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In theinterest of simplicity and readability, this document is written usingAplain languagef. The use of Awef refers
to the USEPA.

|. Introduction.

The purpose of this document is to describe a project were undertaking a the EPA which involves
comparing ambient air quaity modding system estimates to ambient monitoring concentrations for
hazardous air pollutants (HAPS), or air toxics. Namely, we would like to have a better understanding of
the performance of the ASPEN modé in predicting ambient toxics concentrations for our initid nationa-
scale assessment.

Asone of thetoolsthat will be used in the Nationa Air Toxic Assessments (NATA) initid nationd-
scae assessment, the ASPEN modd is a disperson modd which can estimate the annud average
ambient concentration of aHAP at the censustract level. So, for example, we can ask ASPEN, AWhat
isthe annua average concentration for ambient benzene in 1996 at censustract X 4 ASPEN will then
give us aquantitative estimate of the annua average concentration at that given location.

Disperson modelsin generd have many uses. First, an accurate model will reduce the need for a dense
monitoring network, thus saving monitoring costs. Second, amodel can answer forward-looking
guestions such as, Alf we reduce emissions of HAP X by y%, how will that affect ambient
concentrations in the future? Monitors cannot answer this question directly. Third, the mode can
estimate the ambient concentrations of pollutants at places where there are no monitors or amonitor is
not feasible. In lieu of the modd, wed have to use Aspatid interpolationi methods such as kriging to
estimate ambient concentrations where there are no monitors.

In fact, EPA consdersthe predictions of digpersion models such an important component of their risk-
based air toxic program that mode-to-monitor comparison considerations are one of the key
congderations being included in the design of aNationd Air Toxics Monitoring Network (US EPA,
20004). Wed liketo design our network so that we can eva uate disperson moddsin awide variety
of gtuations - for urban areas and nonurban areas, areas dominated by certain emissions sources, areas
with different climates, etc. Table 1 isaprdiminary attempt a ddineating some of these Stuations.

One way to evauate the usefulness and limitations of any digperson modding system isto compareits
ambient concentration predictions to available concurrent monitoring data. As part of the NATA initia
nationd- scae assessment, the ASPEN modd will predict annual average ambient concentrations for 33
urban HAPs at approximately 60,000 census tract locations nationwide for the year 1996. 1n 1996
there were only severa hundred air toxics monitoring Stes dl acrossthe US. Many of these Sites, which
were primarily desgned and maintained under existing criteriaair pollutant monitoring programs (e.g.,
Photochemical Assessment Monitoring Stations, or PAMS; State and Local Air Monitoring Stations, or
-2
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SLAMS; Interagency Monitoring of Protected Visua Environments, or IMPROVE), and only
monitored a handful of HAPs for alimited period of time. Where dataalow us, we can look at the
1996 annud averages from these stes for whichever HAPs they monitor, and compare these annua
averagesto the 1996 annua averages generated by ASPEN for the appropriate geographic location.
By comparing the ASPEN predictions with the available monitoring data, we hope to gain a better
understanding of the overdl performance and limitations of the quantitative ASPEN mode predictions.
It isthese ASPEN modd predictions that will be used in the initid nationa- scale assessment to predict
exposure and risk vaues nationwide. These predicted exposure and risk levels will subsequently help
the Agency in setting priorities for future control efforts of our air toxic programs.

I. Uncertaintiesand Limitations.
To better understand what the results of such a comparison may tell us and make the most use of its
results, we mugt fird redize the limitations that both the NATA initid nationd-scale model predictions

and monitoring measurements have. These are discussed below.

A. ASPEN Modeling Uncertainties.

i) Emissons Inventory. The modd takes emissions data and meteorologica data as
inputs. For the initid nationd- scae assessment the emissions data come from the 1996 Nationa Toxics
Inventory (NTI), acomposite of emissions estimates generated by state and local regulatory agencies,
industry, and EPA. Because the estimatesin the NTI originated from a variety of sources and
estimation methods, aswell as being developed for avariety of different purposes, they will vary in
qudity (i.e, pollutants, leve of Site detail, and geographic coverage). In some cases, the inventory may
serve as an excellent Site specific representation for a dispersion modd effort, in other cases key mode
input parameters may not have been available. Further, for area and mobile emissonsin particular,
representative surrogates (e.g., industrid land, roadway miles, population dengity and inverse
population dengty) were used to geographicaly distribute county wide inventories to a smal geographic
scae (i.e, censustract). Thus, the usefulness of these data to represent smaller spatia scales may bein
question.

i) The Modding Smulaion. A disperson modd in generd makes many smplified
assumptions as to the fate and trangport of the emisson plume. One of the key smplifications of the
ASPEN modd isthat it does not include a terrain component in its prediction agorithms. Further, the
model relies on steady- state long-term sector-averaged climate summary data to represent the
conditions a the plume site. The modd aso smplifies some complex atmospheric chemical processes
and captures only pollution transport within 50 km of any individua source.

