
Minnesota Beltrami 54 1 0.0384 0.0192 Utah Salt Lake 57 1 0.1921 0.0960 
Minnesota Clay 51 1 0.0384 0.0192 Vermont Chittenden 75 2 0.1921 0.0679 
Minnesota Dakota 340 6 0.0384 0.0078 Vermont Rutland 38 1 0.1921 0.0960 
Minnesota Douglas 57 1 0.0384 0.0192 Vermont Windham 38 1 0.1921 0.0960 
Minnesota Goodhue 53 1 0.0384 0.0192 Virginia Fairfax 117 1 0.0384 0.0192 
Minnesota Hennepin 427 4 0.0384 0.0096       
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Table A.6  Summary of Countywide 1,2-Dichloroethane Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.0810 0.0405 Minnesota Douglas 57 1 0.0202 0.0101 
Arkansas Pulaski 51 1 0.0810 0.0405 Minnesota Goodhue 53 1 0.0688 0.0344 
California Alameda 463 4 0.2024 0.0506 Minnesota Hennepin 427 4 0.0304 0.0088 
California Contra Costa 454 6 0.2024 0.0413 Minnesota Koochiching 139 2 0.0435 0.0174 
California Marin 223 2 0.2024 0.0715 Minnesota Morrison 55 1 0.0607 0.0304 
California Napa 120 1 0.2024 0.1012 Minnesota Olmsted 55 1 0.0486 0.0243 
California San Francisco 121 1 0.2024 0.1012 Minnesota Otter Tail 47 1 0.0526 0.0263 
California San Mateo 120 1 0.2024 0.1012 Minnesota Pine 50 1 0.0607 0.0304 
California Santa Clara 239 2 0.2024 0.0715 Minnesota Pipestone 46 1 0.0202 0.0101 
California Solano 120 1 0.2024 0.1012 Minnesota Ramsey 378 3 0.0202 0.0058 
California Sonoma 119 1 0.2024 0.1012 Minnesota Roseau 46 1 0.0465 0.0233 
Colorado Denver 19 1 0.0810 0.0405 Minnesota Sherburne 57 1 0.0202 0.0101 
Colorado Mesa 163 2 0.1214 0.0429 Minnesota St. Louis 377 3 0.0310 0.0100 
Delaware New Castle 55 1 0.0202 0.0101 Minnesota Stearns 51 1 0.0202 0.0101 
District of Columbia District of Columbia 169 1 0.0202 0.0101 Minnesota Swift 53 1 0.0202 0.0101 
Florida Broward 52 2 0.0405 0.0143 Minnesota Washington 304 2 0.0202 0.0072 
Florida Hillsborough 90 3 0.1618 0.0467 Minnesota Winona 50 1 0.0202 0.0101 
Florida Pinellas 588 7 0.2429 0.0330 Minnesota Yellow Medicine 42 1 0.0526 0.0263 
Georgia Dawson 25 1 1.0000 0.5000 New Jersey Camden 164 1 0.0810 0.0405 
Georgia Fayette 207 2 0.1214 0.0429 New Jersey Union 22 1 0.0810 0.0405 
Georgia Fulton 22 1 1.0000 0.5000 New York Erie 151 1 0.0810 0.0405 
Georgia Glynn 20 1 1.0000 0.5000 New York Essex 146 2 0.0810 0.0286 
Georgia Hall 21 1 1.0000 0.5000 New York Kings 136 1 0.0810 0.0405 
Indiana Lake 277 2 0.0167 0.0344 New York Monroe 166 2 0.0810 0.0286 
Indiana Porter 22 1 0.0334 0.0167 New York Niagara 139 1 0.0810 0.0405 
Kansas Sedgwick 54 1 0.4047 0.2024 New York Rensselaer 124 1 0.0810 0.0405 
Louisiana Ascension Parish 125 1 0.0000 0.0809 New York Richmond 2399 19 0.0725 0.0085 
Louisiana Bossier Parish 263 1 0.0810 0.0405 North Dakota Cass 60 1 0.0810 0.0405 
Louisiana Calcasieu Parish 258 1 0.0000 0.0809 North Dakota Mercer 56 1 0.0810 0.0405 
Louisiana East Baton Rouge Parish 283 3 0.0540 0.0330 Ohio Hamilton 25 1 0.2024 0.1012 
Louisiana Ouachita Parish 104 1 0.0810 0.0405 Oregon Multnomah 309 6 0.1821 0.0383 
Louisiana St. Charles Parish 112 1 0.0810 0.0405 Pennsylvania Delaware 1095 3 0.0205 0.0059 
Louisiana St. John the Baptist Parish 112 1 0.0810 0.0405 Pennsylvania Philadelphia 269 1 0.0678 0.0123 
Maine Oxford 25 1 2.0000 1.0000 Puerto Rico Barceloneta  37 1 0.1214 0.0607 
Maryland Anne Arundel 406 2 0.0304 0.0113 Puerto Rico San Juan  26 1 0.1214 0.0607 
Maryland Baltimore 347 1 0.0405 0.0202 Rhode Island Kent 60 1 0.0202 0.0101 
Maryland Baltimore city 1398 6 0.0337 0.0072 Rhode Island Providence 369 5 0.0202 0.0045 
Maryland Harford 109 1 0.0202 0.0101 South Dakota Minnehaha 41 1 0.0810 0.0405 
Michigan Alpena 130 5 0.3809 0.0912 Tennessee Davidson 30 1 0.0810 0.0405 
Michigan Kalamazoo 670 4 0.0810 0.0202 Texas Bexar 261 1 0.1012 0.0506 
Michigan Kent 163 3 0.4720 0.1470 Texas Brazoria 321 1 0.1012 0.0506 
Michigan Midland 1504 4 0.5000 0.1250 Texas Cameron 359 2 0.0911 0.0324 
Michigan Missaukee 87 2 0.4046 0.1599 Texas Carson 834 8 0.0252 0.0052 
Michigan Oakland 43 1 0.1214 0.0607 Texas Dallas 466 3 0.4182 0.1770 
Michigan Van Buren 51 1 0.0810 0.0405 Texas Denton 28 1 0.1012 0.0506 
Michigan Washtenaw 54 2 0.4046 0.1599 Texas Ector 250 1 0.1012 0.0506 
Michigan Wayne 877 7 0.8439 0.2964 Texas El Paso 1377 7 0.0983 0.0186 
Minnesota Beltrami 54 1 0.0202 0.0101 Texas Ellis 330 2 0.5767 0.2643 
Minnesota Clay 51 1 0.0202 0.0101 Texas Galveston 670 4 0.0961 0.0241 
Minnesota Dakota 340 6 0.0202 0.0041 Texas Gregg 161 1 0.1012 0.0506 
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Table A.6  Summary of Countywide 1,2-Dichloroethane Background Estimates 

(continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Texas Harris 2466 13 0.1743 0.0427 Texas Webb 244 1 0.1012 0.0506 
Texas Hidalgo 422 2 0.1012 0.0358 Utah Salt Lake 57 1 0.0810 0.0405 
Texas Jefferson 1542 7 0.0983 0.0186 Vermont Chittenden 260 2 0.0810 0.0286 
Texas Nueces 955 4 0.1012 0.0253 Vermont Rutland 126 1 0.0810 0.0405 
Texas Orange 276 1 0.1012 0.0506 Vermont Windham 105 1 0.0810 0.0405 
Texas Smith 89 1 1.0523 0.5262 Virginia Fairfax 117 1 0.0202 0.0101 
Texas Tarrant 242 4 0.5717 0.1867 Washington Whatcom 60 2 0.3025 0.1326 
Texas Travis 208 3 0.1012 0.0292       
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Table A.7  Summary of Countywide 1,2-Dichloropropane Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.2311 0.1155 Minnesota Swift 53 1 0.0462 0.0231 
Arkansas Pulaski 51 1 0.2311 0.1155 Minnesota Washington 304 2 0.0462 0.0163 
Colorado Denver 19 1 0.2311 0.1155 Minnesota Winona 50 1 0.0462 0.0231 
Colorado Mesa 163 2 0.1617 0.0572 Minnesota Yellow Medicine 42 1 0.0462 0.0231 
Delaware New Castle 55 1 0.0462 0.0231 New Jersey Camden 164 1 0.2311 0.1155 
District of Columbia District of Columbia 169 1 0.0462 0.0231 New Jersey Union 22 1 0.2311 0.1155 
Florida Broward 52 2 0.0693 0.0245 New Mexico Sandoval 40 2 0.2079 0.0735 
Florida Hillsborough 36 3 0.1155 0.0333 New York Erie 155 1 0.1848 0.0924 
Florida Pinellas 503 7 0.1277 0.0287 New York Essex 143 2 0.2080 0.0740 
Georgia Dawson 25 1 1.1500 0.5750 New York Kings 142 1 0.1848 0.0924 
Georgia Fayette 207 2 0.1617 0.0572 New York Monroe 147 2 0.1155 0.1090 
Georgia Fulton 22 1 1.1500 0.5750 New York Niagara 90 1 0.2311 0.1155 
Georgia Glynn 20 1 1.1500 0.5750 New York Rensselaer 137 1 0.1848 0.0924 
Georgia Hall 21 1 1.1500 0.5750 New York Richmond 1273 15 0.2126 0.0276 
Indiana Lake 277 2 0.0127 0.0387 North Dakota Cass 60 1 0.2311 0.1155 
Indiana Porter 22 1 0.0254 0.0127 North Dakota Mercer 56 1 0.2311 0.1155 
Iowa Linn 36 1 0.1617 0.0809 Ohio Hamilton 25 1 0.2311 0.1155 
Kansas Sedgwick 54 1 0.4621 0.2311 Oregon Multnomah 531 10 0.1786 0.0300 
Louisiana Ascension Parish 125 1 0.2311 0.1155 Oregon Washington 55 1 0.1000 0.0500 
Louisiana Bossier Parish 263 1 0.2311 0.1155 Pennsylvania Delaware 805 3 0.0396 0.0117 
Louisiana Calcasieu Parish 258 1 0.2311 0.1155 Pennsylvania Philadelphia 269 1 0.0462 0.0231 
Louisiana East Baton Rouge Parish 283 3 0.2311 0.0667 Puerto Rico Barceloneta  37 1 0.1617 0.0808 
Louisiana Ouachita Parish 104 1 0.2311 0.1155 Puerto Rico San Juan  26 1 0.1617 0.0808 
Louisiana St. Charles Parish 112 1 0.2311 0.1155 Rhode Island Kent 59 1 0.0231 0.0115 
Louisiana St. John the Baptist Parish 112 1 0.2311 0.1155 Rhode Island Providence 360 5 0.0254 0.0058 
Maine Oxford 24 1 2.3000 1.1500 South Dakota Minnehaha 41 1 0.2311 0.1155 
Maryland Anne Arundel 406 2 0.0462 0.0163 Tennessee Davidson 30 1 0.2311 0.1155 
Maryland Baltimore 347 1 0.0462 0.0231 Texas Bexar 261 1 0.0693 0.0347 
Maryland Baltimore city 1398 6 0.0462 0.0094 Texas Brazoria 321 1 0.0693 0.0347 
Maryland Harford 109 1 0.0462 0.0231 Texas Cameron 359 2 0.1502 0.0603 
Michigan Alpena 130 5 0.2304 0.0515 Texas Carson 834 8 0.0298 0.0057 
Michigan Kent 163 3 0.5390 0.1678 Texas Dallas 466 3 0.2388 0.0977 
Michigan Missaukee 87 2 0.4620 0.1826 Texas Denton 28 1 0.0693 0.0347 
Michigan Oakland 43 1 0.1617 0.0808 Texas Ector 250 1 0.0693 0.0347 
Michigan Washtenaw 54 2 0.4620 0.1826 Texas El Paso 1424 9 0.0873 0.0168 
Michigan Wayne 877 7 0.9701 0.3385 Texas Ellis 330 2 0.3235 0.1454 
Minnesota Beltrami 54 1 0.0462 0.0231 Texas Galveston 670 4 0.1098 0.0325 
Minnesota Clay 51 1 0.0462 0.0231 Texas Gregg 161 1 0.0693 0.0347 
Minnesota Dakota 337 5 0.0462 0.0103 Texas Harris 2514 14 0.1056 0.0225 
Minnesota Douglas 57 1 0.0462 0.0231 Texas Hidalgo 422 2 0.0693 0.0245 
Minnesota Goodhue 53 1 0.0462 0.0231 Texas Jefferson 1542 7 0.0924 0.0205 
Minnesota Hennepin 427 4 0.0462 0.0116 Texas Nueces 955 4 0.0693 0.0173 
Minnesota Koochiching 139 2 0.0462 0.0163 Texas Orange 276 1 0.0693 0.0347 
Minnesota Morrison 55 1 0.0462 0.0231 Texas Smith 89 1 0.5776 0.2888 
Minnesota Olmsted 55 1 0.0462 0.0231 Texas Tarrant 242 4 0.3639 0.1065 
Minnesota Otter Tail 47 1 0.0462 0.0231 Texas Travis 208 3 0.0693 0.0200 
Minnesota Pine 50 1 0.0462 0.0231 Texas Webb 244 1 0.0693 0.0347 
Minnesota Pipestone 46 1 0.0462 0.0231 Utah Salt Lake 57 1 0.2311 0.1155 
Minnesota Ramsey 378 3 0.0462 0.0133 Vermont Chittenden 260 2 0.2311 0.0817 
Minnesota Roseau 46 1 0.0462 0.0231 Vermont Rutland 126 1 0.2311 0.1155 
Minnesota Sherburne 57 1 0.0462 0.0231 Vermont Windham 105 1 0.2311 0.1155 
Minnesota St. Louis 377 3 0.0462 0.0133 Virginia Fairfax 117 1 0.0462 0.0231 
Minnesota Stearns 51 1 0.0462 0.0231 Washington Whatcom 60 2 0.1606 0.0620 

 
 



Final Background Concentrations Report A-9 June 13, 2003 

 
Table A.8  Summary of Countywide 1,3-Butadiene Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.1106 0.0553 Minnesota Ramsey 83 3 0.0221 0.0064 
Arkansas Pulaski 51 1 0.1106 0.0553 Minnesota St. Louis 59 2 0.0221 0.0078 
California Alameda 540 4 0.2015 0.0749 Minnesota Stearns 23 1 0.0221 0.0111 
California Butte 179 1 0.0000 0.1106 Minnesota Swift 22 1 0.0221 0.0111 
California Contra Costa 789 8 0.1545 0.0511 Minnesota Washington 77 2 0.0221 0.0078 
California Fresno 182 1 0.0000 0.1106 Minnesota Winona 24 1 0.0221 0.0111 
California Humboldt 23 1 0.1106 0.0553 New Jersey Camden 164 1 0.1106 0.0553 
California Imperial 155 1 0.0221 0.1106 New Jersey Union 22 1 0.1106 0.0553 
California Kern 361 2 0.0000 0.0782 New Mexico Sandoval 40 2 0.0885 0.0313 
California Los Angeles 812 16 0.2613 0.0407 North Dakota Cass 120 2 0.1106 0.0391 
California Marin 223 2 0.1818 0.1118 North Dakota Mercer 56 1 0.1106 0.0553 
California Napa 120 1 0.0318 0.1500 Ohio Hamilton 145 4 0.1989 0.0514 
California Orange 42 2 0.2697 0.1137 Oregon Multnomah 309 10 0.1064 0.0168 
California Placer 179 1 0.0000 0.1106 Oregon Washington 31 1 0.1000 0.0500 
California Riverside 281 5 0.1017 0.0392 Pennsylvania Delaware 1231 3 0.0985 0.0367 
California San Bernardino 191 4 0.3836 0.1032 Pennsylvania Philadelphia 268 1 0.3097 0.1549 
California San Diego 386 3 0.0148 0.0551 Puerto Rico Barceloneta  75 1 0.1050 0.0525 
California San Francisco 174 1 0.0000 0.1106 Puerto Rico San Juan  55 1 0.2875 0.1437 
California San Joaquin 183 1 0.0000 0.1106 Rhode Island Kent 324 3 0.0735 0.0235 
California San Mateo 120 1 0.0318 0.1500 Rhode Island Providence 903 7 0.1425 0.0317 
California Santa Barbara 152 1 0.1106 0.1106 South Dakota Minnehaha 82 2 0.1106 0.0391 
California Santa Clara 299 2 0.0270 0.0932 Tennessee Davidson 30 1 0.1106 0.0553 
California Solano 120 1 0.0318 0.1500 Texas Bexar 261 1 0.0000 0.0332 
California Sonoma 119 1 0.0318 0.1500 Texas Brazoria 321 1 0.0000 0.0332 
California Stanislaus 156 1 0.0000 0.1106 Texas Cameron 359 2 0.0553 0.0322 
California Ventura 172 1 0.0362 0.0246 Texas Carson 834 8 0.0208 0.0047 
Colorado Denver 19 1 0.4203 0.2102 Texas Dallas 466 3 0.2323 0.1172 
Colorado Mesa 163 2 0.1161 0.0433 Texas Denton 28 1 0.0332 0.0166 
Delaware New Castle 54 1 0.2655 0.1327 Texas Ector 250 1 0.0000 0.0332 
District of 
Columbia 

District of 
Columbia 169 1 0.1770 0.0885 Texas El Paso 1424 9 0.0270 0.0155 

Florida Broward 39 1 0.1240 0.0502 Texas Ellis 330 2 0.3650 0.1744 
Florida Hillsborough 158 3 0.0885 0.0255 Texas Galveston 670 4 0.0277 0.0199 
Florida Pinellas 224 3 0.1014 0.0297 Texas Gregg 161 1 0.0332 0.0166 
Georgia Fayette 410 2 0.1050 0.0371 Texas Harris 3099 15 0.0557 0.0247 
Iowa Linn 73 2 0.0913 0.0326 Texas Hidalgo 422 2 0.0166 0.0186 
Kansas Sedgwick 52 1 2.2122 1.1061 Texas Jefferson 1542 7 0.0000 0.0196 

Louisiana East Baton 
Rouge Parish 97 1 0.1106 0.0553 Texas Nueces 955 4 0.0166 0.0131 

Louisiana St. Charles 
Parish 112 1 0.1106 0.0553 Texas Orange 276 1 0.0000 0.0332 

Louisiana St. John the 
Baptist Parish 112 1 0.1106 0.0553 Texas Smith 89 1 0.6968 0.3484 

