

### MIRA – An Approach to Multi-Criteria Decision Making

AQMP Workshop Friday Center, Chapel Hill, NC June 4-5, 2008 Alan J. Cimorelli, EPA Region 3

## Outline

- Nature of Decision Making
- What is MIRA
- What MIRA is NOT
- The MIRA Approach
  - Methodology
  - Output
- Previous Applications
- Examples and Demonstration:
  - Philadelphia Multi-Pollutant Control Strategy Analysis
- Conclusions

### Nature of Decision Making

- Using the same data There is no "Right" answer just different perspectives
- All decisions are value judgments
  - Science cannot make decisions
  - Science can only inform or constrain
  - Stakeholders have many varied points of view
- Decisions are tradeoffs among varied criteria
  - Explicit & implicit
  - Scientific, socio-political & economic
- Context is paramount
  - What is the question and what are the

# What is MIRA? (Multi-Criteria Resource Assessment)

 An analytical decision support framework designed to rank elements of environmental sets

For example: control options, emission sources, other decision options, geographical areas, etc.

- A large # of highly diverse criteria can be included
  - Both quantitative and qualitative information
  - Environmental, social, political, and economic data
  - Encourages the inclusion of stakeholder concerns (if consensus can't be reached include the criterion)
- Both expert opinions and value judgments are explicitly included
  - Value judgments are transparency
  - Scientific data are explicitly separated from value judgments
- MIRA is designed as an iterative improvement and learning process
- MIRA explicitly reviles the rationale or justification for a decision

### What MIRA Is Not!

- MIRA is not a once through analysis MIRA's underlying philosophy is to learn about the relationship between science, policy and values WITHIN THE DECISION CONTEXT
  - How sensitive is the data & value judgments to the final decision?
  - How robust is the decision? Do the decision options change rank with small changes in data or values?
  - That is, MIRA can help determine the degree of confidence one should have in a decision
- MIRA is not an optimization approach MIRA stresses learning (informed people decide what is optimal)
- MIRA is not a black box decision makers are still responsible for the decision.

- Define the decision question
  - Sets the decision context
- Establish problem set:
  - Items that are to be evaluated (i.e. ranked)
  - Eg.: Control options, source sectors, geographic areas, etc.
- Establish decision criteria
  - Environmental, Social, political, economic, etc.
  - Quantitative and/or qualitative
  - Be as inclusive as you like
- Construct decision hierarchy
  - Primary means to organize data consistent with the decision context or decision question.

### Index criteria

- Purpose:
  - Allow comparisons among varied criteria
  - Add insight to the data (establishes decision context quantitatively)
- Method:
  - Place criteria metrics on same scale
  - MIRA uses a decision scale of 1 to 8.
  - Converts data units (e.g., ppm, tons per year or # of people) into decision units (e.g., vulnerability, attractiveness, etc.).
- The basic question: How much does each criterion have to change to elicits the same response?
  - E.g. 10 µg/m<sup>3</sup> increase in SO<sub>2</sub> is as significant as an a 1% increase in cancer risk, or \$1,000,000 spent
- Requires expert input & collaboration of

- Establish preferences (value set)
  - Define relative importance among all criteria within the decision hierarchy
    - Criteria are weighted within each hierarchy cluster s.t. the sum of the weights = 1.0
    - These sets of weights (value judgments) for the entire hierarchy defines a "value set" for the decision
    - Can develop multiple "value sets"
    - Each value set represents a different perspective
  - This is typically where decision or policy makers play - not scientists.
- Science (data & indexing) and values (preferences) are dealt with separately

- Decision Analysis using MIRA
  - Calculate "criteria sum" (decision index) for each Problem set element
    - i.e., the hierarchy collapses to a single value via this series of weighted linear sums of the clusters  $\sum$ (values=pref x science=indexed data)
  - Rank problem set elements
  - Determine decision drivers What criteria are most important?
  - Perform sensitivity
  - Learn
  - Re-evaluate:

Criteria, hierarchy, indexing, value set, problem set and even the decision question.

• Iterate

## MIRA Output

- Ranked Problem Set
- GIS Map if problem set elements are spatial
- Criteria Ranking:

Can be viewed at any level of the hierarchy

• Value Set:

CAN YOU ACCEPT THE VALUE SET THAT JUSTIFYS YOUR DECISION????

## Previous and Current Applications

- 8 hour ozone nonattainment designations boundaries
- Preliminary PM2.5 nonattainment designations boundaries
- Preliminary Ozone and PM2.5 Monitoring Network Assessment
- Assessment of the Impacts of Data Uncertainty The amount of acceptable uncertainty is judged on how it impacts the rankings
- Region 3 2009 & 2010 Budgetary Analysis
  - Considered all regional programs
  - Evaluated the environmental condition of the region based on a large set of multi-media indicators
  - Re-directed resources to important regional problems

### Philadelphia Multi-Pollutant Control Strategy Analysis - Using MIRA

- Explore linkages between air toxics, O<sub>3</sub> & PM<sub>2.5</sub>
- Perform "One Atmosphere" analysis
  - CMAQ (4 km) & ISCST models
  - Link based mobile emissions '96 NEI Stationary emission
  - 2001 Met Philly NWS & MM5
- Examine attractiveness (the decision unit) of various control strategies using MIRA

### One Atmosphere: Planning Example

Decision question: What is the most attractive control option?