B. Monitoring Uncertainties.
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Though often overlooked, there can be significant uncertainties as to what the monitored vaue
actudly represents. We must consider uncertainties in both monitoring methods as well give
consderations as to what the monitor was initidly sited for before we can consider a comparison with
modd predictions. Unlike the criteriaair pollutant world, there currently is not aforma nationd air
toxics monitoring network which follows standardized EPA guidelines or established national monitoring
procedures. While some States and loca agencies have collected some high quaity HAP monitoring
data, some of the data has not undergone any forma quality assurance tests, and the data come from
severd different monitoring networks, which may differ in precison and accuracy. The number of
monitoring Sites varies by pollutant. The monitor Sting (proximity of Sites to emission sources) o
varies by pollutant, with some monitors reflecting generd urban concentrations while others are more
reflective of specific source impacts. In generd, most the of available HAP data to be consdered in this
evaluation were not collected every day. Instead, they were produced every 12th day or every 6th day
throughout the caendar year. Thisintroduces another layer of uncertainty as to the representativeness
of the data for comparison with estimated annua average concentrations. Thus, we are proposing a set
of completeness criteria be applied to the monitoring data to help assure its representativeness of 1996
annual averages (see Appendix A).

C. Comparison Uncertainties.

In addition to the Aindependent modd and monitoring uncertainties mentioned above, there are
afew reasons why the comparison itsdlf is uncertain. The monitors have alevel below which
measurements are uncertain (caled the Amethod detection limit@, or AMDL), because routine
monitoring methods are not sensitive enough to detect low levels precisely. The ASPEN modd does
not have aMDL, and thus careful consideration as to the trestment of the MDL must be made when
aggregating short-term monitoring concentrations into annud average values. Another consideration in
the comparison is the question of resolution, or sce. ASPEN was designed to give estimates at the
censustract level. In contrast, the monitors are sengtive to very locd fluctuationsin ar pollution,
especidly close to dominant emissions sources. If we had a series of monitors lined up right next to
each other, for certain pollutants and in certain Situations, the readings could vary quite abit. But we
would expect the modd to generate very Smilar vaues for nearby locations. The model by necessity
has to Asmooth out(l the locd fluctuations in pollutant levels because it=s predicting impacts on amuch
larger scdle. Still, Snce were dealing with annual averages here and not short-term vaues, we would
expect that these fluctuationsin spacia monitoring datawould in dl likelihood be smoothed out spatidly
over a 1-year period.

It isimportant that even if the comparison does not result in aAperfectd comparison for al pollutants and
monitoring locations, trends in the comparison can be used to better understand the strengths and
weaknesses and uncertainty bounds on the predicted modd results. A comparison can help us both
improve the modd and give us a better ideawhét its predictions are useful for. By discovering where
the modd is performing well and where it ig¥t, we can refine our understanding of the processes which
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underlie air pallution and its trangport. The model might perform well for certain pollutants but not
others. It might perform better in certain geographic areas than in others. It might do a better job in
urban areas than it doesiin rurd aress; it might dways overestimate or underestimate; it might do better
when concentrations are higher; it might do better for areas near large sources of emissons. Any
information of this type will help modeersimprove their future assessments. If only an order-of-
magnitude accuracy is required to make a certain decison from the mode results, then one may be
happy with the modek-s expected performance based on the comparison. On the other hand, if detailed
accuracy is required for a given pollutant and geographical area, the modd may be deemed
inappropriate for this use or further comparisons may be warranted.

[11. The Basc Components of the Comparison.