Maryland Anne Arundel 406 2 0.0636 0.0161 Texas Tarrant 242 4 0.3761 0.1242 
Maryland Baltimore 347 1 0.1770 0.0885 Texas Travis 208 3 0.0000 0.0192 
Maryland Baltimore city 1395 6 0.1502 0.0249 Texas Webb 244 1 0.0000 0.0332 
Maryland Harford 109 1 0.0221 0.0111 Utah Salt Lake 114 2 0.2848 0.1007 
Michigan Kent 37 2 0.3317 0.1173 Vermont Chittenden 347 4 0.1894 0.0513 
Michigan Midland 1486 4 0.2200 0.0550 Vermont Rutland 169 2 0.1106 0.0391 
Michigan Missaukee 30 1 0.3317 0.1659 Vermont Windham 146 2 0.1106 0.0391 
Michigan Oakland 43 1 0.1548 0.0774 Virginia Fairfax 117 1 0.1204 0.0087 
Michigan Washtenaw 33 1 0.3317 0.1659 Washington King 460 6 0.0894 0.0193 
Michigan Wayne 560 5 0.2808 0.0668 Washington Whatcom 60 2 0.1377 0.0496 
Minnesota Beltrami 21 1 0.0221 0.0111 Wisconsin Manitowoc 32 1 0.0277 0.0138 
Minnesota Dakota 155 5 0.0221 0.0049 Wisconsin Milwaukee 211 1 0.0000 0.0277 
Minnesota Hennepin 72 2 0.0221 0.0078 Wisconsin Ozaukee 54 1 0.0277 0.0138 
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Table A.9  Summary of Countywide Acrylonitrile Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.0651 0.0326 Michigan Wayne 557 5 0.6334 0.1659 
Arkansas Pulaski 51 1 0.0651 0.0326 New Jersey Camden 91 1 0.0651 0.0326 
California Riverside 13 2 0.2072 0.0811 New Jersey Union 22 1 0.0651 0.0326 
Colorado Denver 19 1 0.0651 0.0326 North Dakota Cass 60 1 0.0651 0.0326 
Colorado Mesa 163 2 0.2278 0.0805 North Dakota Mercer 56 1 0.0651 0.0326 
Florida Hillsborough 160 3 0.2784 0.0987 Oregon Multnomah 32 1 0.0651 0.0326 
Florida Pinellas 226 3 0.3471 0.1023 Puerto Rico Barceloneta  37 1 0.2278 0.1139 
Georgia Fayette 207 2 0.2278 0.0805 Puerto Rico San Juan  26 1 0.2278 0.1139 
Iowa Linn 36 1 0.2279 0.1139 Rhode Island Kent 59 1 0.0195 0.0098 
Louisiana East Baton Rouge Parish 47 1 0.0651 0.0326 Rhode Island Providence 374 5 0.0282 0.0064 
Louisiana St. Charles Parish 57 1 0.0651 0.0326 South Dakota Minnehaha 41 1 0.0000 0.0651 
Louisiana St. John the Baptist Parish 56 1 0.0651 0.0326 Texas El Paso 65 1 0.0651 0.0326 
Michigan Kent 37 2 0.8135 0.3032 Texas Tarrant 27 1 0.0651 0.0326 
Michigan Midland 1488 4 0.0250 0.0451 Utah Salt Lake 57 1 0.0000 0.0651 
Michigan Missaukee 30 1 0.5423 0.2712 Vermont Chittenden 137 2 0.0651 0.0230 
Michigan Oakland 43 1 0.2278 0.1139 Vermont Rutland 68 1 0.0651 0.0326 
Michigan Washtenaw 33 1 0.5423 0.2712 Vermont Windham 69 1 0.0651 0.0326 
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Table A.10  Summary of Countywide Benzene Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.3274 0.0633 Indiana Porter 22 1 0.0088 0.0044 
Arkansas Pulaski 51 1 0.6389 0.3195 Iowa Linn 73 2 0.5162 0.1349 
California Alameda 541 4 0.2191 0.0653 Kansas Sedgwick 55 1 4.7919 2.3960 
California Butte 179 1 0.1597 0.1597 Kentucky Boyd 26 1 1.0000 0.5000 
California Contra Costa 769 7 0.2165 0.0544 Kentucky Lawrence 23 1 1.0000 0.5000 
California Fresno 184 1 0.1597 0.1749 Louisiana Ascension Parish 125 1 0.2758 0.0311 
California Humboldt 23 1 0.7987 0.3993 Louisiana Bossier Parish 263 1 0.3146 0.0384 
California Imperial 192 2 0.9175 0.3294 Louisiana Calcasieu Parish 258 1 0.4472 0.2236 
California Kern 361 2 0.1597 0.1129 Louisiana East Baton Rouge Parish 1089 6 0.4927 0.1142 
California Los Angeles 2505 27 0.8089 0.0927 Louisiana Iberville Parish 350 1 1.1394 0.5697 
California Marin 104 1 0.2195 0.1097 Louisiana Ouachita Parish 104 1 0.1278 0.0639 
California Napa 120 1 0.5584 0.2792 Louisiana St. Charles Parish 112 1 0.5018 0.0439 
California Orange 46 2 0.6264 0.1896 Louisiana St. John the Baptist Parish 112 1 0.4169 0.0353 
California Placer 179 1 0.1597 0.1597 Maine Cumberland 830 2 0.1730 0.0666 
California Riverside 844 7 0.6766 0.1364 Maine Hancock 577 3 0.1582 0.0576 
California San Bernardino 657 6 0.4822 0.0345 Maine York 393 1 0.0000 0.0027 
California San Diego 385 3 0.2130 0.1627 Maryland Anne Arundel 749 4 0.2848 0.0101 
California San Francisco 174 1 0.1597 0.1597 Maryland Baltimore 1015 3 0.5775 0.1363 
California San Joaquin 184 1 0.1597 0.1597 Maryland Baltimore city 1731 8 0.6058 0.0466 
California San Mateo 119 1 0.2778 0.2500 Maryland Harford 494 3 0.1116 0.0407 
California Santa Barbara 203 2 0.1687 0.0810 Massachusetts Barnstable 90 2 0.2415 0.0882 
California Santa Clara 299 2 0.1993 0.0997 Massachusetts Bristol 161 2 0.3145 0.0971 
California Solano 120 1 0.2389 0.1195 Massachusetts Essex 1078 5 0.3761 0.0629 
California Sonoma 119 1 0.2389 0.1195 Massachusetts Hampden 730 4 0.3311 0.0714 
California Stanislaus 155 1 0.1597 0.1597 Massachusetts Hampshire 389 2 0.1674 0.0598 
California Ventura 224 2 0.6980 0.3192 Massachusetts Suffolk 37 1 0.3064 0.0268 
Colorado Denver 19 1 3.0349 1.5174 Michigan Allegan 198 1 0.2810 0.0147 
Colorado Mesa 163 2 0.3646 0.3367 Michigan Alpena 130 5 0.2559 0.0599 
Connecticut Fairfield 413 2 0.0867 0.0454 Michigan Kalamazoo 675 4 0.3854 0.0586 
Connecticut Hartford 434 2 0.1146 0.0588 Michigan Kent 162 3 0.9123 0.2976 
Connecticut New Haven 153 1 0.2405 0.0037 Michigan Midland 1458 4 0.2682 0.1175 
Connecticut Tolland 475 2 0.0590 0.0133 Michigan Missaukee 68 2 0.3194 0.1262 
Delaware New Castle 453 2 0.4921 0.0153 Michigan Oakland 43 1 0.8941 0.4471 
District of Columbia District of Columbia 637 2 0.2277 0.0277 Michigan Van Buren 52 1 0.4472 0.2236 
Florida Broward 462 10 0.3378 0.0572 Michigan Washtenaw 44 2 1.3095 0.4631 
Florida Hillsborough 169 3 0.2980 0.1059 Michigan Wayne 846 7 1.0971 0.2349 
Florida Pinellas 677 7 0.3048 0.0731 Minnesota Beltrami 54 1 0.3961 0.1981 
Georgia Dawson 25 1 0.8000 0.4000 Minnesota Clay 51 1 0.4165 0.0202 
Georgia DeKalb 858 4 0.2741 0.0628 Minnesota Dakota 340 6 0.2753 0.0275 
Georgia Fayette 410 2 0.3060 0.0726 Minnesota Douglas 57 1 0.5111 0.0215 
Georgia Fulton 22 1 0.8000 0.4000 Minnesota Goodhue 53 1 0.1853 0.0926 
Georgia Glynn 20 1 0.8000 0.4000 Minnesota Hennepin 427 4 0.5510 0.0736 
Georgia Hall 20 1 0.8000 0.4000 Minnesota Koochiching 139 2 0.3048 0.0162 
Georgia Paulding 240 2 0.0873 0.0116 Minnesota Morrison 55 1 0.2407 0.0265 
Georgia Rockdale 451 2 0.3024 0.0074 Minnesota Olmsted 55 1 0.3738 0.1869 
Idaho Nez Perce 749 13 0.7916 0.1387 Minnesota Otter Tail 47 1 0.6422 0.0178 
Illinois Cook 1052 4 0.2103 0.0129 Minnesota Pine 50 1 0.4616 0.2308 
Illinois Lake 412 2 0.3461 0.1730 Minnesota Pipestone 46 1 0.1607 0.0275 
Illinois Will 314 2 0.2396 0.1198 Minnesota Ramsey 378 3 0.5074 0.1323 
Indiana Lake 946 3 0.0949 0.0507 Minnesota Roseau 46 1 0.1246 0.0623 
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Table A.10  Summary of Countywide Benzene Background Estimates (continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Minnesota Sherburne 57 1 0.2860 0.0340 Rhode Island Providence 1343 7 0.3462 0.0486 
Minnesota St. Louis 375 3 0.3702 0.0557 South Dakota Minnehaha 82 2 0.4744 0.1046 
Minnesota Stearns 51 1 0.2268 0.1134 Tennessee Davidson 30 1 0.2073 0.1413 
Minnesota Swift 53 1 0.3195 0.1597 Texas Bexar 261 1 0.3850 0.0242 
Minnesota Washington 304 2 0.4806 0.0145 Texas Brazoria 321 1 0.2726 0.0188 
Minnesota Winona 50 1 0.4984 0.0002 Texas Cameron 359 2 0.5420 0.2674 
Minnesota Yellow Medicine 42 1 0.1641 0.0311 Texas Carson 834 8 0.2314 0.0416 
New Hampshire Rockingham 254 1 0.0000 0.0027 Texas Dallas 466 3 0.6899 0.1412 
New Jersey Camden 502 2 0.4048 0.0881 Texas Denton 28 1 0.2236 0.1118 
New Jersey Mercer 523 1 0.4283 0.0009 Texas Ector 250 1 0.6070 0.3035 
New Jersey Middlesex 420 1 0.3088 0.1544 Texas El Paso 1459 10 0.7851 0.0783 
New Jersey Union 22 1 0.6709 0.3354 Texas Ellis 330 2 0.6055 0.2119 
New Mexico Sandoval 38 2 1.2774 0.4655 Texas Galveston 670 4 0.5465 0.0286 
New York Albany 72 1 0.4366 0.0242 Texas Gregg 161 1 0.5111 0.2556 
New York Bronx 669 2 0.5420 0.0159 Texas Harris 3076 15 0.6383 0.0669 
New York Erie 141 1 0.2933 0.4216 Texas Hidalgo 422 2 0.4518 0.1283 
New York Essex 137 2 0.1597 0.1786 Texas Jefferson 1928 9 0.3868 0.0504 
New York Kings 124 1 0.6674 0.3337 Texas Nueces 955 4 0.3662 0.0608 
New York Monroe 149 2 0.3162 0.1952 Texas Orange 276 1 0.4617 0.0172 
New York Niagara 130 1 0.0000 0.3195 Texas Smith 89 1 0.8466 0.4233 
New York Queens 389 2 0.2284 0.0238 Texas Tarrant 242 4 0.7110 0.1512 
New York Rensselaer 117 1 0.6964 0.3482 Texas Travis 208 3 0.7589 0.1954 
New York Richmond 2473 19 0.5377 0.0728 Texas Webb 244 1 0.5153 0.0189 
North Carolina Lincoln 269 1 0.4709 0.2354 Utah Salt Lake 114 2 1.1687 0.4132 
North Carolina Mecklenburg 1771 7 0.2594 0.0293 Vermont Chittenden 347 4 0.5375 0.0981 
North Dakota Cass 120 2 0.4852 0.1760 Vermont Rutland 169 2 0.6254 0.0288 
North Dakota Mercer 56 1 0.5750 0.2875 Vermont Windham 146 2 0.6602 0.0227 
Ohio Butler 57 1 0.5000 0.2500 Virginia Caroline 472 2 0.1324 0.0082 
Ohio Cuyahoga 158 2 1.4600 0.5243 Virginia Fairfax 441 3 0.4097 0.0084 
Ohio Hamilton 358 4 0.7297 0.2025 Virginia Henrico 44 1 0.4334 0.2167 
Ohio Scioto 27 1 4.7200 2.3600 Virginia Richmond city 113 1 0.5058 0.2529 
Oregon Multnomah 531 10 0.7043 0.0268 Washington Asotin 48 1 0.3783 0.1178 
Oregon Washington 55 1 0.4067 0.2034 Washington King 472 6 0.3557 0.0418 
Pennsylvania Adams 222 1 0.2092 0.0015 Washington Whatcom 60 2 1.0049 0.2770 
Pennsylvania Delaware 1387 3 0.6138 0.0849 West Virginia Wayne 120 5 1.1430 0.2635 
Pennsylvania Philadelphia 1061 6 0.6741 0.1189 Wisconsin Manitowoc 32 1 0.2662 0.1331 
Puerto Rico Barceloneta  75 1 0.1729 0.0731 Wisconsin Milwaukee 221 1 0.7987 0.3245 
Puerto Rico San Juan  55 1 0.7087 0.0908 Wisconsin Ozaukee 54 1 0.2662 0.1331 
Rhode Island Kent 536 3 0.3806 0.1171       
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Table A.11  Summary of Countywide Carbon Tetrachloride Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Alameda 272 2 0.4304 0.1576 Minnesota Otter Tail 47 1 0.6228 0.3114 
California Butte 140 1 0.3146 0.1573 Minnesota Pine 50 1 0.7097 0.0249 
California Contra Costa 352 4 0.4876 0.1295 Minnesota Pipestone 46 1 0.7131 0.0227 
California Fresno 138 1 0.3146 0.1573 Minnesota Ramsey 378 3 0.3964 0.1048 
California Humboldt 23 1 0.3146 0.1573 Minnesota Roseau 46 1 0.6039 0.3020 
California Imperial 130 1 0.3146 0.1573 Minnesota Sherburne 57 1 0.4403 0.0214 
California Kern 303 2 0.4718 0.1758 Minnesota St. Louis 375 3 0.4047 0.0989 
California Los Angeles 603 10 0.4815 0.0762 Minnesota Stearns 51 1 0.2794 0.0212 
California Orange 24 1 0.5273 0.0160 Minnesota Swift 53 1 0.2957 0.0266 
California Placer 135 1 0.3146 0.1573 Minnesota Washington 304 2 0.2994 0.0774 
California Riverside 423 5 0.5032 0.1177 Minnesota Winona 50 1 0.3146 0.1573 
California San Bernardino 147 3 0.4900 0.1464 Minnesota Yellow Medicine 42 1 0.6543 0.3271 
California San Diego 329 3 0.3146 0.0908 New Mexico Sandoval 29 2 0.2515 0.0889 
California San Francisco 146 1 0.6291 0.3146 New York Erie 143 1 0.1887 0.0944 
California San Joaquin 154 1 0.3146 0.1573 New York Essex 143 2 0.3583 0.1401 
California Santa Barbara 112 1 0.4718 0.2359 New York Kings 134 1 0.1887 0.0944 
California Santa Clara 152 1 0.3146 0.1573 New York Monroe 165 2 0.3685 0.1450 
California Stanislaus 119 1 0.3146 0.1573 New York Niagara 134 1 0.1887 0.0944 
California Ventura 135 1 0.3146 0.1573 New York Rensselaer 120 1 0.1887 0.0944 
Colorado Mesa 163 2 0.5345 0.1893 New York Richmond 2468 19 0.1729 0.0201 
Delaware New Castle 55 1 0.4926 0.0160 Ohio Cuyahoga 57 2 0.3848 0.1662 
District of Columbia District of Columbia 169 1 0.5033 0.2516 Ohio Hamilton 25 1 0.3146 0.1573 
Florida Broward 382 9 0.3090 0.0244 Oregon Multnomah 499 9 0.7626 0.1463 
Florida Hillsborough 169 3 0.6289 0.1815 Oregon Washington 55 1 0.5000 0.2500 
Florida Pinellas 677 7 0.7774 0.0837 Pennsylvania Delaware 1387 3 0.5867 0.1005 
Georgia Dawson 25 1 1.5500 0.7750 Pennsylvania Philadelphia 269 1 0.4880 0.0080 
Georgia Fayette 207 2 0.5660 0.2001 Puerto Rico Barceloneta  37 1 0.5660 0.2830 
Georgia Fulton 22 1 1.5500 0.7750 Puerto Rico San Juan  26 1 0.5660 0.2830 
Georgia Glynn 20 1 1.5500 0.7750 Rhode Island Kent 333 3 0.4784 0.1318 
Georgia Hall 21 1 1.5500 0.7750 Rhode Island Providence 902 7 0.4454 0.0865 
Indiana Lake 277 2 0.2202 0.1217 Texas Bexar 261 1 0.3146 0.1573 
Indiana Porter 22 1 0.1038 0.0519 Texas Brazoria 311 1 0.6291 0.3146 
Iowa Linn 36 1 0.0916 0.0458 Texas Cameron 312 1 0.6291 0.3146 
Kansas Sedgwick 54 1 0.6291 0.3146 Texas Carson 665 7 0.4665 0.0799 
Maryland Anne Arundel 406 2 0.5033 0.1779 Texas Dallas 425 3 0.6815 0.2473 
Maryland Baltimore 347 1 0.4974 0.0063 Texas Denton 28 1 0.3146 0.1573 
Maryland Baltimore city 1398 6 0.4986 0.0839 Texas Ector 210 1 0.3146 0.1573 
Maryland Harford 109 1 0.5023 0.0092 Texas El Paso 1296 8 0.3146 0.0556 
Michigan Alpena 130 5 0.5038 0.1178 Texas Ellis 330 2 0.8650 0.3625 
Michigan Kent 161 3 0.7337 0.2284 Texas Galveston 612 3 0.4194 0.1284 
Michigan Midland 1486 4 0.6300 0.1575 Texas Gregg 161 1 0.3146 0.1573 
Michigan Missaukee 63 2 0.6289 0.2486 Texas Harris 2471 14 0.3932 0.0704 
Michigan Oakland 43 1 0.6289 0.3144 Texas Hidalgo 422 2 0.3146 0.1112 
Michigan Washtenaw 28 2 0.6289 0.2486 Texas Jefferson 1379 6 0.3670 0.0786 
Michigan Wayne 727 7 0.5930 0.1185 Texas Nueces 955 4 0.3146 0.0786 
Minnesota Beltrami 54 1 0.3208 0.1604 Texas Orange 275 1 0.3146 0.1573 
Minnesota Clay 51 1 0.2957 0.1478 Texas Smith 89 1 1.4155 0.7077 
Minnesota Dakota 340 6 0.3104 0.0447 Texas Tarrant 215 3 1.0485 0.3377 
Minnesota Douglas 57 1 0.7109 0.3554 Texas Travis 208 3 0.3146 0.0908 
Minnesota Goodhue 53 1 0.7361 0.0186 Texas Webb 244 1 0.3146 0.1573 
Minnesota Hennepin 427 4 0.4698 0.0868 Virginia Fairfax 117 1 0.4680 0.0165 
Minnesota Koochiching 139 2 0.5316 0.1977 Washington King 492 6 0.4520 0.0858 
Minnesota Morrison 55 1 0.7172 0.3586 Washington Whatcom 30 1 0.5033 0.2516 
Minnesota Olmsted 55 1 0.4404 0.2202       
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Table A.12  Summary of Countywide Chloroform Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.0244 0.0122 Maryland Baltimore 347 1 0.2441 0.1221 
Arkansas Pulaski 51 1 0.0244 0.0122 Maryland Baltimore city 1398 6 0.1980 0.0369 
California Alameda 527 4 0.0827 0.0311 Maryland Harford 109 1 0.0977 0.0488 
California Butte 151 1 0.2441 0.1221 Michigan Alpena 130 5 0.3887 0.0908 
California Contra Costa 714 8 0.1390 0.0308 Michigan Kalamazoo 666 4 0.0122 0.0096 
California Fresno 153 1 0.2441 0.1221 Michigan Kent 163 3 0.5694 0.1773 
California Humboldt 23 1 0.2441 0.1221 Michigan Midland 1468 4 0.4850 0.1213 
California Imperial 148 1 0.2441 0.1221 Michigan Missaukee 70 2 0.4881 0.1929 
California Kern 339 2 0.2441 0.0863 Michigan Oakland 43 1 0.1220 0.0610 
California Los Angeles 577 7 0.2175 0.0421 Michigan Van Buren 50 1 0.0244 0.0122 
California Marin 223 2 0.0488 0.0173 Michigan Washtenaw 44 2 0.4881 0.1929 
California Napa 120 1 0.0777 0.0388 Michigan Wayne 875 7 1.0110 0.3574 
California Placer 152 1 0.2441 0.1221 Minnesota Beltrami 54 1 0.0244 0.0122 
California Riverside 393 4 0.2441 0.0610 Minnesota Clay 51 1 0.0244 0.0122 
California San Bernardino 156 3 0.2116 0.0625 Minnesota Dakota 329 6 0.0374 0.0085 
California San Diego 358 3 0.2441 0.0705 Minnesota Douglas 57 1 0.1709 0.0854 
California San Francisco 159 1 0.2441 0.1221 Minnesota Goodhue 53 1 0.1025 0.0513 
California San Joaquin 166 1 0.2441 0.1221 Minnesota Hennepin 423 4 0.0989 0.0257 
California San Mateo 120 1 0.0288 0.0144 Minnesota Koochiching 139 2 0.1172 0.0423 
California Santa Barbara 126 1 0.2441 0.1221 Minnesota Morrison 55 1 0.1025 0.0513 
California Santa Clara 284 2 0.1365 0.0615 Minnesota Olmsted 55 1 0.0830 0.0415 
California Solano 120 1 0.0488 0.0244 Minnesota Otter Tail 47 1 0.0830 0.0415 
California Sonoma 119 1 0.0288 0.0144 Minnesota Pine 50 1 0.0952 0.0476 
California Stanislaus 132 1 0.2441 0.1221 Minnesota Pipestone 46 1 0.0895 0.0122 
California Ventura 148 1 0.2441 0.1221 Minnesota Ramsey 373 3 0.0874 0.0189 
Colorado Denver 19 1 0.0244 0.0122 Minnesota Roseau 46 1 0.0903 0.0452 
Colorado Mesa 163 2 0.1220 0.0431 Minnesota Sherburne 57 1 0.0684 0.0342 
Delaware New Castle 55 1 0.1465 0.0732 Minnesota St. Louis 377 3 0.0667 0.0211 
District of Columbia District of Columbia 169 1 0.0488 0.0244 Minnesota Stearns 51 1 0.0586 0.0293 
Florida Broward 52 2 0.0288 0.0102 Minnesota Swift 53 1 0.0244 0.0122 
Florida Hillsborough 169 3 0.1464 0.0438 Minnesota Washington 302 2 0.0732 0.0268 
Florida Pinellas 677 7 0.1341 0.0268 Minnesota Winona 50 1 0.0391 0.0195 
Georgia Dawson 25 1 1.2000 0.6000 Minnesota Yellow Medicine 42 1 0.0854 0.0427 
Georgia Fayette 207 2 0.1220 0.0431 New Jersey Camden 164 1 0.0000 0.0244 
Georgia Fulton 22 1 1.2000 0.6000 New Jersey Union 22 1 0.0244 0.0122 
Georgia Glynn 20 1 1.2000 0.6000 New Mexico Sandoval 40 2 0.2928 0.1035 
Georgia Hall 21 1 1.2000 0.6000 New York Erie 150 1 0.0977 0.0488 
Idaho Nez Perce 749 13 0.1506 0.0238 New York Essex 147 2 0.0977 0.0345 
Indiana Lake 277 2 0.0806 0.0285 New York Kings 136 1 0.0977 0.0488 
Indiana Porter 22 1 0.0806 0.0403 New York Monroe 166 2 0.0977 0.0345 
Iowa Linn 36 1 0.1221 0.0610 New York Niagara 138 1 0.0977 0.0488 
Kansas Sedgwick 53 1 0.4883 0.2441 New York Rensselaer 125 1 0.0977 0.0488 
Louisiana Ascension Parish 125 1 0.0000 0.0244 New York Richmond 2497 19 0.1028 0.0121 
Louisiana Bossier Parish 263 1 0.0000 0.0244 North Dakota Cass 60 1 0.0244 0.0122 
Louisiana Calcasieu Parish 208 1 0.1465 0.0732 North Dakota Mercer 56 1 0.0244 0.0122 
Louisiana East Baton Rouge Parish 283 3 0.0651 0.0244 Ohio Hamilton 36 1 0.1441 0.0721 
Louisiana Ouachita Parish 104 1 0.0000 0.0244 Oregon Multnomah 531 10 0.1645 0.0291 
Louisiana St. Charles Parish 112 1 0.0244 0.0122 Oregon Washington 55 1 0.1000 0.0500 
Louisiana St. John the Baptist Parish 112 1 0.0244 0.0122 Pennsylvania Delaware 1369 3 0.1308 0.0402 
Maryland Anne Arundel 406 2 0.1748 0.0125 Pennsylvania Philadelphia 269 1 0.1953 0.0977 
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Table A.12  Summary of Countywide Chloroform Background Estimates (continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Puerto Rico Barceloneta  37 1 0.1220 0.0610 Texas Harris 2514 14 0.3383 0.0640 
Puerto Rico San Juan  26 1 0.1220 0.0610 Texas Hidalgo 422 2 0.2441 0.0863 
Rhode Island Kent 333 3 0.1050 0.0311 Texas Jefferson 1543 7 0.2093 0.0429 
Rhode Island Providence 902 7 0.1012 0.0183 Texas Nueces 955 4 0.2441 0.0610 
South Dakota Minnehaha 41 1 0.0244 0.0122 Texas Orange 276 1 0.2441 0.1221 
Tennessee Davidson 30 1 0.0244 0.0122 Texas Smith 89 1 1.5624 0.7812 
Texas Bexar 261 1 0.2441 0.1221 Texas Tarrant 242 4 0.8483 0.2779 
Texas Brazoria 321 1 0.2441 0.1221 Texas Travis 208 3 0.2441 0.0705 
Texas Cameron 359 2 0.1343 0.0613 Texas Webb 244 1 0.2441 0.1221 
Texas Carson 834 8 0.0350 0.0067 Utah Salt Lake 57 1 0.0244 0.0122 
Texas Dallas 466 3 0.6836 0.2667 Vermont Chittenden 260 2 0.0122 0.0136 
Texas Denton 28 1 0.2441 0.1221 Vermont Rutland 126 1 0.0000 0.0244 
Texas Ector 250 1 0.2441 0.1221 Vermont Windham 105 1 0.0000 0.0244 
Texas El Paso 1424 9 0.2197 0.0384 Virginia Fairfax 117 1 0.1465 0.0732 
Texas Ellis 330 2 0.9033 0.3953 Washington Asotin 48 1 0.1158 0.0579 
Texas Galveston 670 4 0.1831 0.0532 Washington King 492 6 0.1375 0.0274 
Texas Gregg 161 1 0.2441 0.1221 Washington Whatcom 60 2 0.0425 0.0245 
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Table A.13  Summary of Countywide CIS 1,3-Dichloropropene Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Colorado Mesa 163 2 0.2268 0.0802 Michigan Washtenaw 33 1 0.6805 0.3403 
Florida Hillsborough 26 3 0.0983 0.0290 Michigan Wayne 564 5 1.2703 0.4649 
Florida Pinellas 33 3 0.1134 0.0327 Puerto Rico Barceloneta  37 1 0.2268 0.1134 
Georgia Fayette 207 2 0.2268 0.0802 Puerto Rico San Juan  26 1 0.2268 0.1134 
Michigan Kent 38 2 0.6805 0.2406 Rhode Island Kent 59 1 0.0295 0.0147 
Michigan Missaukee 30 1 0.6805 0.3403 Rhode Island Providence 360 5 0.0295 0.0066 
Michigan Oakland 43 1 0.2268 0.1134       

