US ERA ARCHIVE DOCUMENT

Environmental Benefits Mapping and Analysis Program

Neal Fann
U.S. EPA, Office of Air Quality Planning and Standards
Air Benefits and Cost Group

Overview

- Principles of health benefits analysis
- Running BenMAP
- Interpreting BenMAP results
- Training opportunities

Scientific Foundation for BenMAP: Derivation of Health Impact Functions

Epidemiology studies – derivation of concentration-response functions (beta values)

What Health Effects Does EPA Quantify?

Health Endpoint	Particulate Matter	Ozone
Mortality	✓	\checkmark
Chronic bronchitis	✓	
Nonfatal heart attacks	\checkmark	
Hospital admissions	\checkmark	✓
Asthma ER visits	\checkmark	✓
Acute respiratory symptoms	\checkmark	✓
Asthma attacks	\checkmark	✓
Work loss days	\checkmark	
Worker productivity		✓
School absence rates		✓

Scientific Foundation for BenMAP: Valuing Health Outcomes

- Cost of Illness (COI)
 - Medical expenses for treatment of illness
 - Captures the money savings to society of reducing a health effect
 - Ignores the value of reduced pain and suffering
- Willingness To Pay (WTP)
 - Lost wages, avoided pain and suffering, loss of satisfaction, loss of leisure time, etc.
 - Measures the complete value of avoiding a health outcome
- Quality adjusted life years (QALY) measured in terms of "healthy" life year equivalents rather than dollars

Scientific Foundation for BenMAP: Valuing Health Outcomes

- Example: Value of a statistical life saved
 - I μg/m³ reduction in pollutant concentration produces decrease in mortality risk of I/10,000
 - For every 10,000 individuals, one individual would be expected to die in the absence of the reduction in PM concentrations
 - WTP for this I/I0,000 decrease in mortality risk is \$500
 - Value of a statistical life is $10,000 \times \$500 = \5 million
- Mortality benefits have accounted for about 90% of the total benefits of PM_{2.5} air rules

The Data BenMAP Uses to Perform a Benefits Analysis

White text represents user specification or input Green text represents result from inputs

Step One: Specifying Air Quality Data and Calculating Changes in Exposure

- Goal: estimate population exposure to pollutant of interest
- Option I: Apply user-generated modeled data
 - Easy to import CMAQ, CAMx data
 - Minor modifications required to accept other model data such as AERMOD
- Option 2: Apply built-in monitor data
 - AIRS data for ozone, PM_{10} , and $PM_{2.5}$ for a number of recent years (1996-2004)
 - In process of importing Pb, NOx, SOx and CO monitoring data

Step One: Specifying Air Quality Data and Calculating Changes in Exposure

Step One: Specifying Air Quality Data and Calculating Changes in Exposure

Air Quality Distribution

Population Distribution

Step Two: Specifying the Benefits Analysis Options

- Select health impact and valuation functions
 - BenMAP pre-loaded with hundreds of $PM_{2.5}$ and O_3 health impact functions
 - Users can add import additional functions through equation editor
- Model will "pool" functions and aggregate results
- BenMAP uses Monte Carlo methods to estimate distributions of incidence and valuation results

Step Two: Specifying the Benefits Analysis Options

Step Two: Specifying the Benefits Analysis Options

Step Three: Reporting the Results

Step Three: Reporting the Results (I) Age Group Impacts

Mortality Impacts by Age Group

Step Three: Reporting the Results: (2) Distributions of Incidence

Cumulative Distribution of Total Change in Mortality from a 30% Reduction in PM_{2.5} Levels

Step Three: Reporting the Results: (3) Distributions of Monetized Benefits

Cumulative Distribution of Value of Reductions in Premature Mortality from a 30% Reduction in PM_{2.5} Levels

Use of BenMAP in EPA Analyses

- Past Projects:
 - Non-Road Diesel Rule
 - Clean Air Interstate Rule
 - PM_{2.5} NAAQS
 - Small Spark Ignition Rule
 - Locomotive and Marine Diesel Rule
 - Ozone NAAQS
- Upcoming Projects:
 - SO₂ NAAQS
 - NÓx NAAQS

Other BenMAP Projects

- FAA aircraft analysis
- Washington and Oregon woodstove analyses
- New York City Department of Health borough-level analysis
- Georgia Department of Natural Resources
 SIP planning

BenMAP International Projects

- China: Benefits analysis of EGU control strategy.
- South Korea: Health benefits of Seoul air quality management plan
- Latin America: Benefits of air quality improvements in Mexico City, Saõ Paulo, Santiago
- India: Benefits analysis in Mumbai

BenMAP Training

- Two providers of BenMAP Training:
 - Abt Associates Inc.
 - Community Modeling Analysis System