It will depend on:

- The criteria chosen
- The relative value given to the 3 programs at present this depends on which program is doing the analysis (stove piped)
- The variability in spatial impacts and how we value different areas
- The relative value given to the set of environmental metrics used
- Problem Set: Three example control scenarios:
  - 30% reduction in aromatic emissions
  - 30% reduction in olefin emissions
  - 30% reduction in NO<sub>x</sub> emissions
- Criteria:
  - Consider two impact areas: Philadelphia & a broader domain
  - Consider 4 toxics pollutants, O<sub>3</sub> & PM<sub>2.5</sub>
  - Consider 3 environmental metrics
    - The mean snatial change in concentration

### **Extended Domain**



### **One Atmosphere: Evaluation Criteria**

- Evaluation criteria:
  - Estimate concentration fields for the 2001 baseline and 3 control cases for:
    - Air Toxics: formaldehyde, acetaldehyde, benzene and acrolein
    - Ozone
    - PM<sub>2.5</sub>
  - Use fractional improvement metrics to evaluate control scenarios

$$FII = \left(\frac{\chi_{Base} - \chi_{Control}}{\chi_{Base}}\right)$$

- Three metrics: Mean, maximum & minimum
- Two areas: Domain wide & Philadelphia

### Domain Wide FII (mean) Control Strategies



Philadelphia FII (mean) Control Strategies



# Attractiveness of Control Options (by Pollutant)

• Index criteria:

Convert FII's to the same decision units (i.e., attractiveness)

- Combine air toxics into two composite pollutants
  - Carcinogenic toxics combine based on unit risk
  - Hazardous (non-cancer) toxics combine based on reference concentrations
- Compare relative attractiveness among control options for each pollutant and area:
  - 4 Pollutants: Hazardous, cancer, PM<sub>2.5</sub> & O<sub>3</sub>
  - 2 Areas: Domain & Philadelphia
  - Assume FII<sub>mean</sub>, FII<sub>MaxDeg</sub> & FII<sub>MaxImp</sub> are of equal importance



### **Conclusions Base on FII Comparisons**

- Difficult to select option since different control strategies effect different pollutants
- The strategy chosen will depend on the relative importance we place on the various programs (i.e. Air Toxics vs. O<sub>3</sub> vs. PM<sub>2.5</sub>)
- It seems clear that NO<sub>x</sub> is lest preferred. However, it could be chosen if we are willing to accept certain value sets
- A decision framework is needed to systematically examine the viability of the control options relative to the value sets they imply

### Selecting a Control Option Using MIRA (There is no "RIGHT" Answer)

- Depends on <u>value judgments</u> (value set) regarding
  - Cancer vs. Hazardous effects
  - Air Toxics vs. O<sub>3</sub> vs. PM<sub>2.5</sub> programs
  - Geographic area
- Example 1: Vary the importance of Haz vs. Cancer
  - 2 Areas evaluated separately
  - 3 FII's equally weighted
  - 3 Programs equally weighted
  - Value Sets:
    - Equally weighted
    - Cancer = 10x Hazardous
    - Hazardous = 10x Cancer

### Sensitivity To Composite Toxic Pollutants Weighting Equal Program Weighting



### Selecting a Control Option Using MIRA (There is no "RIGHT" Answer)

### • Example 2: Vary the Importance of the programs

- 2 Areas evaluated separately
- 3 FII's equally weighted
- Cancer = 10x Hazardous
- Value Sets:
  - The 3 programs are equally weighted
  - Air Toxics accounts for 80% of the decision, Ozone 10% & PM2.5 10%
  - Ozone accounts for 80% of the decision, Air Toxics10% & PM2.5 10%
  - PM2.5 accounts for 80% of the decision, Ozone 10% & Air Toxics10%

### Sensitivity To Program Weighting Cancer 10x Hazardous

### **Domain Wide Analysis**



Air Toxics 80%

Ozone 80%

PM2.580%

Equal Pref

### Selecting a Control Option Using MIRA

(There is no "RIGHT" Answer)

- Example 3: What value sets will justify selecting the 30% NOx reduction strategy?
- Hold Constant:
  - Cancer = 10x Hazardous
  - 3 FII's equally weighted
- Vary:
  - Importance of areas (Philly vs. Domain)
  - Importance of the 3 Programs (Air Toxics, O3 & PM2.5)
- Four example value sets:



# CONCLUSIONS – One Atmosphere Example:

MIRA can support multi-pollutant decision making by providing decision makers the ability to:

- Better understand how the various decision criteria interrelate
- Examine the policy implications of stove piped decision making – what is the impact of their decision on other programs
- Become less vulnerable to causing inadvertent adverse effects to the environment and/or other programs
- Uncovering the value sets that are implied by a decisions

### **GENERAL CONCLUSIONS**

- There is no "RIGHT" answer in decision making
  - Decisions, by their nature, are value judgments
  - Science should inform/constrain the decision not make decisions
  - MIRA provides a decision framework which:
    - Separates the objective science from the subjective decision making
    - Allows the science to inform the decision
    - Provides a learning mechanism for scientists
      - Forces scientific thinking within context
      - Forces collaboration among relevant disciplines
    - Provides a learning mechanism for decision makers (connects value sets to decision options)
    - Facilitates stakeholder participation
      - Provides a mechanism for including stakeholder interests
      - Consensus building is a natural result of the process
    - The justification for a decision is well defined and transparent