 
 
 
Table A.14  Summary of Countywide Trans 1,3-Dichloropropene Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Colorado Mesa 163 2 0.2495 0.0882 Michigan Washtenaw 33 1 0.6805 0.3403 
Florida Hillsborough 18 3 0.2193 0.0645 Michigan Wayne 564 5 1.2794 0.4651 
Florida Pinellas 24 3 0.2495 0.0720 Puerto Rico Barceloneta  37 1 0.2495 0.1248 
Georgia Fayette 207 2 0.2495 0.0882 Puerto Rico San Juan  26 1 0.2495 0.1248 
Michigan Kent 38 2 0.6805 0.2406 Rhode Island Kent 59 1 0.0363 0.0181 
Michigan Missaukee 30 1 0.6805 0.3403 Rhode Island Providence 360 5 0.0363 0.0081 
Michigan Oakland 43 1 0.2495 0.1248       

 
 
 
Table A.15  Summary of Countywide Ethylene Oxide Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Rhode Island Kent 87 1 0.1243 0.0621 Rhode Island Providence 524 5 0.1545 0.0377
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Table A.16  Summary of Countywide Methylene Chloride Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.4863 0.2431 Louisiana St. John the Baptist Parish 112 1 0.1910 0.0955 
Arkansas Pulaski 51 1 0.1910 0.0955 Maryland Anne Arundel 406 2 0.2002 0.0091 
California Alameda 547 4 0.7868 0.2108 Maryland Baltimore 347 1 0.3632 0.0074 
California Butte 176 1 1.0421 0.5210 Maryland Baltimore city 1398 6 0.3017 0.0056 
California Contra Costa 717 8 1.0421 0.1905 Maryland Harford 109 1 0.3474 0.1737 
California Fresno 170 1 1.0421 0.5210 Michigan Alpena 130 5 0.2765 0.0646 
California Humboldt 23 1 1.0421 0.5210 Michigan Kalamazoo 673 4 0.0912 0.0753 
California Imperial 167 1 1.0421 0.5210 Michigan Kent 162 3 1.2951 0.4950 
California Kern 375 2 1.0421 0.3684 Michigan Midland 1494 4 0.3450 0.0863 
California Los Angeles 717 10 0.8031 0.1369 Michigan Missaukee 86 2 0.3473 0.1373 
California Marin 222 2 0.6184 0.2505 Michigan Oakland 41 1 0.2357 0.0704 
California Napa 120 1 0.8684 0.4342 Michigan Van Buren 52 1 0.1910 0.0955 
California Orange 22 1 0.4947 0.2474 Michigan Washtenaw 50 2 0.3473 0.1373 
California Placer 167 1 1.0421 0.5210 Michigan Wayne 831 7 0.9400 0.2949 
California Riverside 474 5 0.6602 0.1609 Minnesota Beltrami 54 1 0.0000 0.0174 
California San Bernardino 165 3 0.8596 0.2591 Minnesota Clay 51 1 0.0000 0.0174 
California San Diego 399 3 1.0421 0.3008 Minnesota Crow Wing 32 1 0.0174 0.0087 
California San Francisco 178 1 1.0421 0.5210 Minnesota Dakota 784 8 0.0204 0.0106 
California San Joaquin 190 1 1.0421 0.5210 Minnesota Douglas 88 2 0.0834 0.0376 
California San Mateo 119 1 0.0472 0.1253 Minnesota Freeborn 53 1 0.0000 0.0174 
California Santa Barbara 130 1 1.0421 0.5210 Minnesota Goodhue 53 1 0.3091 0.1546 
California Santa Clara 300 2 0.6002 0.2622 Minnesota Hennepin 659 6 0.0932 0.0265 
California Solano 120 1 0.2186 0.0891 Minnesota Itasca 22 1 0.0174 0.0087 
California Sonoma 119 1 0.8684 0.4342 Minnesota Kandiyohi 35 1 0.0174 0.0087 
California Stanislaus 139 1 1.7368 0.8684 Minnesota Koochiching 139 2 0.1799 0.0408 
California Ventura 160 1 1.0421 0.5210 Minnesota Lake 45 1 0.0000 0.0174 
Colorado Denver 19 1 0.1910 0.0955 Minnesota McLeod 56 1 0.2418 0.0217 
Colorado Mesa 163 2 0.1389 0.0582 Minnesota Morrison 55 1 0.1216 0.0680 
Delaware New Castle 55 1 0.2358 0.0181 Minnesota Nicollet 21 1 0.0174 0.0087 
District of Columbia District of Columbia 169 1 0.2696 0.0076 Minnesota Olmsted 55 1 0.2049 0.1025 
Florida Broward 193 6 0.2532 0.0689 Minnesota Otter Tail 100 2 0.1042 0.0528 
Florida Hillsborough 169 3 0.4282 0.1240 Minnesota Pine 50 1 0.1980 0.0990 
Florida Pinellas 677 7 0.2632 0.0561 Minnesota Pipestone 46 1 0.1667 0.0834 
Georgia Dawson 25 1 0.8500 0.4250 Minnesota Ramsey 513 3 0.1401 0.0554 
Georgia Fayette 207 2 0.0521 0.0582 Minnesota Roseau 46 1 0.1598 0.0799 
Georgia Fulton 22 1 1.2950 0.6475 Minnesota Sherburne 57 1 0.1077 0.0538 
Georgia Glynn 20 1 0.8500 0.4250 Minnesota St. Louis 547 5 0.1390 0.0279 
Georgia Hall 20 1 0.8500 0.4250 Minnesota Stearns 51 1 0.0000 0.0174 
Indiana Lake 277 2 0.0000 0.0405 Minnesota Swift 53 1 0.0000 0.0174 
Indiana Porter 22 1 0.0573 0.0287 Minnesota Washington 522 3 0.0000 0.0100 
Iowa Linn 36 1 0.1042 0.0521 Minnesota Winona 50 1 0.0000 0.0174 
Kansas Sedgwick 40 1 1.2500 0.6250 Minnesota Wright 59 1 0.0000 0.0174 
Kentucky Boyd 26 1 1.0000 0.5000 Minnesota Yellow Medicine 42 1 0.1112 0.0556 
Kentucky Lawrence 23 1 1.0000 0.5000 New Jersey Camden 164 1 0.0194 0.0464 
Louisiana Ascension Parish 85 1 0.2779 0.1910 New Jersey Union 22 1 0.7468 0.3734 
Louisiana Bossier Parish 279 1 0.0000 0.1910 New Mexico Sandoval 40 2 1.2153 0.4340 
Louisiana Calcasieu Parish 272 1 0.0000 0.1910 New York Erie 150 1 0.3474 0.1737 
Louisiana East Baton Rouge Parish 283 3 0.1274 0.0780 New York Essex 145 2 0.3474 0.1228 
Louisiana Ouachita Parish 112 1 0.0000 0.1910 New York Kings 135 1 0.3474 0.1737 
Louisiana St. Charles Parish 112 1 0.1910 0.0955 New York Monroe 159 2 0.3474 0.1228 
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Table A.16  Summary of Countywide Methylene Chloride Background Estimates 

(continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
New York Niagara 137 1 0.3474 0.1737 Texas Denton 43 1 0.1737 0.0868 
New York Rensselaer 122 1 0.3474 0.1737 Texas Ector 250 1 0.1737 0.0868 
New York Richmond 2502 19 0.3052 0.0369 Texas El Paso 1493 9 0.1281 0.0587 
North Dakota Cass 60 1 0.1910 0.0955 Texas Ellis 344 2 0.4342 0.1790 
North Dakota Mercer 56 1 0.0000 0.1910 Texas Galveston 710 4 0.1520 0.0583 
Ohio Butler 30 1 0.2217 0.1179 Texas Gregg 175 1 0.1737 0.0868 
Ohio Cuyahoga 106 2 0.1661 0.0261 Texas Harris 2690 14 0.1056 0.0469 
Ohio Hamilton 341 4 0.5346 0.1306 Texas Hidalgo 449 2 0.1737 0.0614 
Oregon Multnomah 529 10 0.1268 0.0290 Texas Jefferson 1631 7 0.1762 0.0333 
Oregon Washington 31 1 0.1000 0.0500 Texas Nueces 1069 4 0.1737 0.0434 
Pennsylvania Delaware 1380 3 0.2511 0.0355 Texas Orange 291 1 0.1737 0.0868 
Pennsylvania Philadelphia 269 1 0.3885 0.0127 Texas Smith 89 1 0.6947 0.3474 
Puerto Rico Barceloneta  37 1 1.0417 0.2757 Texas Tarrant 242 4 0.4342 0.1317 
Puerto Rico San Juan  26 1 0.4514 0.2257 Texas Travis 222 3 0.1737 0.0501 
Rhode Island Kent 333 3 0.0972 0.0577 Texas Webb 258 1 0.1737 0.0868 
Rhode Island Providence 902 7 0.1948 0.0390 Utah Salt Lake 57 1 0.4168 0.2084 
South Dakota Minnehaha 41 1 0.1910 0.0955 Vermont Chittenden 260 2 0.1910 0.0675 
Tennessee Davidson 30 1 0.1910 0.0955 Vermont Rutland 126 1 0.1910 0.0955 
Texas Bexar 273 1 0.1737 0.0868 Vermont Windham 105 1 0.0000 0.1910 
Texas Brazoria 336 1 0.0115 0.0436 Virginia Fairfax 117 1 0.3821 0.1910 
Texas Cameron 374 2 0.1824 0.0645 Washington Whatcom 60 2 1.0955 2.0621 
Texas Carson 834 8 0.0157 0.0069 West Virginia Wayne 120 5 1.0000 0.2236 
Texas Dallas 495 3 0.2316 0.1418       
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Table A.17  Summary of Countywide Tetrachloroethylene Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.2374 0.1187 Maryland Baltimore 347 1 0.4069 0.2035 
Arkansas Pulaski 51 1 0.2374 0.1187 Maryland Baltimore city 1398 6 0.3460 0.0676 
California Alameda 169 1 0.3391 0.1696 Maryland Harford 109 1 0.2035 0.1017 
California Butte 155 1 0.3391 0.1696 Michigan Alpena 130 5 0.5406 0.1264 
California Contra Costa 391 4 0.3391 0.0848 Michigan Kalamazoo 660 4 0.2374 0.0593 
California Fresno 152 1 0.3391 0.1696 Michigan Kent 163 3 0.7910 0.2463 
California Humboldt 23 1 0.3391 0.1696 Michigan Midland 1464 4 0.6750 0.1688 
California Imperial 148 1 0.3391 0.1696 Michigan Missaukee 87 2 0.6780 0.2680 
California Kern 335 2 0.3391 0.1199 Michigan Oakland 43 1 0.2034 0.1017 
California Los Angeles 744 15 0.7912 0.1221 Michigan Van Buren 49 1 0.2374 0.1187 
California Marin 104 1 0.2513 0.1256 Michigan Washtenaw 49 2 0.6780 0.2680 
California Napa 120 1 0.1156 0.0578 Michigan Wayne 838 7 1.5303 0.5017 
California Orange 40 2 0.7021 0.3393 Minnesota Beltrami 54 1 0.0339 0.0170 
California Placer 150 1 0.3391 0.1696 Minnesota Clay 51 1 0.0339 0.0170 
California Riverside 411 6 0.6443 0.1545 Minnesota Dakota 339 6 0.0577 0.0158 
California San Bernardino 185 4 0.7419 0.2226 Minnesota Douglas 57 1 0.3730 0.0003 
California San Diego 362 3 0.3391 0.0979 Minnesota Goodhue 53 1 0.2102 0.0267 
California San Francisco 159 1 0.3391 0.1696 Minnesota Hennepin 427 4 0.1306 0.0271 
California San Joaquin 169 1 0.3391 0.1696 Minnesota Koochiching 139 2 0.1255 0.0587 
California Santa Barbara 129 1 0.3391 0.1696 Minnesota Morrison 55 1 0.2035 0.1017 
California Santa Clara 165 1 0.3391 0.1696 Minnesota Olmsted 55 1 0.1560 0.0780 
California Stanislaus 134 1 0.3391 0.1696 Minnesota Otter Tail 47 1 0.0248 0.0422 
California Ventura 148 1 0.3391 0.1696 Minnesota Pine 50 1 0.1153 0.0576 
Colorado Denver 19 1 0.2374 0.1187 Minnesota Pipestone 46 1 0.1560 0.0780 
Colorado Mesa 163 2 0.2034 0.0719 Minnesota Ramsey 378 3 0.0113 0.0170 
Delaware New Castle 55 1 0.1368 0.0443 Minnesota Roseau 46 1 0.1492 0.0746 
District of Columbia District of Columbia 169 1 0.3717 0.0213 Minnesota Sherburne 57 1 0.1696 0.0848 
Florida Broward 134 6 0.8734 0.2873 Minnesota St. Louis 377 3 0.1572 0.0168 
Florida Hillsborough 160 3 0.2034 0.0587 Minnesota Stearns 51 1 0.0339 0.0170 
Florida Pinellas 673 7 0.1665 0.0367 Minnesota Swift 53 1 0.0339 0.0170 
Georgia Dawson 25 1 1.7000 0.8500 Minnesota Washington 301 2 0.0000 0.0240 
Georgia Fayette 207 2 0.2034 0.0719 Minnesota Winona 50 1 0.0339 0.0170 
Georgia Fulton 22 1 1.7000 0.8500 Minnesota Yellow Medicine 42 1 0.1831 0.0916 
Georgia Glynn 20 1 1.7000 0.8500 New Jersey Camden 164 1 0.2374 0.1187 
Georgia Hall 21 1 1.7000 0.8500 New Jersey Union 22 1 0.2374 0.1187 
Indiana Lake 277 2 0.0280 0.0577 New Mexico Sandoval 40 2 0.3051 0.1079 
Indiana Porter 22 1 0.0560 0.0280 New York Erie 193 1 0.1356 0.0678 
Iowa Linn 36 1 0.2035 0.1017 New York Essex 177 2 0.1356 0.0480 
Kansas Sedgwick 53 1 0.7460 0.3730 New York Kings 180 1 0.9909 1.1454 
Kentucky Boyd 26 1 1.0000 0.5000 New York Monroe 206 2 0.0000 0.0959 
Kentucky Lawrence 23 1 1.0000 0.5000 New York Niagara 132 1 0.0000 0.1356 
Louisiana Ascension Parish 125 1 0.2374 0.1187 New York Rensselaer 169 1 0.0000 0.1356 
Louisiana Bossier Parish 263 1 0.2374 0.1187 New York Richmond 2406 19 0.1844 0.0736 
Louisiana Calcasieu Parish 258 1 0.0000 0.2374 North Dakota Cass 60 1 0.2374 0.1187 
Louisiana East Baton Rouge Parish 283 3 0.2374 0.0685 North Dakota Mercer 56 1 0.2374 0.1187 
Louisiana Ouachita Parish 104 1 0.2374 0.1187 Ohio Cuyahoga 51 2 0.4741 0.1676 
Louisiana St. Charles Parish 112 1 0.2374 0.1187 Ohio Hamilton 81 3 0.3652 0.1244 
Louisiana St. John the Baptist Parish 112 1 0.2374 0.1187 Oregon Multnomah 529 10 0.2033 0.0379 
Maine Oxford 22 1 3.4000 1.7000 Oregon Washington 55 1 0.1000 0.0500 
Maryland Anne Arundel 406 2 0.2299 0.1020 Pennsylvania Delaware 1348 3 0.2381 0.0755 
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Table A.17  Summary of Countywide Tetrachloroethylene Background Estimates 

(continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Pennsylvania Philadelphia 269 1 0.3665 0.0205 Texas Harris 2514 14 0.3052 0.0770 
Puerto Rico Barceloneta  37 1 0.2034 0.1017 Texas Hidalgo 422 2 0.1696 0.0599 
Puerto Rico San Juan  26 1 0.2034 0.1017 Texas Jefferson 1541 7 0.1550 0.0401 
Rhode Island Kent 331 3 0.1379 0.0419 Texas Nueces 955 4 0.1696 0.0424 
Rhode Island Providence 902 7 0.2782 0.0517 Texas Orange 276 1 0.1696 0.0848 
South Dakota Minnehaha 41 1 0.2374 0.1187 Texas Smith 89 1 2.0686 1.0343 
Tennessee Davidson 30 1 0.2374 0.1187 Texas Tarrant 242 4 1.1360 0.3675 
Texas Bexar 261 1 0.1696 0.0848 Texas Travis 208 3 0.1696 0.0489 
Texas Brazoria 321 1 0.1696 0.0848 Texas Webb 244 1 0.1696 0.0848 
Texas Cameron 359 2 0.2035 0.0729 Utah Salt Lake 57 1 0.2374 0.1187 
Texas Carson 834 8 0.0334 0.0065 Vermont Chittenden 260 2 0.2374 0.0839 
Texas Dallas 466 3 0.7460 0.3505 Vermont Rutland 126 1 0.2374 0.1187 
Texas Denton 28 1 0.1696 0.0848 Vermont Windham 105 1 0.2374 0.1187 
Texas Ector 250 1 0.1696 0.0848 Virginia Fairfax 117 1 0.0886 0.0256 
Texas El Paso 1424 9 0.1771 0.0297 Washington King 492 6 0.1415 0.0328 
Texas Ellis 330 2 1.1191 0.5189 Washington Whatcom 60 2 0.1534 0.0618 
Texas Galveston 670 4 0.1865 0.0472 West Virginia Wayne 120 5 1.0000 0.2236 
Texas Gregg 161 1 0.1696 0.0848       
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Table A.18  Summary of Countywide Trichloroethylene TCE Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Alameda 530 4 0.2284 0.0574 Minnesota Beltrami 54 1 0.0537 0.0269 
California Butte 157 1 0.2687 0.1343 Minnesota Clay 51 1 0.0537 0.0269 
California Contra Costa 713 8 0.2318 0.0417 Minnesota Dakota 334 5 0.0430 0.0152 
California Fresno 152 1 0.2687 0.1343 Minnesota Douglas 57 1 0.0860 0.0632 
California Humboldt 23 1 0.2687 0.1343 Minnesota Goodhue 53 1 0.3869 0.1935 
California Imperial 150 1 0.2687 0.1343 Minnesota Hennepin 427 4 0.2432 0.0741 
California Kern 368 3 0.1970 0.0640 Minnesota Koochiching 139 2 0.0699 0.0300 
California Los Angeles 583 7 0.2671 0.0811 Minnesota Morrison 55 1 0.2483 0.0777 
California Marin 223 2 0.2149 0.0760 Minnesota Olmsted 55 1 0.1935 0.0967 
California Napa 112 1 0.2149 0.1075 Minnesota Otter Tail 47 1 0.1559 0.0708 
California Orange 20 1 0.5374 0.2687 Minnesota Pine 50 1 0.1827 0.0914 
California Placer 150 1 0.2687 0.1343 Minnesota Pipestone 46 1 0.2203 0.1031 
California Riverside 277 4 0.2686 0.0672 Minnesota Ramsey 377 3 0.0358 0.0310 
California San Bernardino 138 2 0.2687 0.0950 Minnesota Roseau 46 1 0.0547 0.1370 
California San Diego 363 3 0.2687 0.0776 Minnesota Sherburne 57 1 0.2987 0.0487 
California San Francisco 162 1 0.2687 0.1343 Minnesota St. Louis 377 3 0.0967 0.0127 
California San Joaquin 171 1 0.2687 0.1343 Minnesota Stearns 51 1 0.0537 0.0269 
California San Mateo 120 1 0.1349 0.0675 Minnesota Swift 53 1 0.0537 0.0269 
California Santa Barbara 130 1 0.2687 0.1343 Minnesota Washington 304 2 0.0000 0.0380 
California Santa Clara 278 2 0.2418 0.0860 Minnesota Winona 50 1 0.0537 0.0269 
California Solano 120 1 0.2149 0.1075 Minnesota Yellow Medicine 42 1 0.0537 0.0269 
California Sonoma 119 1 0.1349 0.0675 New Mexico Sandoval 40 2 0.2417 0.0855 
California Stanislaus 136 1 0.2687 0.1343 New York Erie 202 1 0.0537 0.0269 
California Ventura 148 1 0.2687 0.1343 New York Essex 190 2 0.0537 0.0190 
Colorado Mesa 163 2 0.1880 0.0665 New York Kings 182 1 0.1075 0.0537 
Delaware New Castle 55 1 0.1612 0.0806 New York Monroe 221 2 0.1069 0.0598 
District of Columbia District of Columbia 169 2 0.0537 0.0190 New York Niagara 136 1 0.0000 0.0537 
Florida Broward 52 2 0.1075 0.0380 New York Rensselaer 176 1 0.0537 0.0269 
Florida Hillsborough 47 3 0.1611 0.0465 New York Richmond 2440 19 0.0534 0.0084 
Florida Pinellas 571 7 0.1450 0.0551 Ohio Cuyahoga 30 1 0.0687 0.0500 
Georgia Dawson 25 1 1.3500 0.6750 Ohio Hamilton 25 1 0.2687 0.1343 
Georgia Fayette 207 2 0.1880 0.0665 Oregon Multnomah 499 9 0.1937 0.0352 
Georgia Fulton 22 1 1.3500 0.6750 Oregon Washington 55 1 0.1000 0.0500 
Georgia Glynn 20 1 1.3500 0.6750 Pennsylvania Delaware 1376 3 0.1355 0.0397 
Georgia Hall 21 1 1.3500 0.6750 Pennsylvania Philadelphia 269 1 0.1612 0.0806 
Indiana Lake 277 2 0.0000 0.0150 Puerto Rico Barceloneta  37 1 0.1880 0.0940 
Indiana Porter 22 1 0.0134 0.0067 Puerto Rico San Juan  26 1 0.1880 0.0940 
Iowa Linn 36 1 0.1881 0.0940 Rhode Island Kent 308 3 0.1146 0.0382 
Kansas Sedgwick 53 1 0.5374 0.2687 Rhode Island Providence 887 7 0.1800 0.0390 
Maine Oxford 22 1 2.7000 1.3500 Texas Bexar 261 1 0.1343 0.0672 
Maryland Anne Arundel 406 2 0.0585 0.0145 Texas Brazoria 321 1 0.0000 0.1343 
Maryland Baltimore 347 1 0.0765 0.0088 Texas Cameron 312 1 0.1343 0.0672 
Maryland Baltimore city 1398 6 0.1149 0.0220 Texas Carson 834 8 0.0365 0.0080 
Maryland Harford 109 1 0.0537 0.0269 Texas Dallas 466 3 0.5822 0.2733 
Michigan Alpena 130 5 0.2695 0.0603 Texas Denton 28 1 0.1343 0.0672 
Michigan Kent 163 3 0.5372 0.2100 Texas Ector 250 1 0.1343 0.0672 
Michigan Missaukee 87 2 0.5372 0.2123 Texas El Paso 1296 8 0.1343 0.0237 
Michigan Oakland 43 1 0.1880 0.0940 Texas Ellis 330 2 0.8732 0.4044 
Michigan Washtenaw 50 2 0.5372 0.2123 Texas Galveston 613 3 0.1343 0.0388 
Michigan Wayne 869 7 1.2163 0.3976 Texas Gregg 161 1 0.1343 0.0672 
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Table A.18  Summary of Countywide Trichloroethylene TCE Background Estimates 

(continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Texas Harris 2514 14 0.2399 0.0601 Texas Tarrant 215 3 1.1195 0.3806 
Texas Hidalgo 422 2 0.1343 0.0475 Texas Travis 208 3 0.1343 0.0388 
Texas Jefferson 1482 6 0.1343 0.0274 Texas Webb 244 1 0.1343 0.0672 
Texas Nueces 955 4 0.1343 0.0336 Virginia Fairfax 117 1 0.0537 0.0269 
Texas Orange 276 1 0.1343 0.0672 Washington King 492 6 0.1603 0.0319 
Texas Smith 89 1 1.6121 0.8061 Washington Whatcom 30 1 0.1343 0.0672 

 
 
 



Final Background Concentrations Report A-23 June 13, 2003 

 
Table A.19  Summary of Countywide Vinyl Chloride Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Arkansas Miller 41 1 0.2556 0.1278 Minnesota Douglas 89 2 0.0256 0.0090 
Arkansas Pulaski 51 1 0.2556 0.1278 Minnesota Freeborn 53 1 0.0256 0.0128 
California Alameda 463 4 0.3834 0.0959 Minnesota Goodhue 53 1 0.0256 0.0128 
California Contra Costa 454 6 0.3834 0.0783 Minnesota Hennepin 661 6 0.0256 0.0052 
California Marin 223 2 0.3834 0.1356 Minnesota Itasca 23 1 0.0256 0.0128 
California Napa 120 1 0.3834 0.1917 Minnesota Kandiyohi 36 1 0.0256 0.0128 
California San Francisco 121 1 0.3834 0.1917 Minnesota Koochiching 139 2 0.0256 0.0090 
California San Mateo 120 1 0.3834 0.1917 Minnesota Lake 45 1 0.0256 0.0128 
California Santa Clara 239 2 0.3834 0.1356 Minnesota McLeod 56 1 0.0256 0.0128 
California Solano 120 1 0.3834 0.1917 Minnesota Morrison 55 1 0.0256 0.0128 
California Sonoma 119 1 0.3834 0.1917 Minnesota Nicollet 23 1 0.0256 0.0128 
Colorado Denver 19 1 0.2556 0.1278 Minnesota Olmsted 55 1 0.0256 0.0128 
Colorado Mesa 163 2 0.0767 0.0271 Minnesota Otter Tail 100 2 0.0256 0.0090 
Delaware New Castle 55 1 0.0256 0.0128 Minnesota Pine 50 1 0.0256 0.0128 
District of Columbia District of Columbia 169 1 0.0256 0.0128 Minnesota Pipestone 46 1 0.0256 0.0128 
Florida Broward 52 2 0.0383 0.0136 Minnesota Ramsey 514 3 0.0256 0.0074 
Florida Hillsborough 85 3 0.1022 0.0295 Minnesota Roseau 46 1 0.0256 0.0128 
Florida Pinellas 516 7 0.0679 0.0135 Minnesota Sherburne 57 1 0.0256 0.0128 
Georgia Dawson 25 1 0.6500 0.3250 Minnesota St. Louis 549 5 0.0256 0.0057 
Georgia Fayette 207 2 0.0767 0.0271 Minnesota Stearns 51 1 0.0256 0.0128 
Georgia Fulton 22 1 0.6500 0.3250 Minnesota Swift 53 1 0.0256 0.0128 
Georgia Glynn 20 1 0.6500 0.3250 Minnesota Washington 523 3 0.0256 0.0074 
Georgia Hall 21 1 0.6500 0.3250 Minnesota Winona 50 1 0.0256 0.0128 
Indiana Lake 277 2 0.0316 0.0118 Minnesota Wright 59 1 0.0256 0.0128 
Indiana Porter 22 1 0.0211 0.0105 Minnesota Yellow Medicine 42 1 0.0256 0.0128 
Iowa Linn 36 1 0.0767 0.0383 New Jersey Camden 164 1 0.2556 0.1278 
Kansas Sedgwick 54 1 0.4473 0.2237 New Jersey Union 22 1 0.2556 0.1278 
Louisiana Ascension Parish 141 1 0.2556 0.1278 New Mexico Sandoval 40 2 0.3833 0.1355 
Louisiana Bossier Parish 279 1 0.2556 0.1278 New York Erie 155 1 0.1022 0.0511 
Louisiana Calcasieu Parish 272 1 0.2556 0.1278 New York Essex 143 2 0.1022 0.0361 
Louisiana East Baton Rouge Parish 283 3 0.2556 0.0738 New York Kings 141 1 0.1022 0.0511 
Louisiana Ouachita Parish 112 1 0.2556 0.1278 New York Monroe 147 2 0.1022 0.0361 
Louisiana St. Charles Parish 112 1 0.2556 0.1278 New York Niagara 90 1 0.1022 0.0511 
Louisiana St. John the Baptist Parish 112 1 0.2556 0.1278 New York Rensselaer 136 1 0.1022 0.0511 
Maine Oxford 25 1 1.3000 0.6500 New York Richmond 2095 19 0.1170 0.0135 
Maryland Anne Arundel 402 2 0.0256 0.0090 North Dakota Cass 60 1 0.2556 0.1278 
Maryland Baltimore 347 1 0.0256 0.0128 North Dakota Mercer 56 1 0.2556 0.1278 
Maryland Baltimore city 1393 6 0.0256 0.0052 Ohio Hamilton 25 1 0.1278 0.0639 
Maryland Harford 109 1 0.0256 0.0128 Oregon Multnomah 531 10 0.1295 0.0216 
Michigan Alpena 131 5 0.3511 0.0885 Oregon Washington 55 1 0.1000 0.0500 
Michigan Kent 163 3 0.2981 0.0928 Pennsylvania Delaware 945 3 0.0056 0.0058 
Michigan Midland 1549 4 0.5000 0.1250 Pennsylvania Philadelphia 266 1 0.0000 0.0256 
Michigan Missaukee 87 2 0.2555 0.1010 Puerto Rico Barceloneta  37 1 0.0767 0.0383 
Michigan Oakland 43 1 0.0767 0.0383 Puerto Rico San Juan  26 1 0.0767 0.0383 
Michigan Washtenaw 54 2 0.2555 0.1010 Rhode Island Kent 59 1 0.0141 0.0070 
Michigan Wayne 877 7 0.5330 0.1872 Rhode Island Providence 360 5 0.0141 0.0031 
Minnesota Beltrami 54 1 0.0256 0.0128 South Dakota Minnehaha 41 1 0.2556 0.1278 
Minnesota Clay 51 1 0.0256 0.0128 Tennessee Davidson 30 1 0.2556 0.1278 
Minnesota Crow Wing 33 1 0.0256 0.0128 Texas Bexar 273 1 0.1278 0.0639 
Minnesota Dakota 789 8 0.0256 0.0045 Texas Brazoria 336 1 0.1278 0.0639 
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Table A.19  Summary of Countywide Vinyl Chloride Background Estimates (continued) 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Texas Cameron 374 2 0.1917 0.0714 Texas Nueces 1069 4 0.1118 0.0288 
Texas Carson 834 8 0.0221 0.0048 Texas Orange 291 1 0.1278 0.0639 
Texas Dallas 495 3 0.2769 0.1005 Texas Smith 89 1 0.5751 0.2876 
Texas Denton 43 1 0.1278 0.0639 Texas Tarrant 242 4 0.3675 0.1069 
Texas Ector 250 1 0.0639 0.0320 Texas Travis 222 3 0.0852 0.0261 
Texas El Paso 1493 9 0.1207 0.0222 Texas Webb 258 1 0.1278 0.0639 
Texas Ellis 344 2 0.3515 0.1473 Utah Salt Lake 57 1 0.2556 0.1278 
Texas Galveston 710 4 0.1598 0.0423 Vermont Chittenden 260 2 0.2556 0.0904 
Texas Gregg 175 1 0.1278 0.0639 Vermont Rutland 126 1 0.2556 0.1278 
Texas Harris 2690 14 0.1552 0.0260 Vermont Windham 105 1 0.2556 0.1278 
Texas Hidalgo 449 2 0.1278 0.0452 Virginia Fairfax 117 1 0.0256 0.0128 
Texas Jefferson 1630 7 0.1461 0.0289 Washington Whatcom 60 2 0.1981 0.0729 
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Table A.20  Summary of Countywide Arsenic (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0010 0.0004 California Sacramento 385 1 0.0010 0.0005 
California Imperial 378 3 0.0010 0.0003 California San Bernardino 260 3 1.1670 0.4167 
California Inyo 432 2 0.0010 0.0004 California San Joaquin 343 1 0.0010 0.0005 
California Kern 1176 3 0.0010 0.0003 California Santa Clara 280 1 0.0010 0.0005 
California Kings 402 2 0.0010 0.0004 California Stanislaus 531 4 0.0010 0.0003 
California Los Angeles 763 13 1.4617 0.2226 California Tulare 307 1 0.0010 0.0005 
California Madera 104 1 0.0010 0.0005 Oregon Multnomah 89 4 0.0042 0.0012 
California Orange 43 2 1.7500 0.6250 Oregon Washington 28 1 0.0296 0.0148 
California Plumas 117 1 0.0010 0.0005 Washington King 93 2 0.0004 0.0002 
California Riverside 143 3 1.1670 0.4167         

 
 