The mode evauation study will present graphs, tables, maps, and charts which show the results of the
model-to-monitor comparison for the year 1996. We will initidly do this comparison for nine HAPs.
benzene, 1,3-butadiene, forma dehyde, acetaldehyde, acrolein, tetrachloroethylene, cadmium,
chromium, and lead. These were chosen because 1) they are a subset of the Aurban HAPS) considered
intheinitid nationa-scale assessment; 2) they represent a range of physical HAP parameters (i.e,
organic, volatile, particulate) and 3) thereis a 9gnificant amount of Ahigher-qudityd monitoring data
avalable for them.

A. Processing of Monitoring Data and Elimination of Questionable Sites.

Appendix A describes the method by which annua means were calculated from hourly (or daily) toxics
monitoring data. We will discard a (pollutant, site) pair from the comparison if it falsinto any of the
following categories, discussed in more detal below:

It fails the completeness test in Appendix A.

A large portion or dl of the measured datais below the MDL.

We have reason to doubt the accuracy of the monitoring average.

The steisvery close to an international border.

There is sSome uncertainty as to the gppropriate modd emissions parametersin the vicinity of the
monitoring Ste which affect the modd estimate for the given pollutant.

AR IR C R

i) Completenesstest. None of the monitorsin this study measure concentrations every
day, so we want to be confident that the days measured are representative of al the days of the year.
The completeness test is designed to discard (pollutant, Site) pairs which may not be representative of
amospheric fate and transport processes as well as expected emissions throughout the year. However,
we were careful to avoid making the completeness test too stringent. A more stringent test would
eliminate so many Sites that we would have too few sites left to conduct a meaningful comparison.

i) Data below the MDL. In generd, daily values below the MDL are replaced with
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MDL/2. However, if mogt or al of the daily observations are below the MDL, we carrt be confident
that the computed annua average accurately reflects concentrationsin the air. All (pollutant, Site) pairs
for which dl daily vaues were below the MDL were discarded from the comparison. Other siteswith
only one or two values above the MDL for the whole year were aso discarded.

iif) Questionable monitoring averages. We diminated sites for which we had reason to
doubt the accuracy of the monitoring annud average. In areas with few mgor point sources, we would
expect both toluene and benzene (both HAPs emitted primarily by mobile sources) to be highly
correlated in the ambient air. Thus, if aste had an odd ratio of toluene to benzene, we discarded the
gtefrom the Stelist for benzene. The sameistrue of formadehyde and aceta dehyde; stes with odd
ratios of formaldehyde to acetal dehyde were diminated from the site ligt for both pollutants. Siteswhich
had extremely high monitoring vaues compared to other vaues for that pollutant were aso discarded.

iv) Border sites. Some of the monitoring Sites are very close to the US - Mexico
border or the US - Canada border. Because we have no emissions data for Mexico or Canada, we do
not have confidence in the model estimates for these Stes. Thisis epecidly true of Stesin Cdexico,
CA; El Paso, TX; Brownsville, TX; and Belingham, WA. These sSites are close to large citieson the
other sde of the US border.

V) Inventory check. As noted above, afringe benefit of the mode-to-monitor
comparison isthat it can serve as a check system for the emissionsinventory. Wesll see some model
estimates which are very far away from the monitoring average. Some of these can be explained by a
mid ocated emissons source or missing emissons source information.  1n these Stuations gppropriate
modifications can be made to the emissons inventory which result in revised mode predictions or we
can diminate these comparisons from our analyss.

B. Figures for Each Pollutant.

For each pallutant, we will have a table showing the raw data, dong with four figures:

a scatter plot of modd estimates and monitoring vaues,

Sde-by-sde box plots comparing the overdl ditributions of mode estimates and monitoring
values,

aAprobability ploti estimating the probability that the model agrees with the monitoring deta for
adte pair, with regard to the direction of the inequality; and

amap showing the locations of monitoring Sites.

These are discussed below.

B B B ®

i) Scatter Plots. An exampleisFigure 1. The scatter plot is a straightforward way to
show the agreement between the model and the monitors. Each ordered pair on the graph is (monitor,
modd), for each monitoring Ste for that pollutant. For example, let-s say we have a benzene monitor at

-6
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|atitude X, longitude Y. It gives an annual average for 1996 of 10 ig/nT. We givethe lat/long
coordinates (X,Y) to the ASPEN modd, and it gives us an annua average of 8ig/nT at these
coordinates. So we plot the point (10,8) on the graph.

