US ERA ARCHIVE DOCUMENT

# Data analysis for multipollutant planning

Presented to EPA AQMP Conference

June 4-5, 2008

Donna Kenski

LADCO/MRPO

## What can ambient data tell us about sources of PM2.5, toxics, and other pollutants?

- How do we quantify local primary source contributions to urban PM2.5 nonattainment, as distinguished from regional or widespread urban sources? What roles do precursor gases play?
- Data available:
  - FRM mass
  - continuous mass
  - speciation (24-hr and some near-continuous)
  - meteorology
  - special studies—OC speciation, continuous metals, mass spec, criteria gases, ammonia
- Tools and techniques available:
  - Descriptive/exploratory/visualization
  - Receptor models (includes CMB, PMF, factor analysis, UNMIX)
  - Thermodynamic models
  - Trajectory analyses, CPF



Chicago/Gary

### Three-Year Average PM2.5, 2002-2004



FRM Average Concentration by Season, Chicago, 1999-2005



PM2.5 Components — — Average, 2002—2004 Reconstructed Mass



#### Chicago Urban Excess, Annual, by Species

Bondville-Livonia Annual Average Used for Regional Background Estimation



Light color bars are regional background; darker bars are urban excess

#### Seasonal and Spatial Variability in Soil

Reconstructed Mass



#### Influence of Iron on Soil Component of PM2.5

Reconstructed Mass



### Molecular Markers for Source Apportionment

- Molecular Markers: Compounds present in the emissions from an air pollution source that are relatively unique to that source
- Used to understand the contributions of primary sources to the organic aerosol and PM concentrations
- Molecular Marker CMB models incorporating primary emission tracers have been reasonably well developed
- The organic compounds that make up SOA are different than the organic compounds in primary particulate matter emissions
- Recent work to identify anthropogenic and biogenic SOA markers and ratios to OC mass through smog chamber experiments



### Primary emission tracers



### Secondary OC tracers







FIGURE 1. Estimated primary and secondary contributions compared with measured organic carbon for Harch 2004 through February 2005.

Source: Lewandowski et al, ES&T, 2008



FIGURE 2. Detailed secretary contributions to embloot  $PM_{2n}$  in Bondville, Northbrook, Cladinasti, Detroit, and East St. Laufs for March 2004 through February 2005.

Source: Lewandowski et al, ES&T, 2008

## Thermodynamic Models—ISORROPIA and SCAPE2

- Thermodynamic models predict the partitioning of PM species between gas and particle phases, based on concentration, temperature, and RH
- Using measured NH3, HNO3, NH4, NO3, and SO4, systematically vary concentrations from starting (ambient) conditions and calculate new equilibrium concentrations
- Resulting isopleths tell us how sensitive PM is to changes in precursors
- SO4 and NO3 25, 50, 75, 100% of current
- NH4 50, 100, 150, 200% of current

### Predicted PM<sub>2.5</sub> Concentrations



PM is about equally sensitive to reductions in SO4 and NO3



PM is slightly more sensitive to NH3 reductions than to HNO3

Seasonal PM<sub>2.5</sub> Concentrations

PM is most responsive to NO3 in the winter; response to sulfate is similar year-round.



### Predicted PM<sub>2.5</sub> Concentrations



Expected reductions in SO4 may lead to PM being less responsive to reductions in ammonia

Geographic extremes

Blue Mounds, MN: Least sensitive to NH3; farthest north, and highest NH3 site



Athens, OH: Most sensitive to NH3; farthest east, lowest NH3 site



### Where are the sources of interest?

- Met data can help identify where the important local sources are
- Tools: wind roses, pollution roses, conditional probability functions, trajectory analysis, nonparametric regression



### Conditional Probability Function

#### **Gasoline Vehicles**



#### **Diesel Vehicles**



CPF = Probability that source contribution from a given wind direction will exceed the 75th percentile

### Nonparametric Regression

- Model regresses concentration on wind direction and speed (as x,y vectors) to locate areas associated with peak concentrations (i.e., source locations)
- Kernel density estimate, weighted by no. of observations
- Like a moving average, but with a smoothing parameter

$$\overline{C}(X_i, Y_j) = \frac{\sum_{k} K\left(\frac{(X_j - x_k)}{h}\right) K\left(\frac{(Y_j - y_k)}{h}\right) c_k}{\sum_{k} K\left(\frac{(X_j - x_k)}{h}\right) K\left(\frac{(Y_j - y_k)}{h}\right)}$$

Where K is the Epanechnikov kernel (or Gaussian) and h is the smoothing parameter

### Allen Park



#### Newberry, 01JAN06-31DEC06





Newberry aethalometer data – points very specifically to intermodal freight terminal (1 hr data, 2006)

#### FIA, 01JAN06-31DEC06





FIA aethalometer data points very specifically to Ambassador Bridge (1-hr data, 2006 annual)

### Conclusions

- Routine monitoring data not always sufficient to answer questions about sources and interactions of pollutants; special study data very helpful
- Gases, particles, and toxics all share sources; need to use multiple approaches and methods to assess impacts
- Each method and model has associated uncertainties; no single 'right' answer