 
Table A.21  Summary of Countywide Cadmium (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Washington King 53 2 0.0015 0.0006       
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Table A.22  Summary of Countywide Chromium (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Alabama Lawrence 369 1 0.2850 0.1425 Idaho Custer 465 1 0.2850 0.1425 
Alaska Yukon-Koyukuk Census Area 466 1 0.2850 0.1425 Idaho Lemhi 387 1 0.2850 0.1425 
Arizona Apache 428 1 0.2850 0.1425 Kentucky Edmonson 469 1 0.2850 0.1425 
Arizona Cochise 462 1 0.2850 0.1425 Maine Hancock 470 1 0.2850 0.1425 
Arizona Coconino 856 3 0.2850 0.0823 Maine Washington 449 1 0.2850 0.1425 
Arizona Gila 461 1 0.2850 0.1425 Minnesota Lake 345 1 0.2850 0.1425 
Arkansas Newton 472 1 0.2850 0.1425 Montana Flathead 478 1 0.2850 0.1425 
California Del Norte 443 1 0.2850 0.1425 Montana Ravalli 471 1 0.2850 0.1425 
California El Dorado 404 2 0.2850 0.1008 Nevada Elko 409 1 0.2850 0.1425 
California Fresno 693 2 0.0005 0.0002 Nevada White Pine 475 1 0.2850 0.1425 
California Imperial 378 3 0.0005 0.0001 New Hampshire Coos 171 1 0.2850 0.1425 
California Inyo 896 3 0.0953 0.0475 New Jersey Atlantic 445 1 0.2850 0.1425 
California Kern 1176 3 0.0005 0.0001 New Mexico Catron 25 1 0.2850 0.1425 
California Kings 402 2 0.0005 0.0002 New Mexico Dona Ana 174 1 0.2850 0.1425 
California Los Angeles 763 13 0.8462 0.1276 New Mexico Los Alamos 457 1 0.2850 0.1425 
California Madera 104 1 0.0005 0.0003 North Carolina Haywood 405 1 0.2850 0.1425 
California Marin 388 1 0.2850 0.1425 North Carolina Swain 477 1 0.2850 0.1425 
California Mariposa 462 1 0.2850 0.1425 Oregon Klamath 455 1 0.2850 0.1425 
California Orange 43 2 1.0000 0.3536 Oregon Linn 467 1 0.2850 0.1425 
California Plumas 117 1 0.0005 0.0003 Oregon Multnomah 91 4 0.0021 0.0007 
California Riverside 143 3 0.6668 0.2357 Oregon Washington 28 1 0.0037 0.0019 
California Sacramento 385 1 0.0005 0.0003 South Carolina Charleston 433 1 0.2850 0.1425 
California San Benito 438 1 0.2850 0.1425 South Dakota Jackson 477 1 0.2850 0.1425 
California San Bernardino 645 4 0.5714 0.1803 Texas Brewster 421 1 0.2850 0.1425 
California San Joaquin 343 1 0.0005 0.0003 Texas Culberson 460 1 0.2850 0.1425 
California Santa Clara 280 1 0.0005 0.0003 Utah Garfield 466 1 0.2850 0.1425 
California Shasta 438 1 0.2850 0.1425 Utah San Juan 451 1 0.2850 0.1425 
California Stanislaus 531 4 0.0005 0.0001 Utah Utah 416 1 0.2850 0.1425 
California Tulare 862 3 0.1902 0.0672 Vermont Bennington 418 1 0.2850 0.1425 
Colorado Alamosa 479 1 0.2850 0.1425 Vermont Chittenden 42 1 0.2850 0.1425 
Colorado La Plata 451 1 0.2850 0.1425 Virgin Islands St. John 305 1 0.2850 0.1425 
Colorado Larimer 896 2 0.2850 0.1008 Virginia Page 438 1 0.2850 0.1425 
Colorado Montezuma 442 1 0.2850 0.1425 Virginia Rockbridge 465 1 0.2850 0.1425 
Colorado Pitkin 459 1 0.2850 0.1425 Washington King 890 4 0.1427 0.0504 
Colorado Routt 446 1 0.2850 0.1425 Washington Klickitat 445 1 0.2850 0.1425 
District of Columbia District of Columbia 467 1 0.2850 0.1425 Washington Pierce 471 1 0.2850 0.1425 
Florida Citrus 475 1 0.2850 0.1425 Washington Skamania 175 1 0.2850 0.1425 
Florida Dade 405 1 0.2850 0.1425 Washington Whatcom 39 1 0.2850 0.1425 
Georgia Charlton 460 1 0.2850 0.1425 West Virginia Tucker 467 1 0.2850 0.1425 
Hawaii Hawaii 859 2 0.2850 0.1008 Wyoming Albany 464 1 0.2850 0.1425 
Hawaii Maui 439 1 0.2850 0.1425 Wyoming Sublette 463 1 0.2850 0.1425 
Idaho Butte 919 2 0.2850 0.1008 Wyoming Teton 417 1 0.2850 0.1425 
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Table A.23  Summary of Countywide Lead (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Alabama Lawrence 369 1 0.0300 0.0150 Idaho Custer 465 1 0.0300 0.0150 
Alaska Yukon-Koyukuk Census Area 467 1 0.0300 0.0150 Idaho Lemhi 388 1 0.0300 0.0150 
Arizona Apache 428 1 0.0300 0.0150 Kentucky Edmonson 469 1 0.0300 0.0150 
Arizona Cochise 462 1 0.0300 0.0150 Maine Hancock 470 1 0.0300 0.0150 
Arizona Coconino 856 3 0.0300 0.0087 Maine Washington 449 1 0.0300 0.0150 
Arizona Gila 461 1 0.0300 0.0150 Minnesota Lake 345 1 0.0300 0.0150 
Arkansas Newton 472 1 0.0300 0.0150 Montana Flathead 478 1 0.0300 0.0150 
California Del Norte 443 1 0.0300 0.0150 Montana Ravalli 471 1 0.0300 0.0150 
California El Dorado 405 2 0.0300 0.0106 Nevada Elko 409 1 0.0300 0.0150 
California Fresno 693 2 0.0040 0.0014 Nevada White Pine 475 1 0.0300 0.0150 
California Imperial 378 3 0.0160 0.0009 New Hampshire Coos 171 1 0.0300 0.0150 
California Inyo 896 3 0.0107 0.0050 New Jersey Atlantic 446 1 0.0300 0.0150 
California Kern 1176 3 0.0023 0.0007 New Mexico Catron 25 1 0.0300 0.0150 
California Kings 402 2 0.0026 0.0009 New Mexico Dona Ana 174 1 0.0300 0.0150 
California Los Angeles 763 13 0.8854 0.1477 New Mexico Los Alamos 457 1 0.0300 0.0150 
California Madera 104 1 0.0036 0.0003 North Carolina Haywood 405 1 0.0300 0.0150 
California Marin 388 1 0.0300 0.0150 North Carolina Swain 477 1 0.0300 0.0150 
California Mariposa 462 1 0.0300 0.0150 Oregon Klamath 455 1 0.0300 0.0150 
California Orange 43 2 1.0000 0.3953 Oregon Linn 467 1 0.0300 0.0150 
California Plumas 117 1 0.0010 0.0005 Oregon Multnomah 91 4 0.0048 0.0012 
California Riverside 143 3 0.6692 0.2635 Oregon Washington 28 1 0.0030 0.0015 
California Sacramento 385 1 0.0030 0.0015 South Carolina Charleston 433 1 0.0300 0.0150 
California San Benito 438 1 0.0300 0.0150 South Dakota Jackson 477 1 0.0300 0.0150 
California San Bernardino 645 4 0.5078 0.1977 Texas Brewster 421 1 0.0300 0.0150 
California San Joaquin 343 1 0.0025 0.0002 Texas Culberson 461 1 0.0300 0.0150 
California Santa Clara 280 1 0.0000 0.0010 Utah Garfield 466 1 0.0300 0.0150 
California Shasta 438 1 0.0300 0.0150 Utah San Juan 451 1 0.0300 0.0150 
California Stanislaus 531 4 0.0028 0.0005 Utah Utah 416 1 0.0300 0.0150 
California Tulare 862 3 0.0210 0.0071 Vermont Bennington 418 1 0.0300 0.0150 
Colorado Alamosa 479 1 0.0300 0.0150 Vermont Chittenden 42 1 0.0300 0.0150 
Colorado La Plata 451 1 0.0300 0.0150 Virgin Islands St. John 305 1 0.0300 0.0150 
Colorado Larimer 896 2 0.0300 0.0106 Virginia Page 438 1 0.0300 0.0150 
Colorado Montezuma 442 1 0.0300 0.0150 Virginia Rockbridge 466 1 0.0300 0.0150 
Colorado Pitkin 459 1 0.0300 0.0150 Washington King 891 4 0.0191 0.0056 
Colorado Routt 446 1 0.0300 0.0150 Washington Klickitat 445 1 0.0300 0.0150 
District of Columbia District of Columbia 467 1 0.0300 0.0150 Washington Pierce 471 1 0.0300 0.0150 
Florida Citrus 475 1 0.0300 0.0150 Washington Skamania 175 1 0.0300 0.0150 
Florida Dade 405 1 0.0300 0.0150 Washington Whatcom 39 1 0.0300 0.0150 
Georgia Charlton 460 1 0.0300 0.0150 West Virginia Tucker 467 1 0.0300 0.0150 
Hawaii Hawaii 860 2 0.0300 0.0106 Wyoming Albany 464 1 0.0300 0.0150 
Hawaii Maui 439 1 0.0300 0.0150 Wyoming Sublette 463 1 0.0300 0.0150 
Idaho Butte 919 2 0.0300 0.0106 Wyoming Teton 417 1 0.0300 0.0150 
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Table A.24  Summary of Countywide Manganese (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Alabama Lawrence 369 1 0.2600 0.1300 Idaho Custer 465 1 0.2600 0.1300 
Alaska Yukon-Koyukuk Census Area 466 1 0.2600 0.1300 Idaho Lemhi 387 1 0.2600 0.1300 
Arizona Apache 428 1 0.2600 0.1300 Kentucky Edmonson 469 1 0.2600 0.1300 
Arizona Cochise 462 1 0.2600 0.1300 Maine Hancock 470 1 0.2600 0.1300 
Arizona Coconino 856 3 0.2600 0.0751 Maine Washington 449 1 0.2600 0.1300 
Arizona Gila 461 1 0.2600 0.1300 Minnesota Lake 345 1 0.2600 0.1300 
Arkansas Newton 472 1 0.2600 0.1300 Montana Flathead 478 1 0.2600 0.1300 
California Del Norte 443 1 0.2600 0.1300 Montana Ravalli 471 1 0.2600 0.1300 
California El Dorado 404 2 0.2600 0.0919 Nevada Elko 409 1 0.2600 0.1300 
California Fresno 693 2 0.0000 0.0004 Nevada White Pine 475 1 0.2600 0.1300 
California Imperial 378 3 0.0071 0.0004 New Hampshire Coos 171 1 0.2600 0.1300 
California Inyo 896 3 0.0868 0.0433 New Jersey Atlantic 445 1 0.2600 0.1300 
California Kern 1176 3 0.0013 0.0005 New Mexico Catron 25 1 0.2600 0.1300 
California Kings 402 2 0.0000 0.0004 New Mexico Dona Ana 174 1 0.2600 0.1300 
California Los Angeles 763 13 0.8487 0.1276 New Mexico Los Alamos 457 1 0.2600 0.1300 
California Madera 104 1 0.0000 0.0005 North Carolina Haywood 405 1 0.2600 0.1300 
California Marin 388 1 0.2600 0.1300 North Carolina Swain 477 1 0.2600 0.1300 
California Mariposa 462 1 0.2600 0.1300 Oregon Klamath 455 1 0.2600 0.1300 
California Orange 43 2 1.0000 0.3536 Oregon Linn 467 1 0.2600 0.1300 
California Plumas 117 1 0.0005 0.0003 Oregon Multnomah 90 4 0.0023 0.0008 
California Riverside 143 3 0.6681 0.2357 Oregon Washington 28 1 0.0016 0.0008 
California Sacramento 385 1 0.0000 0.0005 South Carolina Charleston 433 1 0.2600 0.1300 
California San Benito 438 1 0.2600 0.1300 South Dakota Jackson 477 1 0.2600 0.1300 
California San Bernardino 645 4 0.5655 0.1797 Texas Brewster 421 1 0.2600 0.1300 
California San Joaquin 343 1 0.0044 0.0001 Texas Culberson 460 1 0.2600 0.1300 
California Santa Clara 280 1 0.0000 0.0005 Utah Garfield 466 1 0.2600 0.1300 
California Shasta 438 1 0.2600 0.1300 Utah San Juan 451 1 0.2600 0.1300 
California Stanislaus 531 4 0.0014 0.0004 Utah Utah 416 1 0.2600 0.1300 
California Tulare 862 3 0.1733 0.0613 Vermont Bennington 418 1 0.2600 0.1300 
Colorado Alamosa 479 1 0.2600 0.1300 Vermont Chittenden 42 1 0.2600 0.1300 
Colorado La Plata 451 1 0.2600 0.1300 Virgin Islands St. John 305 1 0.2600 0.1300 
Colorado Larimer 896 2 0.2600 0.0919 Virginia Page 438 1 0.2600 0.1300 
Colorado Montezuma 442 1 0.2600 0.1300 Virginia Rockbridge 465 1 0.2600 0.1300 
Colorado Pitkin 459 1 0.2600 0.1300 Washington King 890 4 0.1331 0.0460 
Colorado Routt 446 1 0.2600 0.1300 Washington Klickitat 445 1 0.2600 0.1300 
District of Columbia District of Columbia 467 1 0.2600 0.1300 Washington Pierce 471 1 0.2600 0.1300 
Florida Citrus 475 1 0.2600 0.1300 Washington Skamania 175 1 0.2600 0.1300 
Florida Dade 405 1 0.2600 0.1300 Washington Whatcom 39 1 0.2600 0.1300 
Georgia Charlton 460 1 0.2600 0.1300 West Virginia Tucker 467 1 0.2600 0.1300 
Hawaii Hawaii 859 2 0.2600 0.0919 Wyoming Albany 464 1 0.2600 0.1300 
Hawaii Maui 439 1 0.2600 0.1300 Wyoming Sublette 463 1 0.2600 0.1300 
Idaho Butte 919 2 0.2600 0.0919 Wyoming Teton 417 1 0.2600 0.1300 
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Table A.25  Summary of Countywide Mercury (Fine) Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0010 0.0004 California Riverside 104 1 0.0010 0.0005 
California Imperial 378 3 0.0010 0.0003 California Sacramento 385 1 0.0010 0.0005 
California Inyo 432 2 0.0010 0.0004 California San Bernardino 221 1 0.0010 0.0005 
California Kern 1176 3 0.0010 0.0003 California San Joaquin 343 1 0.0010 0.0005 
California Kings 402 2 0.0010 0.0004 California Santa Clara 280 1 0.0010 0.0005 
California Los Angeles 511 2 0.0010 0.0004 California Stanislaus 531 4 0.0010 0.0003 
California Madera 104 1 0.0010 0.0005 California Tulare 307 1 0.0010 0.0005 
California Plumas 117 1 0.0010 0.0005       
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Table A.26  Summary of Countywide Nickel (Fine) Background Estimates 
 

State County Sample 
Size 

No. 
Sites

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Alabama Lawrence 369 1 0.0250 0.0125 Idaho Custer 465 1 0.0250 0.0125 
Alaska Yukon-Koyukuk Census Area 467 1 0.0250 0.0125 Idaho Lemhi 388 1 0.0250 0.0125 
Arizona Apache 428 1 0.0250 0.0125 Kentucky Edmonson 469 1 0.0250 0.0125 
Arizona Cochise 462 1 0.0250 0.0125 Maine Hancock 470 1 0.0250 0.0125 
Arizona Coconino 856 3 0.0250 0.0072 Maine Washington 449 1 0.0250 0.0125 
Arizona Gila 461 1 0.0250 0.0125 Minnesota Lake 345 1 0.0250 0.0125 
Arkansas Newton 472 1 0.0250 0.0125 Montana Flathead 478 1 0.0250 0.0125 
California Del Norte 443 1 0.0250 0.0125 Montana Ravalli 471 1 0.0250 0.0125 
California El Dorado 405 2 0.0250 0.0088 Nevada Elko 409 1 0.0250 0.0125 
California Fresno 693 2 0.0005 0.0002 Nevada White Pine 475 1 0.0250 0.0125 
California Imperial 378 3 0.0003 0.0002 New Hampshire Coos 171 1 0.0250 0.0125 
California Inyo 896 3 0.0087 0.0042 New Jersey Atlantic 446 1 0.0250 0.0125 
California Kern 1176 3 0.0005 0.0001 New Mexico Catron 25 1 0.0250 0.0125 
California Kings 402 2 0.0005 0.0002 New Mexico Dona Ana 174 1 0.0250 0.0125 
California Los Angeles 763 13 0.6541 0.1036 New Mexico Los Alamos 457 1 0.0250 0.0125 
California Madera 104 1 0.0005 0.0003 North Carolina Haywood 405 1 0.0250 0.0125 
California Marin 388 1 0.0250 0.0125 North Carolina Swain 477 1 0.0250 0.0125 
California Mariposa 462 1 0.0250 0.0125 Oregon Klamath 455 1 0.0250 0.0125 
California Orange 43 2 0.7500 0.2795 Oregon Linn 467 1 0.0250 0.0125 
California Plumas 117 1 0.0005 0.0003 Oregon Multnomah 91 4 0.0021 0.0005 
California Riverside 143 3 0.5002 0.1863 Oregon Washington 28 1 0.0016 0.0008 
California Sacramento 385 1 0.0005 0.0003 South Carolina Charleston 433 1 0.0250 0.0125 
California San Benito 438 1 0.0250 0.0125 South Dakota Jackson 477 1 0.0250 0.0125 
California San Bernardino 645 4 0.3814 0.1398 Texas Brewster 421 1 0.0250 0.0125 
California San Joaquin 343 1 0.0005 0.0003 Texas Culberson 461 1 0.0250 0.0125 
California Santa Clara 280 1 0.0005 0.0003 Utah Garfield 466 1 0.0250 0.0125 
California Shasta 438 1 0.0250 0.0125 Utah San Juan 451 1 0.0250 0.0125 
California Stanislaus 531 4 0.0005 0.0001 Utah Utah 416 1 0.0250 0.0125 
California Tulare 862 3 0.0168 0.0059 Vermont Bennington 418 1 0.0250 0.0125 
Colorado Alamosa 479 1 0.0250 0.0125 Vermont Chittenden 42 1 0.0250 0.0125 
Colorado La Plata 451 1 0.0250 0.0125 Virgin Islands St. John 305 1 0.0250 0.0125 
Colorado Larimer 896 2 0.0250 0.0088 Virginia Page 438 1 0.0250 0.0125 
Colorado Montezuma 442 1 0.0250 0.0125 Virginia Rockbridge 466 1 0.0250 0.0125 
Colorado Pitkin 459 1 0.0250 0.0125 Washington King 889 4 0.0137 0.0044 
Colorado Routt 446 1 0.0250 0.0125 Washington Klickitat 445 1 0.0250 0.0125 
District of Columbia District of Columbia 467 1 0.0250 0.0125 Washington Pierce 471 1 0.0250 0.0125 
Florida Citrus 475 1 0.0250 0.0125 Washington Skamania 175 1 0.0250 0.0125 
Florida Dade 405 1 0.0250 0.0125 Washington Whatcom 39 1 0.0250 0.0125 
Georgia Charlton 460 1 0.0250 0.0125 West Virginia Tucker 467 1 0.0250 0.0125 
Hawaii Hawaii 860 2 0.0250 0.0088 Wyoming Albany 464 1 0.0250 0.0125 
Hawaii Maui 439 1 0.0250 0.0125 Wyoming Sublette 463 1 0.0250 0.0125 
Idaho Butte 919 2 0.0250 0.0088 Wyoming Teton 417 1 0.0250 0.0125 
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Table A.27  Summary of Countywide Arsenic (Coarse) Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0010 0.0004 California Riverside 104 1 0.0010 0.0005 
California Imperial 378 3 0.0010 0.0003 California Sacramento 385 1 0.0010 0.0005 
California Inyo 432 2 0.0010 0.0004 California San Bernardino 221 1 0.0010 0.0005 
California Kern 1176 3 0.0010 0.0003 California San Joaquin 343 1 0.0010 0.0005 
California Kings 402 2 0.0010 0.0004 California Santa Clara 280 1 0.0010 0.0005 
California Los Angeles 511 2 0.0010 0.0004 California Stanislaus 531 4 0.0010 0.0003 
California Madera 104 1 0.0010 0.0005 California Tulare 307 1 0.0010 0.0005 
California Plumas 117 1 0.0010 0.0005         

 
 
 
Table A.28  Summary of Countywide Chromium (Coarse) Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0000 0.0004 California Riverside 104 1 0.0000 0.0005 
California Imperial 378 3 0.0018 0.0006 California Sacramento 385 1 0.0000 0.0005 
California Inyo 432 2 0.0005 0.0002 California San Bernardino 221 1 0.0000 0.0005 
California Kern 1176 3 0.0013 0.0005 California San Joaquin 343 1 0.0000 0.0005 
California Kings 402 2 0.0000 0.0004 California Santa Clara 280 1 0.0000 0.0005 
California Los Angeles 511 2 0.0052 0.0003 California Stanislaus 531 4 0.0001 0.0002 
California Madera 104 1 0.0005 0.0003 California Tulare 307 1 0.0000 0.0005 
California Plumas 117 1 0.0005 0.0003       

 
 
 
Table A.29  Summary of Countywide Lead (Coarse) Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0000 0.0007 California Riverside 104 1 0.0030 0.0015 
California Imperial 378 3 0.0044 0.0003 California Sacramento 385 1 0.0000 0.0010 
California Inyo 432 2 0.0010 0.0004 California San Bernardino 221 1 0.0010 0.0005 
California Kern 1176 3 0.0003 0.0005 California San Joaquin 343 1 0.0000 0.0010 
California Kings 402 2 0.0010 0.0004 California Santa Clara 280 1 0.0000 0.0010 
California Los Angeles 511 2 0.0045 0.0016 California Stanislaus 531 4 0.0008 0.0003 
California Madera 104 1 0.0010 0.0005 California Tulare 307 1 0.0000 0.0010 
California Plumas 117 1 0.0010 0.0005       
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Table A.30  Summary of Countywide Manganese (Coarse) Background Estimates  
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0210 0.0074 California Riverside 104 1 0.0310 0.0155
California Imperial 378 3 0.0100 0.0030 California Sacramento 385 1 0.0137 0.0003
California Inyo 432 2 0.0063 0.0008 California San Bernardino 221 1 0.0080 0.0040
California Kern 1176 3 0.0176 0.0012 California San Joaquin 343 1 0.0141 0.0071
California Kings 402 2 0.0290 0.0075 California Santa Clara 280 1 0.0030 0.0015
California Los Angeles 511 2 0.0060 0.0022 California Stanislaus 531 4 0.0144 0.0015
California Madera 104 1 0.0155 0.0007 California Tulare 307 1 0.0341 0.0006
California Plumas 117 1 0.0050 0.0025       

 
 
 
Table A.31  Summary of Countywide Nickel (Coarse) Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
California Fresno 693 2 0.0003 0.0003 California Riverside 104 1 0.0005 0.0003 
California Imperial 378 3 0.0003 0.0002 California Sacramento 385 1 0.0000 0.0005 
California Inyo 432 2 0.0005 0.0002 California San Bernardino 221 1 0.0005 0.0003 
California Kern 1176 3 0.0003 0.0002 California San Joaquin 343 1 0.0000 0.0005 
California Kings 402 2 0.0003 0.0003 California Santa Clara 280 1 0.0005 0.0003 
California Los Angeles 511 2 0.0028 0.0003 California Stanislaus 531 4 0.0005 0.0001 
California Madera 104 1 0.0005 0.0003 California Tulare 307 1 0.0005 0.0003 
California Plumas 117 1 0.0005 0.0003       

 
 
 
Table A.32  Summary of Countywide Hexachlorobenzene Background Estimates 
 

State County Sample 
Size 

No. 
Sites 

Background 
Estimate 

Uncertainty of 
Background 

Estimate 
State County Sample 

Size 
No. 