As noted above, if most of the points are around the Y= X line on the graph, which isaso on the
graph in Figure 1, the modd is performing well - its estimates are close to the monitored concentrations.

i) Side-by-side Box Plots. An exampleisFigure 2. Thisis another rdaively smple
way to show the agreement between the model and the monitors. Let=s say there are 120 monitors
across the US for benzene. To congtruct the box plot for the monitored annual averages, we compute
certain percentiles and the mean of these 120 numbers. Then, we input the 120 (lat,long) coordinates of
the monitors into the ASPEN model, and get 120 model estimates. We compute the same percentiles
and the mean of these numbers, and make another box plot.

If thereis good agreement between the model and the monitors, the two box plotswill look like
they came from the same digtribution - they will be Sde by sde, instead of one being higher or longer
than the other. The corresponding percentiles and the means should match up fairly closdly.

i) Probability Plots. An example of thistype of plot isshown in Figure 3. Theidea
behind this graph is that it might be unreasonable to expect the mode to match up its estimates with the
monitors on an absolute scale; but maybe the mode is performing well in ardaive way. We would
hope that if the cadmium monitors say that Site A has a higher concentration than Site B, then the modd
agrees. So this plot assesses whether the model is getting the Adirection of the inequadity@ correct. If the
monitors say that Site A=s concentration is only dightly higher than Site B:s, then maybe we can
Aexcuse) the modd for getting the direction of the inequdity wrong; but if Site A=sis much higher than
Site B=s according to the monitors, we would hope that the model does better. The plot looks at the
Ardaivel performance of the mode for different retios of Site A=s monitored concentration to Site B-s
monitored concentration (assuming A=sis higher than B-g). If the modd is performing well, then the
probability it agrees with the monitors for Site pairs will increase asthe ratio gets higher, and will be well
over 50% for ratios near 1.3 and 1.4. If the modd is performing poorly, its probability of agreement
will hover around 50%, which iswhat yourd get by pure chance, even as the ratio gets well above 1.
The plot uses agatistical technique called logistic regresson (Agresti, 1990) to estimate the probability
of agreement.

iv) Maps. Anexampleis Figure4. The map will do nothing more than show the
locations of the Siteson anationd scale. 1t will give some idea of the geographic coverage of the
monitors and of the number of Stes.

C. Figurefor All Pollutants at Once.

In addition to these 9H4=36 figures, we will aso present a graph showing Aratio box plots) for dl nine
pollutants, on the same set of axes. An exampleis Figure 5 (which only shows three pollutants for
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now). The box plots will show the digtribution of monitor/modd ratios. So if we have 150 monitors for
acrolein, we will have 150 monitor/model ratios to compute. We then compute percentiles and the
mean of these 150 numbers, and creste abox plot. If the modd is performing well, the box plots will
be short, and centered a 1. By putting the box plots Side by side for each pollutant, we can easlly
compare the modeks performances for the different pollutants. Well be able to surmise which HAPs
are being overestimated and underestimated, and which are being estimated consistently and
incongstently.

D. Stratification Tables.

The last group of presentations will show the results of Adratifyingl the Sites based on severd variables.,
By Adtratificationi, we mean that we will place the monitoring Stesinto certain categories, and evaluate
the model-s performance in each of these categories separately. Theideaisthat wed liketo get a
better idea of the model-s performance in specific Stuations, as described in the introduction above. So
far, every figure werve looked at aggregates dl the sites for each pollutant across the country. We will
use three variables to gratify the comparison, for each pollutant:

$ urban vs. nonurban;

$ geographic/dimatologica region; and

$ pollutant level.

i) Urban vs. Nonurban. We will look at the urban and nonurban sites separately. For
the sake of this andysswe will defineAurbani as a monitoring Ste being located in a Metropalitan
Statigtica Area.

i) Geographic/Climatologica Region. We will divide the US into dimatological regions
using a subset of the Koppen Climate Classfication (Godfrey, 1999). Where appropriate, or data
limits well try to merge the dlassifications into fewer super-classfications.

i) Pollutant Level. For each pollutant, we will divide the sitesinto four quartiles, based
on their monitored annual averages. Wed liketo seeif the mode performs better for high levels of
pollutants. One reason the modd might perform better a high levelsisthat there are fewer MDL issues
a high leves

Instead of presenting the results for these sratifying variables in graphs and box plots, werll use some
summary datistics. We will present three tables, one for each of the above headings. Table2 isan
example for the APollutant Leveld heading. In each cdll of the table, we will present Sx datigtics.