Sites 
Background 

Estimate 
Uncertainty of 
Background 

Estimate 
Michigan Oakland 39 1 0.0357 0.0178 Michigan Wayne 216 6 0.0408 0.0084 
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Appendix B:  Conversion Factors 
 
 
 Table B.1 consists of three original units and the general equation used to convert 
original concentration values into Fg/m3.  In Table B.1 MWGT is the molecular weight of the 
pollutant, and NUMC is the number of carbon atoms for the pollutant.  Table B.2 consists of 
19 pollutants and the equations used to convert original concentration values into Fg/m3.  In both 
tables, X is the original concentration value given in the unit as indicated by the Original Units 
column of the table.  All conversions assume standard temperature and pressure (STP), i.e., a 
temperature of 0 C (32 F) and 1 atmosphere of pressure (14.7 psi).  For example, suppose a 
measurement of Acetaldehyde is recorded as 1.64 PPBV, then the converted concentration value 
would be 1.64 * (44.05/24.46) = 2.95 Fg/m3. 
 
Table B.1.  General Form of Conversions 
 

Original Units Conversion Equation 
PPBV X * (MWGT/24.46) 
PPBC (X/NUMC) * (MWGT/24.46) 
NG/M3 X/1000 

 
 
Table B.2.  Conversions by Pollutant 
 

Class Pollutant Original Units Conversion to Fg/m3 
ACETALDEHYDE PPBV X*(44.05/24.46) 
ACROLEIN PPBV X*(56.06/24.46) Carbonyl 
FORMALDEHYDE PPBV X*(30.03/24.46) 

Metal ALL (when applicable) NG/M3 X/1000 
1,1,2,2-TETRACHLOROETHANE PPBV X*(167.85/24.46) 
1,2-DIBROMOETHANE PPBV X*(187.86/24.46) 
1,2-DICHLOROETHANE PPBV X*(98.96/24.46) 
1,2-DICHLOROPROPANE PPBV X*(112.99/24.46) 

PPBV X*(54.09/24.46) 1,3-BUTADIENE PPBC (X/4)*(54.09/24.46) 
ACRYLONITRILE PPBV X*(53.06/24.46) 

PPBV X*(78.11/24.46) BENZENE PPBC (X/6)*(78.11/24.46) 
CARBON TETRACHLORIDE PPBV X*(153.82/24.46) 
CHLOROFORM PPBV X*(119.38/24.46) 
CIS 1,3-DICHLOROPROPENE PPBV X*(110.97/24.46) 
ETHYLENE OXIDE PPBV X*(44.053/24.46) 
METHYLENE CHLORIDE PPBV X*(84.93/24.46) 
TETRACHLOROETHYLENE PPBV X*(165.83/24.46) 
TRICHLOROETHYLENE PPBV X*(131.39/24.46) 

VOC 

VINYL CHLORIDE PPBV X*(62.5/24.46) 
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Appendix C:  Responses to Battelle Senior Statistical Review 
 
 
 EPA/OAQPS requested that Battelle conduct an internal statistical review of the 
approach and methods used to obtain background concentration estimates for this project.  Two 
senior Battelle statisticians were identified and agreed to participate in this effort: 
Dr. Bruce Buxton and Dr. Paul Feder.  This appendix provides their comments and the 
associated responses of the principal researchers for this project, Dr. Steve Bortnick and 
Dr. Basil Coutant.  (Note that page number and paragraph references correspond to the August 
15, 2002, draft report.) 
 
 
C.1 Comments From and Responses to Dr. Bruce Buxton 
 
 Dr. Bruce Buxton is a Senior Program Manager in Battelle’s Statistics and Data Analysis 
Systems (SDAS) department.  He obtained his Ph.D. in Geostatistics from Stanford University in 
1986.  Dr. Buxton has over 20 years of experience working on many different applications in the 
fields of statistics, primarily focused on environmental problems.  Dr. Buxton’s comments, and 
responses to these comments, are as follows: 
 
1.  Overall, the proposed model and report seem fine, although I do have several questions 

and comments. 
 
Response:  No response. 
 
2.  Page 7, Para. 3 – Your first sentence jumps into the assumption of a parametric statistical 

distribution as if it is mandatory.  You might want to consider non-parametric 
approaches, or at least acknowledge that they exist. 

 
Response:  Sentence added. 
 
3.  Page 8, Para. 3 – I do not think that asymmetry is absolutely required for all background 

distributions.  You might want to point out that the gamma distribution you are using has 
the flexibility to model both heavily asymmetric or reasonably symmetric distributions. 

 
Response:  Sentence added. 
 
4.  Page 10, Figure 3.2 and related text – How about showing a histogram of your data to go 

along with the Q-Q plot?  Is a visual inspection of this figure all you recommend to 
determine that your model selection is adequate?  Should you consider some 
goodness-of-fit or similar statistical test? 

 
Response:  While this could be explored further, other tests of fit adequacy were not explored for 
this draft of the report, mostly due to resource and time constraints.  A sentence mentioning these 
possibilities has been added. 
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5.  Page 11, Para. 4 – It strikes me that your definition of a “threshold” at mu+2*MDL 
appears similar to the definition of a Limit of Quantification (although I am not an expert 
in LOQs).  If there is a natural analogy here, that might be a better way to present it rather 
than an arbitrary threshold. 

 
Response:  Good point.  Assuming our semantics are in line, LOQs are also referred to as the 
lowest calibration level (LCL), typically defined as 3*MDL.  Many laboratories choose not to 
report below-LCL data due to apparent high uncertainties.  Discussion has been added to the 
report. 
 
6.  Page 12, Para. 2 – You talk about censoring data below the threshold, but the threshold 

involves the parameter mu which is unknown.  It is not clear to me what is happening 
here.  Maybe this is more a part of the model, rather than a step in the data analysis.  I 
suggest you clarify the discussion here. 

 
Response:  It is a data analysis decision to help the model (software) fit the data in real-world 
application; i.e., the model does not have to guess where the background lies relative to the 
censoring threshold, because of the data analysis decision that is made up front (the answer is 
always the same – the background lies to the left of the censoring threshold).  No changes have 
been made to the text to date.  It is explained further in the subsequent discussion and example 
Figures 3.3a through 3.3c. 
 
7.  Page 13, Para. 2 – Three times you state that the figures are “consistent with the model”, 

as if that is noteworthy.  Aren’t the figures just plots of the models, so that they have to 
be consistent by definition?  Maybe I am missing something here. 

 
Response:  Correct.  “consistent with” has been changed to “corresponds to”. 
 
8.  Page 15, Para. 1 – I do not agree that your analysis needs to be automated and routine just 

because your data set is large.  I think the more important issue is how frequently the 
analysis needs to be performed or updated, for example, hourly, daily, or weekly. 

 
Response:  The real point in this case is that the analysis has to be routine relative to the budget 
of the work assignment.  The work assignment budget could not afford for us to manually fit “the 
best” statistical distribution to every site for every pollutant.  The limitations of the budget 
required a more generic approach that could be run over and over on a large number of sites and 
pollutants.  This was a project management decision.  The routine requirement will come into 
play only to the degree that EPA/OAQPS needs to repeat this effort for the 2002 cycle of NATA.  
No modifications were made to the report in response to this comment. 
 



Final Background Concentrations Report C-3 June 13, 2003 

9.  Page 15, Para. 2 – Major Issue – Is it the data below the MDL that cause the 
convergence issues?  You discuss convergence problems in several places in the report, 
so often, in fact, that it appears convergence is the single greatest factor determining your 
technical modeling approach.  Maybe you should consider ways of replacing the 
non-detect data with continuous data (e.g., simulation) so that algorithms without 
convergence issues can be used. 

 
Response:  This was considered in the early phases of the project.  It is certainly a valid 
approach.  By the time the models and applied approach were substantially developed and the 
project was well underway, we felt it would have been too late to change the approach due to 
convergence issues.  Convergence and other issues are mentioned quite often throughout the 
report, but only due to our desire to explicitly describe as many details of the process as possible.  
The desire on our part, based on feedback from the Work Assignment Manager, was to clearly 
elucidate the theory and applied process so that others would have ample opportunity to review 
and possibly critique the methods.  A discussion has been added to subsection 3.1.4 mentioning 
your suggestion. 
 
10.  Page 16, Para. 2 – The 1 percent data trimming seems arbitrary at best.  Honestly, it 

appears that you have a lack of fit of your model to your data.  And, in response, instead 
of searching for a better model, you decided to alter your data set to eliminate the 
problem data and, hence, obtain a better model fit.  Also, if you attribute the problematic 
distribution to a mixture of data due to changing meteorological or other conditions, why 
would this only affect the upper tail of the distribution? 

 
Response:  To answer the last question first, the hypothesis for this assumption is explained in 
the California EPA report cited in the text of this section.  Otherwise, as we state throughout the 
report, this was a pragmatic decision that was made in full awareness of the objection you raise 
from the perspective of scientific rigor.  Bottom line:  it was a quick and easy solution that 
seemed to fix a potential problem, versus a possibly more complex (but possibly more appealing) 
solution of considering different distributions, developing site-specific distributions, etc.  
Furthermore, as we state in the report, we are interested in estimating the lower tail of the 
distribution, so the actual effect of this decision should be minimal at most (note the comment to 
this effect from Dr. Feder below).  No changes were made to the report in response to this 
comment. 
 
11.  Page 16, Para. 3, Last sentence – I would expect trimming the highest data from your 

data set to have a potentially dramatic impact on the parameter estimates. 
 
Response:  We disagree, and the initial sensitivity analyses we conducted to check this 
assumption all seemed to confirm our conclusion.  Again, see comment from Dr. Feder below to 
this effect. 
 
12.  Page 17, Para. 1 – Did you check on the appropriateness of applying a standard normal 

confidence interval to the estimation of mu?  Do you have a reference for this? 
 
Response:  No.  A parenthetical sentence has been added as a caveat. 
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13.  Page 17, Table 3.1 – I suggest that you add a column for N, the number of data in each 

data set. 
 
Response:  Done. 
 
14.  Page 18, Figure 3.4 – Your box plots look reasonably symmetric to me.  I am not sure if 

you should point this out to the reader, but the report does state that one reason for 
choosing the gamma distribution was the expected asymmetric data distributions. 

 
Response:  Our response to Comment 3 above addresses this issue. 
 
15.  Page 19, Para. 2 – I suggest you delete this paragraph; it is distracting at best.  I do not 

believe the apparent downward trend in benzene levels over time says anything 
meaningful about source apportionment, that is, what the sources are or how much each 
source contributes to pollution levels. 

 
Response:  This paragraph was put in based on direct conference call discussions with 
EPA/OAQPS and the Work Assignment Manager.  It is left in for now, but could be deleted in 
the future upon EPA review and comment. 
 
16.  Page 21, Para. 2 – You should probably support your opinion about an R-squared of 0.3 

with some references. 
 
Response:  No reference has been added to date.  This could be done in the future.  For now, the 
sentence has been modified to recognize the lack of reference support. 
 
17.  Page 22, Para. 4 – When you state that some of your results “may not be credible”, it 

makes this reader nervous about all the other results.  Also, later in this paragraph you 
present “crude” results.  I think crude results should probably not be included. 

 
Response:  The sentence with “may not be credible” was removed, and the following discussion 
with “crude” was removed. 
 
18.  Page 22, Para. 5 – I suggest you delete “for better or worse”. 
 
Response:  Done. 
 
19.  Page 23, Para. 2 – You should provide references for the “number of studies” you cite in 

the second sentence. 
 
Response:  Modified text accordingly. 
 
20.  Page 25, Para. 1 – I believe you mean Geographical (not Graphical) Information Systems. 
 
Response:  You are correct.  Correction made. 
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21.  GIS maps – There is so much white space that these figures seem pretty uninformative, at 

least from a national perspective. 
 
Response:  All GIS maps have been dropped from the report except for one example in 
Chapter 4 for benzene, which provides the most comprehensive set of results (i.e., the least white 
space). 
 
 
C.2  Comments From and Responses to Dr. Paul Feder 
 
 Dr. Paul Feder is a Research Leader in Battelle’s Statistics and Data Analysis Systems 
(SDAS) department.  He obtained his Ph.D. in Statistics from Stanford University in 1968.  He 
has over 30 years of experience on a wide variety of research projects for government agencies 
and private industry.  Dr. Feder has led a large variety of research programs involving 
experimental design and data analysis in the areas of in vitro, mammalian, and aquatic 
toxicology; preclinical investigations of developmental drug efficacy and safety; multi-center 
pharmaceutical clinical trials; pharmacokinetic modeling; ecological monitoring and 
experimentation; nuclear safety; product performance field testing; among many other 
applications.  Dr. Feder’s comments, and responses to these comments, are as follows: 
 
1.  Treatment of MDL values.  Should do censored data analysis. 
 
Response:  We essentially are using censored analysis techniques except that we had to modify 
the traditional approach to take into consideration that we do not have sharp censoring 
(i.e., censoring at a clearly distinguishable threshold). 
 
2.  Sensitivity of distributional assumptions.  E.g., log normal or Weibull versus gamma. 
 

• Average value of background 
• Standard error of background 
• Should do sensitivity analysis 

 
Response:  A portion of this was done.  The gamma distribution was compared with the log 
normal distribution.  The differences in the background estimates were insignificant, where both 
models converged.  However, the numerical routines failed to converge more frequently when 
the log normal distribution was used. 
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3.  Objectives of background estimates - use of standard error of background estimates 
 

• I have questions about validity 
• Background estimate µ̂  does not satisfy standard conditions for maximum likelihood 

estimates. 
• Usual theory may not hold.  Asymptotic normality, standard error. 
• Jackknife or bootstrap standard errors better. 

 
Response:  It is true that the standard conditions do not hold (for Model 1) and, hence, the usual 
theory may not hold.  However, the standard error estimate still holds as a lower bound (via the 
Cramer-Rao theorem).  Regardless, theory only states that the estimates are approximately 
correct, the quality of those approximations is governed more by limitations of the numerical 
methods than the theory in this case.  The suggestion to use jackknife or bootstrap methods is not 
practical given the frequency with which the mathematical algorithms fail to converge. 
 
4.  Autocorrelation not accounted for. 
 
Response:  In many cases, the autocorrelation from day-to-day is known to be small (and was 
being investigated as part of WA 5-12 under this contract).  Much of the data in the archive are 
based on one-in-six-day sampling and, hence, autocorrelation is negligible.  In any case, 
autocorrelation generally will not affect the background estimate, but can change the standard 
error estimates (as stated above, not expected to be a significant issue in this case due to the 
typical sampling frequencies encountered). 
 
5.  Page 5:  I question how you report “above MDL” distribution 
 
Response:  The report is clear that a certain percentage of each pollutant’s data fall below the 
MDL, and a certain percentage above.  For each of these distinct groups of data, a summary of 
its distribution is provided. 
 
6.  Page 8:  Shifted gamma versus alternative distribution.  Basis of choice?  Sensitivity 

analysis. 
 
Response:  See response to Comment 2 above. 
 
7.  Page 9:  Did you check for autocorrelation at your sites?  Impact on analysis results  
 

• Main impact may be on standard errors. 
• All analyses assume i.i.d. observations.  Implication of assumptions. 

 
Response:  See response to Comment 4 above. 
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8.  Page 11, 12:  I disagree with the way you are treating MDL values.  From page 5, 
Table 2.1, for some chemicals the proportion of MDLs is appreciable (10-55%). 

 
• MDLs have nothing to do with background.  They reflect analytical limitations and 

may be less than or greater than background. 
• Treat as left censored data at the MDL, irrespective of background level. 
• Treat as one process with measurable values. 

 
Response:  It is true that the MDLs have nothing to do with background.  However, the 
mathematical form of the likelihood does depend on which is larger.  The treatment used yields a 
consistent mathematical form, and a consistent censoring regardless of which is larger.  Hence, 
no assumption needs to be made before modeling, and this allows for a mathematical treatment 
as one process with measured values. 
 
9.  Page 15:  Weighted or unweighted average across sites within County? 
 

• Weight by population or inversely to (standard errors)2 ? 
 
Response:  An unweighted average is used.  This example is generated from a set of consistently 
collected data of approximately the same amount from nearby sites.  Note that the background 
estimates are similar, but the standard errors vary by more than a factor of three.  Statistical 
theory states that weighting with the (inverse of the square of the) standard errors yields 
estimates with smaller standard errors.  However, in this case, it was felt that the numerical 
precision of the standard error estimates made their use in the manner suggested inappropriate. 
 
10.  Page 16:  Eliminate upper portion of model.  I agree; you can even eliminate more.  I 

would treat it as right censored data.  Your model is then more robust in lower portion. 
 
Response:  This opinion is not shared with Dr. Buxton.  Initial investigations showed that 
essentially all of the data could be used, and so this issue does not turn out to be significant. 
 
11.  Page 17, Table 3.1:  NW Post office 
 

• Background estimate is 0.7359. 
• Figure 3.4:  minimum is much lower than 0.5.  How can that be?!  It violates your 

model. 
 
Response:  It does seem to violate the initial model, but in fact it works by design.  The 
day-to-day background is almost certainly not constant.  The daily values are not estimable from 
the data.  However, we are estimating the annual average of that background.  True daily values 
could be less than this value.  Further, the model allows for (in fact, assumes) non-trivial 
measurement error near or below the annual average background.  Hence, measured values could 
be substantially less than the estimate. 
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C.3 Other Remarks 
 
 EPA/OAQPS requested that Dr. Buxton and Dr. Feder also comment on the secondary 
data analysis methodology described in subsection 3.1.7 of the report.  This methodology was 
not developed in time for the August 15 draft report, and has only since been added to address all 
the cases for which the primary methodology, as discussed in subsections 3.1.1 through 3.1.6, 
does not give a solution.  Due to the timing of incorporating the secondary methodology into the 
current draft of the report, a detailed review could not be provided by the reviewers.  However, 
their general sentiments on the issue of addressing cases where most/all data are below the MDL 
or too few total observations are available for rigorous analysis may be summarized as follows: 
 

• Dr. Buxton felt that any attempt to analyze data where most/all measurements were 
below the MDL is effectively “non-statistical”.  Essentially, there’s no variation in the 
data in order to conduct a statistical analysis.  [The same is essentially true if too few 
total observations are available in a data set, regardless of MDL issues.]  Therefore, 
no one approach (e.g., set background equal to MDL/2) can easily be singled out and 
defended as clearly better or worse than any other in such cases.  In essence, there is 
little to no information to confirm or refute any associated estimate, so long as the 
estimate passes some sort of basic reasonableness criterion.  For example, if 
100 percent of the data are below some constant MDL, then any estimate of 
background that fails to lie within the interval (0,MDL) would appear to be 
unreasonable. 

 
• Dr. Feder felt that the primary methodology used for the project, as discussed in 

subsections 3.1.1 through 3.1.6, might be extended to address these cases.  For 
example, assume some sort of shifted gamma distribution still holds for describing 
below-MDL data.  However, the parameters of this distribution are such that the 
data’s observed distribution essentially falls within the range of (0,MDL).  Due to the 
MDL limitation, that distribution cannot be distinguished in the recorded data.  The 
main reason for attempting this sort of approach would be to maintain the motivation 
and rationale associated with the primary approach of the report.  The main problem 
with this approach is that it would require further assumptions in order to infer the 
“unobserved” gamma distribution assumed to be producing the below-MDL data (see 
Dr. Buxton’s comments above).  Furthermore, it would not directly address the other 
scenarios to be handled via the secondary methodology of the report, namely cases 
with above-MDL data but too few total observations. 

 
 With the above comments in mind, an approach was pursued that handles both cases of 
(1) too much below-MDL data and (2) too few total observations in a given data set.  It also 
handles cases that fall somewhere in between these two extremes.  In general, the secondary data 
analysis methodology described in subsection 3.1.7 was pursued for the following reasons: 
 

1.  It can address every single case not addressed by the primary methodology 
discussed in subsections 3.1.1 through 3.1.6, so that any available monitoring data 



Final Background Concentrations Report C-9 June 13, 2003 

will somehow be used to estimate background.  This dramatically extends the 
breadth of results from those provided in the August 15 report. 

 
2.  It provides a reasonable result (see Dr. Buxton’s comment above) when all data 

are below the MDL. 
 
3.  It provides a reasonable result when all data are above the MDL but too few total 

observations are available for pursuing the primary methodology discussed in 
subsections 3.1.1 through 3.1.6. 

 
4.  It seamlessly addresses all cases in between Items 2 and 3 above. 
 
5.  It provides conservative estimates of uncertainty for the resulting background 

estimates. 
 
Refer to subsection 3.1.7 for further details on the secondary statistical analysis methodology 
pursued for this project.  Refer to Table 2.1b for a summary of the amount of data to which this 
secondary methodology was applied (compare to Table 2.1a for the primary methodology).  
Refer to Table 4.1 and Appendix A for associated results. 
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Appendix D:  Responses to EPA Review of the 
            August 15, 2002, Draft 
 
 
E-mail received from Joe Touma August 16, 2002, 11:11 am 
 
The shading scheme you are using in Figures A. to A.9 does not show up well in print.  Can you 
please re-do with different scheme (cross hatched, dots, etc.). 
 
Response:  For the most part, these figures have been dropped from the report in favor of more 
detailed tabular summaries (see Appendix A).  This change was made in response to the next 
e-mail comment below and other discussions with EPA/OAQPS.  However, Figure 4.1 for 
benzene is still provided in the report as an example.  This figure is now made in color to address 
the above comment.  The use of “cross hatched, dots, etc.” was explored, but due to the small 
sizes of many counties in the figure, the decision was made that color was a better choice for 
addressing the primary issue in the above comment. 
 
 
E-mail received from Joe Touma August 16, 2002, 3:17 pm 
 
Another suggestion on data presentation ... use tabular presentation instead of the more 
expensive geographical presentation. 
 
Response:  Done.  See Appendix A. 
 
 
E-mail received from Joe Touma August 21, 2002, 3:31 pm 
 
1.  Explore adding years 1995 and 1996 to the database. 
 
Response:  Done. 
 
2.  Find why some data are not being retrieved.  For example, there are 1997 monitoring data 

for Atlanta on AQS (formally AIRS). 
 
Response:  Battelle conducted an experiment to explore the air toxics data archive for two 
commonly monitored HAPs, benzene and formaldehyde, with respect to both Atlanta 
(Fulton county) and St. Louis.  Limiting the search to as far back as 1995, only one site 
(23 observations) in the archive provided benzene data for Fulton county, no data were present 
for benzene in St. Louis, and no data were present for formaldehyde in either Fulton county or 
St. Louis.  Going back through the entire archive, a total of 17 sites (347 observations) provided 
Fulton County benzene data.  Fulton county formaldehyde data also exist within the archive, but 
all were collected prior to 1993.  Likewise, St. Louis benzene and formaldehyde data also exist 
within the archive (2 sites), but all measurements were made prior to 1991.  For this example, 
this summarizes the data in the latest version of the archive we worked with for this project.  
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Note that the post-1995 Fulton county benzene data mentioned above are included in the results 
of the report (see, specifically, Table A.10 of Appendix A). 
 
3.  Provide tabular values for the counties instead of the graphs that are hard to see.  (Please 

provide us this table for Harris county, Texas, and any surrounding counties as soon as 
practical).  Regarding graphs used in your report, please explain rational for the legend 
scale. 

 
Response:  [Provide tabular values for the counties instead of the graphs that are hard to see.]  
Appendix A has been modified accordingly.  [Please provide us this table for 
Harris county, Texas, and any surrounding counties as soon as practical.]  See Appendix A.  
[Regarding graphs used in your report, please explain rational for the legend scale.]  A rationale 
discussion has been added to subsection of 4.1.1 of the report. 
 
4.  Provide conversion factors used in going from AQS to Table 4.1.  [If possible also 

provide a Table (e.g., 4.1a) that gives units in ppbc for use by monitoring staff.] 
 
Response:  Appendix B has been added to the report to describe conversion factors.  Due to time 
and resource constraints, a Table 4.1a has not been added.  Any individual interested in making 
such a conversion could do so via comparing Table 4.1 with the details provided in Appendix B. 
 
5.  Explore how easy it is to get databases that include other pollutants, e.g., mercury, dioxin, 

etc. 
 
Response:  The issue of “how easy it is” is not discussed explicitly in the report.  However, a 
more detailed discussion of many such databases has been added to subsection 2.1.1 of the 
report.  For most of the databases described there, Battelle has reasonably straightforward, if not 
direct, access to the data.  The issue of “how easy it is” is more a matter of potential data 
management and QA/QC complications versus any potential difficulties associated with 
obtaining the data. 
 
6.  Explore other ideas for estimating background mentioned in your report. 
 
Response:  Done.  See discussion at the beginning of Section 3.1 and detailed discussion in 
subsection 3.1.7.  Also, refer to results presented in Table 4.1 (compare to Table 4.1 results 
provided in August 15 report).  Also, compare Tables 2.1a and 2.1b. 
 
 
E-mail received from Joe Touma August 22, 2002, 9:48 am 
 
I asked one of my colleagues whether there are any air toxics data for Atlanta on AQS.  Here is 
what he came up with.  Please include in your database if not already included. 
 
Response:  These data were explored.  Ultimately they were not included, mainly because no 
MDL information was provided along with the data.  Also, the data were provided as hourly 
measurements (i.e., 1-hour integrated samples), as opposed to the daily measurements 
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(i.e., 24-hour integrated samples or appropriately averaged 1-hour or 3-hour samples) used for 
the data analyses of this project.  To analyze the Atlanta AQS data in a manner consistent with 
all the other data analyses conducted for this project would require appropriate pre-processing or 
averaging.  This presents an additional data management and QA/QC effort before the use of the 
data.  Finally, the data were limited to a very small number of HAPs (namely, benzene) for 
which the existing combined database is already relatively rich in data.  For all these reasons, and 
considering project budget and time constraints, these data were not added. 
 
 
E-mail received from Joe Touma August 27, 2002, 9:55 am 
 
1.  The reason I sent you the Atlanta data was to have you examine your extraction protocol 

to ensure that all relevant data have been extracted.  I had wondered, and others will too, 
as to why some large data sources, that they are familiar with or have heard of, such as 
Atlanta, St. Louis, etc., are not included.  If your response is they were not included 
because they did not include an MDL, then that should be clearly stated in the report. 

 
Response:  Done.  See response to Item 2 of August 21 e-mail and response to August 22 e-mail 
above. 
 
2.  Also, are you sure that the reported MDL values are equipment-specific or generic?  If 

generic, then it seems that you can apply the same MDL values that you use in other 
sites.  Perhaps you can include a section on this topic, that you may have written 
elsewhere, that explains this issue. 

 
Response:  Yes, MDL values are equipment-specific.  They are also specific to a number of other 
issues for that matter.  A discussion and reference addressing some of the MDL issues have been 
added to subsection 2.1.1. 
 
3.  As to whether you should contact Susan [Zimmer-Dauphinee], that is up to you. I do not 

know how much work is involved in doing this nor whether these data will add any 
additional information (i.e., costs versus benefits). 

 
Response:  Due primarily to time and resource constraints, this has not been done to date.  Susan 
is the Program Manager of the Ambient Monitoring Program located in Atlanta, Georgia.  Note 
that results for benzene in Atlanta (Fulton county) are now included in the report.  Also, refer to 
the comments and responses related to Atlanta data that have been provided above. 
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E-mail received from Joe Touma August 30, 2002, 3:40 pm 
 
1.  Table 2.1.  Are you saying that Acetaldehyde has an MDL range from 0.0067 to 0.5405?  

If so, this looks like a wide range and is there a significance to it? 
 
Response:  Yes, and now the table has been updated as Table 2.1a with a range from 0.0005 
to 0.5405.  It is likely a function of changing MDLs over time, different measurement 
technologies, varying laboratory protocols for calculating MDLs, and alternative definitions or 
interpretations (i.e., semantics) made by different technicians when reporting MDLs.  A 
discussion and reference has been added to Section 2. 
 
2.  Section 3.2.3, just for curiosity, how many pollutants passed Models 1, 2, and 3? 
 
Response:  The model development was done using benzene and carbon tetrachloride data.  
Models 1 and 2 were not applied to other pollutants.  Further, since Model 3 reduces to Model 1 
when the data are sufficiently far above the MDL, there is no need to run a separate model in that 
case. 
 
3.  Table 3.1, is the value for “All Sites, Background Estimate” (0.6282) a weighted value?  I 

could not duplicate the standard error of 0.0483. 
 
Response:  The standard error is computed assuming that the errors for each of the estimates are 
mutually independent.  Hence, 
 

0.0483 = (0.2034^2 + 0.0593^2 + 0.0563^2 + 0.0644^2 + 0.0784^2)^(0.5)/5. 
 
4.  Table 3.2.  This is a very important topic.  Should this be done in specific counties?  It 

seems when you are averaging so much data, the number is not meaningful.  Also, should 
you also present by pollutant? 

 
Response:  [Should this be done in specific counties?]  Table 3.2 summarizes the results of 
modeling each site and year separately.  Then, for each year, the results were aggregated up to 
the county level.  Individual county estimates varied (up and down) from year-to-year.  The 
“trend” shown is less than the typical standard error bounds for an individual county and year 
estimate.  Hence, it can only be seen at the aggregated level.  [It seems when you are averaging 
so much data the number is not meaningful.]  In the sense that it does not reflect the fact that 
individual estimates do go up and down, this is true.  Averaging smoothes out the noise, which is 
what we were looking for in this exercise and this section of the report.  [Also, should you also 
present by pollutant?]  The results shown were a case study; benzene was chosen for the richness 
of the benzene data.  While we could try other pollutants, the number of sites that would yield 
data across multiple years would be a limiting factor.  A comment to this effect has been added 
to the report. 
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5.  Section 4.4.1, 4th paragraph, 7th line.  Can you explain your note as to not being credible 

and needing further investigation. 
 
Response:  This was referred to in conference call on 9/5/02.  Because the model is fit using 
numerical approximation algorithms, we initially flagged some results and have since removed 
some results from consideration.  These were places where the model converged to what we 
considered to be suspect values.  They were suspect in that the model converged to what we 
considered to be an extreme.  It is possible that the algorithm designed to find the maximum 
likelihood, instead found a set of parameters such that small changes to those values would result 
in a decrease in the likelihood.  This will cause the algorithm to stop, even though the set of 
parameters found may not, in fact, maximize the likelihood.  The automated routines have 
built-in checks to guard against this, but it is still a possibility.  Also, note that standard errors are 
based on the assumption that maximization is correct.  Since we have removed these estimates 
from consideration, the notes in the text have been removed also (and replaced with an 
appropriate text).  Similarly, the associated footnote to Table 4.1 has been removed. 
 
 
Conference call with Joe Touma and Ted Palma on September 5, 2002, 10:15 am 
 
1.  Provide background results in those cases for which the approach detailed in the 

August 15 report did not give a solution. 
 
Response:  Done.  See discussion at the beginning of Section 3.1 and detailed discussion in 
subsection 3.1.7.  Also, refer to results presented in Table 4.1 (compare to Table 4.1 results 
provided in August 15 report).  Also, compare Tables 2.1a and 2.1b. 
 
2.  Mention in the report the minimum number of observations in the data set considered for 

conducting the primary analyses. 
 
Response:  Done.  A discussion has been added to the end of subsection 3.1.3. 
 
2.  Update Table 4.1. 
 
Response:  Done. 
 
4.  Note in the text that the Beaverton site is in a different county than the downtown 

Portland, Oregon, sites. 
 
Response:  Done.  The discussion in subsection 3.1.5 has been modified accordingly. 
 
5.  The Senior Battelle Statistical Review should include a review of any new methodology 

used to address data not handled by the primary method presented in the August 15 
report. 

 
Response:  Done.  Refer to Section C.3 of Appendix C. 
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6.  Similar to the benzene case study presented in subsection 3.1.6, consider other pollutants 

(in particular a longer time series for metals). 
 
Response:  Not done, primarily due to time and resource constraints.  A discussion about this 
possibility has been added to the text of subsection 3.1.6. 
 
 
Other verbal comments received 
 
1.  Why are results for St. Louis not showing up? 
 
Response:  Refer to the investigation discussed in the response to Item 2 in the August 21 e-mail 
above. 
 
2.  Why are so many results showing up for Minnesota? 
 
Response:  In a conversation with Joe Touma and Tesh Rao, Tesh seemed to confirm that his 
experience with the archive often yielded an unusually large number of results for Minnesota as 
well (more than one might expect relative to other areas of the country).  To date, no further 
investigation has been pursued to address this issue.  A future discussion with ICF/SAI, the 
contractor who built the archive, may be warranted.  Further discussion about this issue has been 
added in the results subsection 4.1.1. 
 
3.  Look into other toxics data that might be available through Battelle. 
 
Response:  This was explored, but did not result in any new data being added to the combined 
data set used for this project.  The effort and results are discussed in more detail in 
subsection 2.1.1 of the report. 
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APPENDIX E:  EXTERNAL PEER REVIEW OF THE 

            SEPTEMBER 27, 2002, DRAFT 
 
 
 An independent, external peer review was conducted on the September 27, 2002, revised 
draft version of this technical report (Contract 68-D-98-030, Work Assignment 5-09).  Copies of 
the report were sent to three experts at different organizations (names withheld), with the 
following “charge to reviewers.” 
 
 

Charge 1: “Basic Methodology” 
 
Subcharge 1.1  What is the validity of the technical approach described in Chapter 3.1 

and results presented in Chapter 4.0?  What are the limitations? 
 
Subcharge 1.2  This method results in high background estimates where ever the 

monitoring values are high. Is background being overestimated in high 
pollution areas? Is this due to the influence of nearby sources and can 
this influence be statistically addressed? 

 
Subcharge 1.3  There is high spatial variability in estimated background concentrations. 

Is this an artifact of the approach or is this realistic? Is this also due to 
the influence of nearby sources? 

 
Charge 2: “Extension of Methodology” 
 
Subcharge 2.1  What is the validity of technical approach described in Chapter 3.1 for 

extrapolating these background (point) estimates to other unmonitored 
area? 

 
Subcharge 2.2  Can you suggest alternative methods for extrapolating estimated 

background concentrations to other areas based on readily available 
data such as land use, population density, emissions density, 
meteorology, terrain, etc? 

 
 
 
 Because of budget constraints, a line-by-line response to these peer reviews was not 
within the scope of the current work assignment.  The bulk of the peer review comments 
concerned the decision regarding data that were below the method detection limit, or that were 
missing. 
 
 One editorial comment made by Reviewer #2, regarding an editing error in §3.1, 4th 
paragraph, was corrected in the current report.  Reviewer #2 also noted the apparent discrepancy 
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in defining “nearby” sources as greater than 50km, as stated in §1.0, 2nd paragraph and again in 
§3.0, 1st paragraph.  Battelle notes that this definition was provided to Battelle by EPA. 
 
 For future reference, the external peer review comments are presented below, essentially 
as received from the reviewers.  Personal identifying information and affiliations have been 
removed. 
 
 
Comments of Reviewer #1 

 
Summary Comments on Estimating Background Concentrations: The purpose of this study is to 
develop a method for estimating the background concentration at an air monitoring site. For 
these purposes the background concentration is defined as the concentration contribution from 
emission sources not captured by the ASPEN model:  natural sources, anthropogenic sources 
more than 50 km away (non-local anthropogenic sources), and unidentified sources. Neglecting 
the issue of unidentified sources, the background concentration is generally a measure of what 
we would expect the concentration to be in the absence of any local anthropogenic sources. 
 
The general approach taken in this study is use all the measured values to estimate the 
background concentration, essentially defined as the minimum possible concentration at the 
receptor.  (More precisely, if the MDL is zero or negligible, then Model 1 applies and the 
statistical shifted gamma model defines the true background as the minimum possible 
concentration.  Otherwise, Model 3 applies, for which the true background parameter will be 
close to the minimum possible concentration).  The estimated background is, thus, approximately 
equal to the minimum measured concentration.  So a fundamental question about the approach is 
whether the minimum measured concentration at the location is likely to reflect only natural 
sources and non-local anthropogenic sources.  In order for this to be the case, at least some of the 
measurements would have to be made at a time when there were no significant contributions 
from anthropogenic sources within 50 km (i.e., local anthropogenic sources).  It is unlikely that 
any urban monitors would meet this criterion for many important air toxics.  For example, 
virtually all urban locations are subject to significant contributions from mobile emission 
sources.  Therefore, the estimated “background” concentrations of mobile source related 
pollutants estimated with this method are likely to include a local anthropogenic component.  
Supporting evidence for this view is the correlation between estimated background 
concentrations and total measured concentrations. 
 
An alternative conceptual approach to estimating background concentrations, at least for the non-
local source component (both anthropogenic and natural), would be to use measured values at 
locations greater than 50 km upwind of the target location. Of course, implementation would be 
complicated variability in wind direction and the sparseness of appropriate monitoring data. Still, 
it would be useful to assess how many metropolitan areas would have sufficient data for making 
such an estimate. For example, an area with a small number of predominant wind directions 
(e.g., one or two) and corresponding upwind monitors could be used to test this method. If it 
proved fruitful, this type of monitoring could be incorporated into future monitoring network 
design. 
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Charge 1:  “Basic methodology” 
 
Subcharge 1.1.  What is the validity of the technical approach described in Chapter 3.1 and 
results presented in Chapter 4.0? What are the limitations? 
 

• It is very much better to use the shifted gamma with zero probability below µ and 
censored at the MDL (Model 1 with censoring) than it is to use Model 3, which allows 
for concentrations below the “background,” is censored at µ + MDL, linear up to µ + 
2*MDL, and then shifted gamma.  The Model 3 gives a definition of background (µ) that 
has no simple physical interpretation.  For example, measured concentrations near zero 
are possible for a positive background.  The Model 3 allows the distribution fitted to the 
measured physical concentrations to depend in an unusual way upon the MDL of the 
measuring instrument (it is plausible that a different MDL might change the shape of the  
distribution of the measurements but the form in Figure 3.3c is not very plausible). 

• The likelihood is either incorrectly or not clearly stated for Models 2 and 3:  for values 
below the censoring threshold C, the likelihood term should be F(C) rather than 
“constant,” where F is the cumulative distribution function.  Perhaps this is what was 
meant by the unclear last full paragraph on page 16. 

• Some of the convergence problems reported for Model 1 are likely due to the fact that a 
shifted distribution with an unknown endpoint often leads to a non-regular maximum 
likelihood problem with likelihoods that approach infinity as the endpoint parameter 
approaches the smallest observed value.  See Cheng and Traylor, Journal of the Royal 
Statistical Society series B, 57, 1, 1995, pp 3-44 for some ideas of how to deal with the 
convergence problem.  For example, the maximum product of spaces method or grouping 
of the observations will lead to fewer convergence problems than maximum likelihood. 

• A better modeling approach might be to assume that the basic distribution is the sum of a 
shifted gamma and an error term that could be assumed to be normal with mean zero and 
an unknown variance.  The fitted distribution will be the basic distribution censored at the 
MDL.  This allows for the possibility of observing measured values below the 
background level µ because of random measurement variation. 

• The report does not explain whether the concentration data for each site used for these 
analyses are daily averages, averages over shorter monitoring periods (e.g., hourly, 
3-hourly), or both.  If the data have multiple monitoring periods, then the true distribution 
will be a mixture of several distributions and the assumed model will not be correct.  If 
only daily averages were used, how were they computed and how was the daily MDL 
computed if there were several measurements on the same day? 