$ the mean of al the monitor/modd ratios;

$ the standard deviation of al the monitor/model ratios;

$ the number of stes;

$ the proportion of monitored averages which are covered by the range of mode estimates for the

-8
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county containing the monitoring Ste;
$ Spearmarts correlation coefficient, & and
$ the p-vaue from the hypothesis test that &>0.

i) Mean of Ratios. This number is the same as the asterisk in the box plot in Figure 5.
It isjust the mean of dl the monitor/modd ratios in that Astratum for that pollutant. Numberscloseto 1
here suggest that the modd is giving unbiased estimates in this stratum.

i) Standard Deviation of Ratios. This number gives someidea of the length of the box
plotin Figure 5. 1t measures the variability of the ratios. The smdler this number is, the better. If the
mode is giving good estimates, the mean should be near 1 and the standard deviation should be small.

iif) Number of Sites. Hopefully these numbers will not be too smdl. If this number is
amal for a particular stratum, we carrt have much confidence that the statistics are representative of the
modeks performance for that stratum.

iv) Proportion of Sites Covered By County. This statistic is one which helps addresses
gpatia resolution issues with the modd predictions. This statistic compares the monitored average to
the range of dl estimatesin the county containing the monitor. Independent of this mode evauation
project, the ASPEN modd is being run to generate estimates for 1996 for every census tract centroid in
the US (athough the results of the air qudity predictionswill only be presented a a county wide level
with agtatistica range of census tract concentrations presented). Given a monitoring Site, we can
determine its county. Then, we can see if the monitored average is covered by the intervad (1,u), where |
isthe 10" percentile of dl the model estimates for the county, and u is the 90™ percentile of dl the
model estimates of the county. The Statistic will be the proportion of dl sitesin the sratum for which
thisistrue. The higher the proportion, the better the performance of the model.

V) Spearmarrs corrdation coefficient. Like the probability plots discussed above, this
datigtic tests the relative performance of the modd instead of its absolute performance. It is caculated
the same way as Pearsorrs correlation coefficient, commonly caled r in atistics textbooks, except that
ingtead of using the actud data, it uses the ranks of the values. The datidtic is aways between -1 and 1.

Vaues near 1 suggest a strong positive correl ation between the model estimates and monitoring
averages.

For example, let=s say we have 100 monitors for tetrachloroethylene. We get estimates from
ASPEN for each of the gtes. Then, we assign ranks for the monitoring averages from 1 to 100, and for
the modd estimates from 1 to 100. We then form ordered pairs (monitor rank, mode rank) for each of
the 100 stes, and caculate the correlation between the monitor ranks and the modd ranks. If the
rankings are exactly the same, wed get a corrdation coefficient of 1; if the mode ranksthe stesin the
reverse order of the monitors, wed get a correlaion coefficient of -1. Postive vaues suggest a postive
association and negative vaues suggest a negative association. We hope that dl the correlation

-9
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coefficients in the table are positive.

vi) P-vaue from hypothesis test that €>0. We datisticaly test the hypothesis that
Spearmarrs corrdation coefficient is greater than 0 usng SAS software. The p-vdue from the test will
aways be between 0 and 1. Small p-vaues suggest that there actudly is a positive association between
the modd estimates and the monitoring averages. It is common to think of p-vaueslessthan .05 as
indicatingAdatidicaly sgnificant@ results. The p-vaueswill get smdler asthe sample size (datidtic (jii)
above) and the estimate of Spearmarrs correlation coefficient (statistic (v) above) get larger.

IV. Next Steps.

We plan to apply the procedures described above to the 1996 model estimates and the 1996
monitoring averages. Then, we will evauate the results and make our findings publicaly available. The
procedures may be revised based on the analytica results and on the recommendations from the peer
review process.
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Climate/
Geographica
Regions

EMISSION SOURCES/POPULATION CHARACTERISTICS

Population size for ArealMobile
Source Dominated

Population size for Mgor Source
Dominated

Non-
Urban

>3M

M-
3M

M-
500k

500k-

250k

<250k

>3M

M-

3M

M-
500k

500k-

250k

<250k

<50k

Maritime -
North

Maritime -
South

Continentd -
North

Continentd -
South

Desert

NOTES: Population Distribution of MSAs >3M (13), 1M-3M (35), 1M-500k (29), 500k-250k(64), <250k

(134)

Table 1. Categorization of Ambient Air Toxics Monitoring Sitesand Annual Average
Concentration to Prioritize Monitoring Network Design for Modd Evaluation.
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Pollutant Level (Monitoring Percentiles)
Pollutant 0-25 26-50 51-75 76-100

Pollutant A 5.72 4.03 5.44 7.45

6.78 4.47 9.62 6.89
45 45 45 45

921 .887 .793 825
.643 501 438 555
.045 121 .187 103

Pollutant B

! ! ! ! !

Table2. Stratification Table by Pollutant Level. The Stesare placed into one of four strata based
on their monitored annual averages. the lowest 25% are in the firgt stratum, etc. The six Satigtics are
described in order in Section 11(C) of the paper. For example, the point estimate of Spearmarrs
correlation coefficient for the 45 most polluted sites (according to the monitored annud averages) for
Pollutant A is.555.
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Appendix A. Completeness Criteria and Calculation of Annual Averages
for Monitoring Data.

Since the ASPEN model predicts 1996 annud averages, in order to have avalid comparison, we
must also compute 1996 annua averages for the monitoring Stes. Some of the monitoring

gtes have very limited datafor 1996. So thefirst step isto diminate the (pollutant, Ste)

pairs which are not complete enough to compute an annuad average. For example, if we

have a ste which conducted a short-term study of benzene in the month of June, we would not
want to compare this average to mode predictions, because June might not be representative of
thewhole year.

Hereis a step- by-step explanation of how we would determine whether a (pollutant, Site) pair has a
Acomplete year() for 1996.

1) If we have measurements for at least eighteen hours of the day, then the day is complete.

2) Determine the sampling frequency for 1996, for each quarter (January - Marchisquarter 1, . . .
, October - December is quarter 4). Some (pollutant, Site) pairs are regular for 1996 - for
example, thereisadte in Concord, Cdiforniawhich measured styrene every twelve days, from
January 4 to December 29. So the sampling frequency for this Steis once every twelve days
for dl four quarters. For irregular Sites, just take the mode of the sampling frequencies for each
quarter - in other words, take the most Acommoni sampling interva in the quarter.

3) Use the sampling frequencies in Step 2 to determine the percent of complete days in the quarter.

For example, in our Concord, CA site, the sampling frequency is once every twelve days. So
there are about 365/4/12, or about 8 sampling days in each quarter. So if quarter 1 has 6
complete daysin it, then quarter 1 has 6/8=75% completeness. If the percent of complete days
in the quarter is 75% or more, the quarter is complete.

4) If the (pollutant, Site) pair has a least one complete Acoolf quarter (quarters 1 and 4) and at
least one complete Awarmil quarter (quarters 2 and 3), this Ste has a complete year for this
pollutant.

If the (pollutant, Site) pair does not have a complete year for 1996, it is discarded, and it is not
used in any of the model-to-monitor comparisons.

To cdculate the annud average, we begin with the dally vdues. Dally vaues below the MDL are
replaced with MDL/2. We then caculate quarterly averages by averaging dl the daily vauesin each
quarter. Findly, we caculate an annua average by averaging two numbers. the average of the one or
two Acoolf quarters, and the average of the one or two Awarmj quarters. Here are three examples:

Site A: Quarter 1 5.0, Quarter 2 incomplete, Quarter 3 6.0, Quarter 4 9.0
Site B: Quarter 1 incomplete, Quarter 2 incomplete, Quarter 3 6.0, Quarter 4 9.0
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Site C: Quarter 1 incomplete, Quarter 2 7.0, Quarter 3 6.0, Quarter 4 incomplete
The annud average for Site A is6.5. The average of Quarters 1 and 4is 7.0, and the
average of Quarter 3doneis6.0. The average of 7.0 and 6.0 is6.5.

The annual average for Site B is7.5. The average of Quarter 3 doneis 6.0, the average of
Quarter 4 doneis 9.0, and the average of 6.0and 9.0is 7.5.

Because Site C does not have a complete Acool@ quarter, it does not have a complete year.
So it isdiscarded.
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