• What was the treatment of concentration values with a missing or zero MDL? 
• The discussion on page 15 treats the reported MDL’s as a measurement error arguing that 

µ + 2*MDL is like 3*MDL which is often the value of the lowest calibration level (LCL).  
The report argues that values below the LCL are often not reported due to high 
uncertainties.  In some cases, the so-called MDL value reported in the database could in 
fact be the LCL, implying that the censoring threshold used for the analysis, µ + 2*MDL, 
is of the order of 7*MDL and is far too high.  In the old AIRS manual the “MDL” to be 
reported is defined as “Minimum Detectable Value” which could have several possible 
interpretations including both of Battelle’s MDL and LCL. 
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• A bootstrap (or similar) estimate of the standard error is preferred in cases where SAS 
flags the standard error value as highly uncertain. 

• The arguments for the secondary analysis approach using a background that is between 
the 5th and 50th percentile depending upon the MDL are not convincing and the method 
seems arbitrary.  The argument for using the 50th percentile assumes the (measured) 
background varies daily, although the primary Model 3 assumes a fixed background 
throughout the year.  Consistent use of the minimum or a low percentile (e.g., 5th) in 
these cases of non-convergence is preferable. 

 
Subcharge 1.2.  This method results in high background estimates wherever the monitoring 
values are high.  Is background being overestimated in high pollution areas?  Is this due to the 
influence of nearby sources and can this influence be statistically addressed? 
 

• The statistical approach estimates the background for each site by fitting a model to the 
measured values at that site.  The background for the county is estimated by averaging 
the estimated background across the sites in the county.  The method will overestimate 
background at sites or counties where there is a strong nearby point or area source with 
consistent values throughout the year.  In this case the estimated background will include 
the source contribution and will be overestimated.  It would probably be better to use the 
county minimum estimated background (admittedly the minimum is more uncertain than 
the average) or an average or minimum background across a wider area.  Another 
statistical approach would be to fit the statistical model simultaneously to multiple sites 
in an area, assuming that all the sites have the same background value but the other 
model parameters may vary between sites.  Yet another approach would be to exclude 
sites known to be near large sources from the analysis. 

 
Subcharge 1.3.  There is high spatial variability in estimated background concentrations.  Is this 
an artifact of the approach or is this realistic?  Is this also due to the influence of nearby sources? 
 

• The high spatial variability of the estimated background concentrations is an artifact of 
the approach since each site is independently modeled and may be influenced by a 
constantly emitting nearby source.  See under Subcharge 1.2 for some suggestions to 
reduce this problem. 

 
Charge 2:  “Extension of Methodology” 

 
Subcharge 2.1.  What is the validity of the technical approach described in Chapter 3.1 for 
extrapolating these background (point) estimates to other unmonitored area? 
Subcharge 2.2.  Can you suggest alternative methods for extrapolating estimated background 
concentrations to other areas based on readily available data such as land use, population density, 
emissions density, meteorology, terrain, etc?  
 

• The “Stage 2” multiple regression approach described in Section 3.2 is a reasonable 
initial general approach for estimating background at non-monitored sites.  The selection 
of which explanatory variables to use, and which functional transformations (e.g., include 
squared or cubed latitude) or interaction terms should be included, is the hardest part of 
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any regression-based method.  Two important variables for this approach are the latitude 
and longitude, and it would be a good idea to also use their squares and product as 
explanatory variables to fit a quadratic rather than linear surface.  Land use is a useful 
surrogate for natural sources.  Suitable summary statistics of the emission density at least 
50 km to, say, about 75 km away could address impacts from non-local sources.  A 
suitable function of the average wind speed (e.g., reciprocal) could summarize important 
meteorological impacts. 

 
 
Comments of Reviewer #2 

 
 Overall, this report needs a great deal of clarification about both the methodology and the 
analysis performed.  Assumptions need to be justified and there needs to be discussion about 
how realistic the assumptions are and how the conclusions are affected when the assumptions are 
not met.  This report requires substantial revision before it can be considered for publication as 
an EPA report. 
 
 A number of points I make here were raised in the review of this report by Battelle 
statisticians.  Most of the comments of the Battelle statisticians were not addressed at all or not 
addressed satisfactorily by the authors.  These comments need to be properly addressed. 
 
 The definition of background concentrations provided to the authors makes estimation of 
background almost intractable, since the background concentrations depend on the modeling 
emissions inventory.  Thus, if the same scenario is modeled (e.g., using ASPEN) twice, the 
second time with an improved emissions inventory, the true background concentrations will be 
different.  Clearly it is problematic to estimate background using only monitored data, since one 
important factor (the inventory) is ignored. 
 
 
*************************************************************** 
Working definition of background concentrations 
For the purposes of Battelle’s analysis, background concentrations are to be estimated so that, 
when added to ASPEN model predictions, the resulting concentrations approximate the ambient 
concentrations.  From page 1:  
 

In order to estimate total ambient concentrations, however, a value for background must 
be estimated and added to ASPEN’s modeled concentrations.  As defined, background 
accounts for natural sources, nearby sources (farther than 50 km), and unidentified 
sources. 

 
*************************************************************** 
 
 Conceptually, this method for estimating background concentrations should have a hard 
time distinguishing the impact of sources with small temporal variation within 50 km of the 
monitor from sources further away than 50 km.  The monitor will see variation from both 
sources due to varying wind direction, but there will not be any additional variability in the 
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closer source due to emissions fluctuations.  As many sources of toxics may have fairly constant 
daytime emissions, this may be a serious shortcoming of the method, and lead to overestimation 
of background.  If so, this would be manifest in a positive relationship between the ambient 
concentrations and the estimated background concentrations. 
 
 There should be a discussion of the difference between uninventoried sources (part of 
background) and underestimated sources (not part of background), in relation to estimating 
background concentrations. 
 
 Statistical goodness-of-fit tests quantitatively describing the adequacy of the proposed 
model should be presented. 
 
 The failure of the method to converge in some cases is mentioned in several places in the 
report, even when the amount of data should be adequate.  Why is this happening?  This is 
important to know as it might indicate how the methodology could be improved.  Failure to 
converge might indicate that the form of the model is inappropriate.  (Of course, it is difficult to 
judge this without goodness-of-fit tests) 
 
 This methodology might be improved on by treating background concentrations 
probabilistically by modeling ambient concentrations as a mixture of two distributions, one for 
background concentrations and one for source-oriented concentrations.  It is worth exploring. 
 
SPECIFIC COMMENTS 
 
§3.0 The definition of “nearby sources” includes transport from distant cities and transport 
from around the globe.  This terminology is not apt. 
 
§3.1, 2nd paragraph. 
 
I disagree with the statement “The idea behind such approaches is that background levels are 
more clearly discernible under certain preconceived notions about ideal conditions”. 
 
The statement “Their disadvantages include … (2) a reduction in the extensiveness of results due 
to the failure of many sites or areas to exhibit the required extreme event data” is unclear.  What 
is meant by this? 
 
The following statement is not true.  With some techniques, eliminating some data can reduce 
noise obscuring the background signal, resulting in a better estimate of background, which 
should not be characterized as a disadvantage of the method. 
 

In addition, evidence of background concentration levels is likely contained 
within all measurements, so any approach that eliminates much of the monitoring 
data leads to a deliberate reduction of available information about background. 
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§3.1, 3rd paragraph. 
 
Empirical, or nonparametric, approaches are described as “less desirable” and are simplistically 
dismissed: 
 

Another somewhat less desirable class of approaches might be described as 
empirical methods, which amount to calculating some percentile of a given set of 
monitoring data and treating the resulting threshold as an estimate of 
background.  For example, use the 5-10 percent lowest measurements… 

 
First, nonparametric approaches are not necessarily less desirable.  Second, they don’t 
necessarily “amount to calculating some percentile.”  Some nonparametric approaches are quite 
sophisticated.  It may be that a nonparametric approach would yield better results than the 
approach taken in the report. 
 
I question the use of a nonparametric approach in cases of “too few observations.”  Generally, 
nonparametric approaches require more data than parametric approaches. 
 
§3.1, 4th paragraph. 
 

the decision was made to pursue (as a primary analysis approach) a method that:  
(1) uses all the information about background that exists within a full set of 
monitoring data (above or below an MDL); (2) is simple enough to be applied on 
a routine basis in practice; and, most importantly, (3) is consistent with the 
ASPEN model’s conceptualization and treatment of background levels. 

 
This is good.  A method that satisfies these three points is appropriate. 
 
§3.1, 4th paragraph.   
 

For urban areas it is assumed that, except for very rare instances, all data values 
contain a constant background contribution and a varying, non-negative source-
oriented contribution. 

 
This assumption is clearly not true (nearby and uninventoried sources will have time-varying 
impacts).  The question that needs to be addressed is:  “How will the background estimates be 
impacted when the variance of the background concentrations is X percent of the variance of the 
known-source-oriented concentrations?” where X is in a realistic range. 
 
§3.1.1 I agree that the gamma distribution is appropriate for modeling concentrations.  However, 
justification for using it is not there.  Essentially, the justification in the report is that the gamma 
distribution has certain features in common with the lognormal distribution and that the 
lognormal distribution is known to adequately approximate concentration distributions, but the 
lognormal distribution can’t be used because of “application difficulties.” 
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One way to address this would be to remove the sentence “So, in summary, the shifted gamma 
distribution appears most appropriate for serving the dual purposes of adequately 
approximating monitoring data behavior and providing a direct estimate for background.” 
 
§3.1.1, last paragraph. 
 
The authors claim that “Figure 3.2 supports the assertion that the shifted gamma pdf is, in fact, a 
reasonable choice for the statistical distribution to be used for the approach to this project.”  
However, this figure indicates a poor fit in the most important region, the lowest concentration 
quantiles.  (It would be helpful to have a 1-1 line on this plot.) 
 
It is imperative to present statistical goodness-of-fit tests quantitatively describing the adequacy 
of the proposed model. 
 
§3.1.3, 2nd paragraph. 
 

Specifically, it was decided that any data within a threshold of background plus 
two times the reported MDL ( +2*MDL) should be treated as random noise, or at 
least too imprecise to use individually for estimating the parameters of the 
assumed shifted gamma distribution. 

 
Why is the background level µ part of the threshold?  For some pollutants µ can be above the 
MDL.  If µ is well above the MDL, then measurements well above the MDL are considered too 
imprecise?  Suppose (as could happen in a rural area) µ . the median concentration and all 
measurements are above the detection limit?  Then more than half of the data are censored and 
none should be.  Perhaps I’m missing something here. 
 
§3.1.3, 3rd paragraph. 
 
In Model 2, what is the “constant?”  Is it a fourth parameter to be estimated?  Is it µ? 
 
More information should be provided on how SAS was used to fit this model.  Since the 
parameter µ to be estimated is used to define the model and, therefore, the model changes for 
different estimates of µ, the procedure is presumably not straightforward. 
 
§3.1.3, 4th paragraph. 
 
Model 2 uses all the data without censoring (as stated in paragraph 3).  However, in this 
paragraph, the authors state that data below the censoring threshold are censored: “The decision 
to censor data up to a threshold of ( +2*MDL) served to stabilize this procedure…”  This 
discussion of the model needs to be clarified. 
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§3.1.3, 6th paragraph. 
 
The rationale for reporting “the standard error for the background estimate as the maximum of:  
(1) the uncertain standard error given by SAS , (2) one-half of the background estimate, and 
(3) one-half of the MDL” should be described for (2) and (3). 
 
The statements “This approach provides a conservative uncertainty estimate in such cases.  That 
is, uncertainty will tend to be over-estimated,” if true, need to be justified. 
 
§3.1.7, page 25. 
 
The failure of the method to converge in some cases is mentioned in several places in the report, 
even when the amount of data should be adequate: 
 

This primary methodology may also fail in a few cases when the size of the data 
set would appear to be adequate and the data are mostly above their respective 
MDLs, yet the given application still does not adequately converge to a solution. 

 
Why is this happening? 
 
§3.1.7, page 25+ describes the Secondary Analysis Approach.  There are several assumptions 
made in this section for which there is no justification, and some of them appear to be incorrect.  
This section should be revised to include such justification. 
 
For example, the report states: 
 

The first extreme is when a site is not affected by sources and is only measuring 
background.  In this case, the median, or 50th percentile, of the data is considered 
to provide a reasonable upper bound estimate for the annual mean background 
concentration. 

 
If all the measurements reflect background, then clearly the median of the data does not provide 
a reasonable upper bound estimate for the annual mean.  An upper bound could be constructed 
from confidence intervals for the mean. 
 
§3.2, Stage 2:  Spatial extrapolation of background estimates 
 
Why restrict the model to be linear? 
 
It will be important to have estimates of uncertainty for any estimates of background 
concentrations in areas without any monitoring data. 
 
At the end of this section the authors give the opinion that the proposed model will provide only 
a poor fit (an R2 of at best 0.3).  If so, why waste time pursuing this model? 
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§4.1.1  Summary of Stage I results 
 
There are some results that beg for explanation.  For example (page A-3, top right) Kandiyohi 
County, MN has a background estimate of 0.37 with an uncertainty of 0.0005, based on a sample 
size of only 32 measurements at one site.  This uncertainty is clearly much too small. 
 
Then there is Hennepin County, MN which has 678 measurements at six sites with a background 
estimate of 0.54 and an uncertainty of 0.05.  This county has 20 times as much data as 
Kandiyohi, yet the uncertainty is 100 times greater.     ? 
An uncertainty of 0.05 also seems small. 
 
RESPONSE TO CHARGE QUESTIONS 
 
The rationale for these responses is provided in the comments above. 
 
Charge 1: “ Basic Methodology” 
 
 Subcharge 1.1 What is the validity of the technical approach described in Chapter 3.1 

and results presented in Chapter 4.0?  What are the limitations? 
 
 The report’s description of the technical approach is sufficiently incomplete that it is 
difficult to assess its validity and limitations.  There appear to be a number of unjustified 
assumptions.  The results indicate that the method does not work well. 
 
 Subcharge 1.2 This method results in high background estimates where ever the 

monitoring values are high.  Is background being overestimated in high 
pollution areas?  Is this due to the influence of nearby sources and can 
this influence be statistically addressed? 

 
 Yes, with this method the background will tend to be overestimated in areas with high 
ambient concentrations due to local sources.  Due to the nature of the definition of background, 
this cannot be addressed statistically without using some type of air quality model. 
 
 Subcharge 1.3 There is high spatial variability in estimated background concentrations.  

Is this an artifact of the approach or is this realistic?  Is this also due to 
the influence of nearby sources?  

 
 I don’t think that this can be determined without further analysis.  I would expect that 
there would be significant spatial variability in background concentrations, due to the influence 
of “nearby” sources and uninventoried local sources.  (Note that “nearby” sources includes 
distant sources.)  However, the high variability in the results could certainly be an artifact of the 
approach. 
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Charge 2: “Extension of Methodology” 
 
 Subcharge 2.1 What is the validity of technical approach described in Chapter 3.1 for 

extrapolating these background (point) estimates to other unmonitored 
area? 

 
 There is some discussion about such an approach in §3.2, where the approach is to 
develop a multiple regression model of the background based on various possible explanatory 
variables.  The authors doubt that this approach will be satisfactory and so do I. 
 
 Subcharge 2.2 Can you suggest alternative methods for extrapolating estimated 

background concentrations to other areas based on readily available 
data such as land use, population density, emissions density, 
meteorology, terrain, etc? 

 
 One way to extrapolate estimated background concentrations to other areas is to use the 
mean or median of the estimates based on available measurements.  This would not capture the 
geographic variability of background concentrations and will be biased (since the vast majority 
of areas have no data).  An attempt would have to be made to estimate upper confidence bounds 
for this.  Zero can be used as a lower bound.  In my opinion, the only way to improve on this is 
to bring in additional data such as land use, population density, emissions density, meteorology, 
and terrain.  The best way to use these kinds of data to estimate concentrations (background or 
ambient) is through multi-scale air quality dispersion modeling combined with a statistical 
approach. 
 
 
Comments of Reviewer #3 

 
My overall impression is that this is a good piece of work on an important problem.  The 
approach used to estimate the background concentration of air toxics is sound.  The conceptual 
model used is that there is a regional “background” concentration caused by non-local and/or 
un-inventoried sources that can be estimated at the left-hand side of the distribution of observed 
concentrations.  For this approach to work, the component of the observed concentration that is 
not regional background must follow a known probability density function (distribution).  Since 
ambient observations often follow a skewed distribution (log-normal or gamma), the portion of 
the observation that is not fit to the distribution (at the left hand tail) represents the background. 
 
The authors have selected the shifted gamma distribution for this analysis.  The advantage of the 
shifted gamma distribution is that the shift-parameter (µ) represents an estimate of the 
background.  This approach also allows for censored data, that is data where some of the 
observations are below the analytical limit of detection. Following are specific concerns and 
suggestions. 
  
I. The conceptual model specifies that “background” is a constant.  However, if background 

also includes un-inventoried sources, it may not be constant and may be better 
represented as a distribution.  However, I do not believe that most air toxic data sets 
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contain sufficient precision at low concentrations to support a more complex conceptual 
model and the constant assumption is a reasonable starting point. 

 
II. I believe that the shifted gamma is a reasonable choice.  However, I am not sure why the 

data were censored at the background + 2 MDL.  Why is this extra censoring necessary?  
It would be more straightforward to include all measures above the MDL in the analysis. 

 
III. The model selected specifies that the distribution of concentrations is approximately 

shifted gamma if greater than µ + MDL and “constant” otherwise.  This is shown in 
figure 3.3c.  However, the figures shows that the concentration is not constant below the 
µ + MDL point, but rather the concentration distribution is uniform below the µ + MDL 
point.  I don’t see what this adds.  If the background concentration is “constant”, than the 
shifted gamma should be anchored at the background and the model in figure 3.3a should 
be used. The degree of censoring should not affect the shape of the distribution. 

 
IV. The key question is does the shifted gamma distribution fit observed concentrations? If it 

does, great. If not, why not?  It is stated on page 15 that the numerical model did not 
always converge and that increased censoring was needed. However, I am worried that 
lack of convergence may have been simply due the lack of fit between the observed data 
and gamma distribution (e.g., the actual impact of inventoried sources may have been 
bimodal or some other distribution).  Increased censoring could have had the effect of 
simplifying the actual distribution allowing convergence for a higher percentage of data 
sets.  If this is true, then the estimates of background will be high.  (Note that “high” 
estimates of background were occasionally found.) 

 
V. If you go back to the simple shifted gamma (Figure 3.3a), what percentage of cases fail to 

converge?  For the data sets that converge, are the estimates of background lower and/or 
more consistent that estimates from the model in Figure 3.3c?  It may be better to live 
with a higher number of cases where the model does not converge if it produces more 
consistent results.  This should be a testable assumption.  Also, an analysis of why the 
model fails to converge may provide additional insight.  Finally, what is the effect of the 
level of censoring on the estimated background?  If the model is working properly, the 
level of censoring should not affect the estimated background.  This should also be 
testable. 

 
VI. The decision to apply the model to each monitor and then produce a regional average by 

averaging between monitors is good. 
 
VII. The decision to censor the highest measurements in interesting.  It has been my 

experience that fitting observed data to distributions is always problematic at the tails so 
censoring the highest points has appeal.  Did you test the effect of clipping different 
amounts of data off of the top of the distribution?  Why 1 %?  Why not 5 or 10%? 

 
VIII. The things in figure 3.4 are not box plots.  A standard box plot gives much more 

information than included in figure 3.4.  
 



Final Background Concentrations Report E-13 June 13, 2003 

IX. Include the shifted gamma parameters in table 3.1.  It would also be interesting to see the 
parameters (or a summary of the parameters) in Appendix A.  

 
X. The results in Table 3.2 are very interesting. Benzene concentrations are supposed to be 

decreasing due primarily to changes in motor vehicle fuels.  What this table is showing is 
that the background estimate is not completely separate from motor vehicle emissions.  

 
XI. I understand the need for a secondary analysis approach.  Overall, how do the 

background estimates developed by the shifted gamma approach compare to the 
estimates from the secondary analysis? 

 
XII. The approach proposed for the stage 2 explanatory analysis is reasonable.  However, 

finding a model with an R2 of 0.3 may be a bit optimistic 
 
XIII. Figure 4.1 needs to be printed in color to be readable.  However, even in color, I am not 

sure what it will add.  
 
 
Overall, I think this is a very interesting project. 
 
 
 


